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For each constant r-term Krichever-Novikov-type algebra, a minimal set of defining 
generators is given from which all the operators of the algebra can be constructed by sequential 
definitions. A finite system of polynomial conditions on the defining generators is given, 
guaranteeing the commutation relations of the full algebra. 

I. INTRODUCTION 

The r-term Krichever-Novikov (KN)-type algebras 
r-I 

[Nm,Nnl = (m-n) L Ck(m,n)Nm+n_r+I+2k 
k=O 

generalize the classical Virasoro algebra (r = I) 

[Lm,Ln 1 = (m - n)Lm +no 

(1.1 ) 

( 1.2) 

Let us remark that the step in k has been chosen to be 2, in 
analogy with the original article of Krichever and Novikov. I 

We here extend the presentation recently obtained of the 
Virasoro algebra2 to the simplest cases of (1.1) when the 
Ck(m,n) are all chosen equal to I: 

r-I 

[Nm,Nnl = (m-n) LNm+n-r+I+2k' (1.3) 
k=O 

These constant r-term KN-type algebras, which are truly 
infinite, are presented as purely finite structures. All the op
erators of the algebra are constructed from a finite set of 
defining generators and all the commutation relations follow 
from a finite system of polynomial conditions imposed on the 
defining generators. 

II. DEFINING GENERATORS. DEFINITIONS OF THE 
OPERATORS 

It was shown2 that all the Virasoro operators (r = I) 
can be constructed starting from a minimal set by a sequence 
of definitions. The simplest minimal set consists of just two 
generators; for example, 

Dr= I =={L3,L_z}. (2.la) 

Then 

LI = HL3,L-z], 

L_I = HLI,L_z], 

L z = HL3,L-d, (2.lb) 

Lo = HLI,L_ I], 

L i+ 1 = [l/U-I)l[LoLd, t;;;.3, 

L_ i_ 1 = [l/(l-i)l[L-oL_d, t;;;.2, 

is a sequence of definitions. 
To generalize the minimal set to the arbitrary r term 

constant KN algebras, the cases r = 2 and r;;. 3 should be 
treated separately. 

For r = 2, where the constant KN algebra reads 

[Nm,Nnl = (m-n)(Nm+n_ 1 +Nm+n+I)' (2.2) 

the set 

Dr= 2 == {NI,N -z} (2.3a) 

is minimal with the sequential definitions 

(Def. 1) No = HNI,N -z] - N -z' 

(Def.2) N2 = [NI,No] - No, 

(Def.3) N_I =HN2,N_2] -NI, (2.3b) 

(Def. +) Ni+ 1 = (l/i)[Ni,Nol -Ni_ l , i;;.2, 

(Def. -) N_ i_ 1 = (l/i)[No,N_d -N_ i+ l , i;;.2. 

For r;;.3, in order to define all the N's, a minimal defin
ing set contains at least 2(r - I) generators. Indeed, if a 
specific commutator is used to define one N only, (r - I) 
N's from the r N's in the right-hand side have to be known 
already. But, since the index increases by step 2, there should 
be (r - I) even N's and (r - I) odd N's to start with. 

The defining set 

Dr=={N _r+z,N -r+3, .. ·,Nr- l } 

(2.4a) 

has this minimal number of generators and hence is a mini
mal set. The sequential definitions are 

r-2 
- L N -r+3+2k' 

k=O 
(Def. +) Ni+ 1 = [l/(2-r-i)l[N_r+2,N;] 

r- 2 

- L Ni-2r+3+Zk, i;;.r- 1, 
k=O 

r-Z 

- L N- i + I + Zk ' i;;.r-l. 
k=O 

(2.4b) 

With the minimal sets (2.la), (2.3a), and (2.4a) and 
the sequential definitions (2.Ib), (2.3b), and (2.4b) all the 
operators of the r-term constant KN algebras are obtained. 

For each r, we now must find the conditions to be im
posed on the minimal set so that the commutation relations 
are fulfilled for all the operators. 
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III. CONDITIONS 

Clearly the minimal set, together with the sequential 
definitions, is not enough to guarantee the commutation re
lations of the algebra. Conditions on the defining generators 
have to be imposed. For any r, we construct a system of 
conditions for our definitions (2.1), (2.3), and (2.4); their 
number is given in the following proposition. 

Proposition: The cardinal C r of systems of conditions for 
arbitrary r is 

Cr =I=6, Cr =2=6, Cr;.3=(r-l)(2r-l). 
(3.1 ) 

The proof of the case r = 1 can be found by slight 
changes (removal of the central charge) from the Virasoro 
presentation. 2 The proofs of the cases r = 2 and r = 3, which 
are also exceptional, can be found in an article written in 
honor of Professor R. Brout for his sixtieth birthday.3 

Here, we limit ourselves to a detailed description of the 
generic case (r>4) and, in Fig. 1, Fig. 2, and Fig. 3, to a 
resume of the results for the cases r = 1, 2, and 3, respective
ly. 

It should be noted that the proof of the proposition is not 
simple. The passage from a system of conditions to the com
mutation relations requires the construction of a rather sub
tle and detailed path, using what we will call allowed Jacobi 
identities. At every step in the path, the known commutators 
make certain Jacobi identities allowed which prove new 
commutation relations and, in turn, at the next step, new 
allowed Jacobi identities, etc. 

The rest of the section will be organized as follows. We 
will first (Sec. III A) discuss the tools (Jacobi identities) 
that allow the determination of unknown commutators from 
known ones. The full system of conditions is given and dis
cussed (Sec. III C). The commutation relations are separat
ed in four ensembles (Sec. III B), a finite one around the 
conditions and three infinite ones. The determination pro
ceeds in each region in turn (Secs. III D-III G). 

A. Jacobi Identities 

To prove the co~mutation relations from the condi
tions, the tools are the Jacobi identities. Let us immediately 
stress that a Jacobi identity 

[[Nm,Nn],Np] + [[Nn,Np],Nm] + [[Np,Nm],Nn] =0 
(3.2) 

can be used to provide useful information if and only if the 
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FIG. 1. Conditions for r = I in the 
m.;;n lattice corresponding to 
[Non,N,,]. The crosses are the com
mutators known by our definitions 
(2.1b).They extend to infinity up
wards in the column I and at the left 
in row - 1. The boxes marked C 
form a system of conditions. All the 
other boxes, extending to the full 
half-plane, are proved by sequences 
of Jacobi identities. 

J. Math. Phys., Vol. 31, No.3, March 1990 

C 
C 

CI C 0 

£ 
--
C 
0 -

0 , ___ L 

' I 

-- -i- --~ 

4 
3 
2 
1 

o 
-1 

FIG. 2. Conditions for r = 2 in the m<;n lat
tice corresponding to [ Non ,N" ] . The crosses 
are the commutators known by our defini
tions (2.2b). They extend to infinity up
wards in the column 0 and at the left in row 
O. The boxes marked C form a system of 
conditions. All the other boxes, extending to 
the full half-plane, are proved by sequences 
of Jacobi identities. 

inside commutators [ N m ,Nn ], [Nn ,Np ] , and [ Np ,N m ] are 
already known by some preceding step in the argument. 
Once the inside commutators are known, the Jacobi identity 
will be called allowed and be represented by J(m,n,p). It 
reduces to a linear relation between 3r commutators. Intro
ducing Ya•b as a shorthand for 

r-I 

Ya,b == L [Na- r + 1 +2k,Nb] 
k=O 

(3.3 ) 

and the corresponding grade l: = a + b, the allowed 
J(m,n,p), 

(m - n)Ym+ n,p + (n - p)Yn+p,m + (p - m)Yp+ m,n = 0, 
(3.4) 

relates three Y's of the same grade. It can be shown that 
repeated use of (3.4), when the Jacobi identities are allowed, 
enables one to determine all the Y's of given grade when 
three well-chosen ones are known. 

In general, a Jacobi identity will prove an unknown 
commutation relation ifit is allowed and if two ofthe Y's in 
(3.4) are fully known as well as r - 1 of the r commutators 
of the third Y, the remaining one being the unknown. Obvi
ously, other but less frequent situations may occur when the 
unknown commutator appears in more than one Y. 

B. Regions 

In order to extend the proof to all the commutators 
( 1.3), it is useful to associate to the commutator [ N m ,Nn ] a 
box in a (m,n) lattice with, taking the antisymmetry into 
account, m<n (the boxes with m = n will be labeled by 
zero). The lattice (m,n) is conveniently divided into four 
regions roughly sketched in Fig. 4: 
region (a), the central region containing, 

in particular, the conditions; 
region ((J), the (extended) positive-positive 

region; 
region (y), the (extendea) negative-negative 

region; 
region (8), the (restricted) positive-negative 

region. 

C~ 
C ~ 
C~ 

C C 
C 0 

-
C -
C C 
C 0 -, 
0 , , 

---~-' . , , ___ J ____ '. 

4 
3 
2 
1 

o 
-1 

, I 

j-31-2 1-1 j 0 i 1 1 

FIG. 3. Conditions for r = 3 in the m<;n lattice 
corresponding to [ N m ,N" ]. The crosses are the 
commutators known by our definitions (2.3b). 
They extend to infinity upwards in the column 
- I and at the left in row 1. The boxes marked 
C form a system of conditions. All the other 
boxes, extending to the full half-plane, are 
proved by sequences of Jacobi identities. 
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FIG. 4. For r general. A rough sketch of the m<n lattice divided into the 
four regions: region a( = U ;a;), finite central region where the conditions 
are located; region /3, extended positive-positive region; region r, extended 
negative-negative region; and region 8, reduced positive-negative region. 
Crosses indicate commutators known by definition. 

The precise limits of these regions will be explained in 
the next sections. A detailed study, commutator by commu
tator, will be needed in the central region. The other regions 
will be treated by inductive arguments. 

C. Conditions 

In Fig. 5, the latttice corresponding to the subregion a I 
of a is drawn. The commutators corresponding to the defini
tions (2.4b) and hence known are cross-ruled. 
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Our system of conditions is labeled by the letter C. 
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FIG. 5. Conditions for general r in the m<n lattice corresponding to 
[ N m ,N" ]. The crosses are the commutators known by our definitions 
(2.4b). They extend to infinity upwards in the column - r + 2 and at the 
left in row r - 2. The boxes marked C form a system of conditions. All the 
other boxes, extending to the full half-plane, are proved by sequences of 
Jacobi identities. 
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Since Jacobi identities are written in terms of Ya,b'S, to 
obtain a commutator from a Ya,b that involves r commuta
tors, r - 1 commutators of given b should be known. This 
remark shows that there is not relation between the boxes 
inside the lower right triangle limited by the vertical line 
- r + 2 and the horizontal line r - 2. Remember the step 

increase 2 when checking that there are always less than 
r - 1 commutators of given b. The related commutators are 
hence independent and can be taken as conditions. 

As soon as one leaves this triangle, Jacobi identities start 
playing a role and a detailed study has to be performed. Ex
tra conditions then appear in the vertical lines - rand 
- r + 1 and in the horizontal lines r - 1 and r, as shown in 

Sec. III D. 

D. Region u. The central region 

As will be seen later (Sees. III E-III G), if all the com
mutators are known in a finite region a, which will be de
fined soon, an inductive argument enables one to prove all 
the commutators in the regions p, y, and D of infinite extent. 
The region a is represented in Fig. 6. It is bounded by the 
oblique lines m + n = - 2r + 3 and m + n = 2r - 3, 
which are partially included in it, by the vertical lines 
m = - 3r + 5 when n = 3r - 2y (y = 3, ... ,r) and 
m = - 3r + 6 when n = 3r - 2y - 1 (y = 3, ... ,r), and fin
ally by the mirror horizontal lines n = 3r - 5 when 
m = - 3r + 2y (y = 3, ... ,r) and n = 3r - 6 when 
m = - 3r + 2y + 1 (y = 3, ... ,r). The limiting boxes are 
again included in region a. Region a, where we first prove 
the commutation relations, is composed of region a, to 
which are added the oblique lines m + n = - 2r + 2 
(m>-3r+5) and m+n=2r-2 (m>-r+3), and 
the four boxes (m,n) = ( - r + 1,3r - 5), 
( - r + 1,3r - 4), ( - 3r + 5,r - 1), ( - 3r + 4,r - 1). 

Region 0/ the conditions. region a/: All the conditions 
are summarized in Fig. 5. Under the next three subheadings 
we discuss the remaining (determined) white boxes. 

'-++-t'''Ut'"'t7;.r .•.•..•.••...•..•..•.. . ,z. ~ ". 
L<)l-t4nr. _ .................. . 3I:-.li.. r . . ···· .... ·: .... ·~~~~::::~::::~·.-.. :~t~:~: 

. " , .. 
·-..t.lll:c.o: :.t., +, 
,L..'c...,U 

;'1;"?;<"i'i 

FIG. 6. Region a. In the m < n lattice the precise limits of region a and of its 
subregion a. The region a - a is hatched. 
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The m=-r+J(-r+2<n<r-2} vertical and the 
n=r-l(-r+2<m<r-2} horizontal lines: Let us first 
consider the vertical line - r + 1 below the definitions 
( - r + 2<n < r - 2) and the horizontal line r - 1 at the 
right ofthe definitions (-r+2<m<r-2). 

The Jacobi identities 

J( -r+2,i,r-2), -r+2<i<r-2, (3.5) 

are allowed as a result of the conditions of Fig. 5, as can be 
checked by inspection. Hence 

( - r + 2 - i) Y,. _ r + 2.r _ 2 + (j - r + 2) Y,. + r _ 2. _ r + 2 

+ (2r - 4) Yo,; = O. (3.6) 

The two first Y's in (3.6) are known. All the commutators in 
Yo.,. are known except (j,r - 1) and (1 - r,i). If (j,r - 1) is 
taken as a condition, (1 - r,i) is determined. 

By the limitation on i in (3.5), the extra boxes 
(- r+ 1, - r+ 2) and (r- 2,r-1) which cannot be 
reached, both have to be added as conditions. 

The m= -r( -r+3<n<r-3} vertical and the 
n=r(-r+3<m<r-3} horizontal lines: To the unknown 
( - r,a) (- r + 5<a<r - 3) box, let us associate Y _ I,a' 

which is entirely known except for this very commutator 
( - r,a). Analogously, we associate Y1.b to (b,r) 
(r+3<b<r-5), The grades are ~=a-I and 
~=b+ I,respectively, with (-r+4<~<r-4). 

With the same grade, Yl:- r+2,r-2' Yl:+ r_ 2,_r+2,and 
the Jacobi related YO,l: are known. These three Y's are not 
enough to determine all the Y's of the same grade (they are 
not independent). 

If YI,b ( - r + 3 <b<r - 5) is known, the sequence of 
allowed Jacobi identities, 

J( - r + 2,b,r - 1) ---+ Yb _ r + 2,r _ I , 

J( -r+ I,b+ l,r-I)---+Yb+r,_r+I' (3.7) 

J( -r+ I,b+2,r-2)---+Y_ I,b+2=Y_1.a' 

determines Y _ I,a and hence the result: if (b,r) is taken as a 
condition, ( - r,b + 2) is determined. 

No such argument holds for the commutators 
(-r,-r+3), (-r,-r+4), (r-4,r),and (r-3,r), 
which have to be taken as conditions. They correspond to 
I~I = r- 3 or I~I = r- 2. 

The commutators (-r+l,r-l) and (-r,r), 
(j~/ = r-l): Let us now consider the grade ~ = r - 1. The 
Y2r _ 3, _ r + 2 is known. By our general arguments, at least 
two more Y's of the same grade have to be fixed in order to 
determine all of them. If ( - r + I,r - 1) is added as a con
dition, YO•r - I becomes known. The allowed Jacobi identity 
J ( - r + 2,r - 2,r - 1) determines YI,r _ 2 and hence 
(r,r - 2). Finally, the addition of ( - r,r) as a condition 
completes the knowledge of Y _ I,r' 

This argument ends the determination of our system of 
conditions. All the missing commutators of the region a and 
of all the other regions can be inferred from this system. 

The remaining part of a is again divided into three re
gions, sketched in Fig. 4 and drawn more precisely in Fig. 6: 
the upper right triangle (region a 2 ), the lower left triangle 
(region a 3 ), and the upper left approximate square (region 
a4 )· 
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The upper right triangle of region a, region a2: The upper 
right triangle is filled by oblique lines with fixed level 
A = m + n inductively by letting A increase from 4 to 
2r - 2. For this fixed A, the boxes ( - r + A - p,r + p) 
(I <p<A - 3) are associated to Yp + I, _ r+ A _ p known up to 
this commutator. 

For the corresponding grade ~ = A - r + 1 
(5 - r<~<r - 1), three Y's are fully known: 
YI,l: - I , Y l: + r - 2, - r + 2' and Yl: _ r + 2,r _ 2' The ~ + r - 4 
unknowns Yp + I,l: _ P _ I' i.e., to be specific Y2.l: _ 2' 

Y3,l: - 3 , ... , Yl: + r- 3, _ r+ 3' are then obtained by the follow
ing set of allowed Jacobi identities: 

J( - r + 2 + a,~ - 1 - a,r - 1), 

J(-r+3+a,~-I-a,r-2), a =0, ... , (3.8) 

which, starting with a = 0, determines first Yl: _ r+ I,r- I' 

then sequentially Yl:+r-3,-r+3'Y2,l:-2'Yl:+r-4,-r+4' 
Y3,l: _ 3 , .... Remark that the interval is filled starting from 
both ends in turn. 

The lower left triangle of region a, region a3 : This rea
soning can be applied by symmetry, mutatis mutandis, to the 
lower left triangle. 

The upper left square of region a, region a4 : The upper 
left square has again to be divided into the - r + 1 and the 
- r vertical lines and in the r - 1 and r horizontal lines. The 

remaining of region a is then scanned sequentially in vertical 
and horizontal lines crossing on boxes on the oblique line 
( - a,a). 

The m= -r+J(r<n<3r-4} vertical and the 
n=r-J( -3r+4<m< -r} horizontal lines: 

To the boxes (- r + l,r + j) (0-0<2r - 6) in the 
m = - r + 1 vertical line, let us associate Yj + I, _ r + I , 

which will be sequentially determined and hence fix the de
sired commutator. For this grade ~ = j - r + 2, both 
Yj-2r+4,r-2 and Y- I,-r+3+j are known. Hence the al
lowed Jacobi identity J( - r + 1, - r + 3 + j,r - 2) gives 
the expected result. 

For the box (- r + I,3r - 5) associated to 
Y2r _ 4, _ r + I , the allowed Jacobi identity 
J( - r + l,r - 3,r - 1) provides the wanted commutator 
since Yo,r _ 3 and Y _ 2,r _ I are known by inspection. 

For the last box (- r + I,3r - 4) associated to 
Y2r - 3, _ r+ I' the relevant allowed J( - r + l,r - 2,r - 1) 
gives the result since Yo,r- 2 and Y _ I,r- I are known, 

The n = r - 1 horizontal line follows by the usual sym
metry. 

The m= -r(r+l<n<3r-5} vertical and the 
n=r( -3r+5<m< -r-l} horizontal lines: These two lines 
are the last ones for which the intersection box ( - r,r) on 
the diagonal line ( - a,a) is a condition. 

To the box ( - r,n) (r + 1 <n<3r - 5) on the vertical 
line, one associates Yn _ r+ I. _ r' which will sequentially de
termine the associated commutator through the allowed 
J( - r,n - 2r + 3,r - 2) since Yn _ 3r+ 3,r- 2 and 
Y _ 2.n _ 2r + 3 are already known. 

The horizontal line follows again by symmetry. 
The remaining region a4 : To obtain the commutation 

relations in the remaining of region a 4 , we will prove sequen
tially the commutator ( - p,p) (r + 1 <p<3r - 6) together 
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with the lines (within a) above and on the left of the 
( - p,p) box. 

Suppose we know these commutators up to p = a-I; 
we want to prove them for p = a. 

First to the box ( - a,a) we associated Y, _ a _ I,a for 
which ( - a,a) is the only unknown. The allowed Jacobi 
identity J( - r + 2,2r - a - 3,a) fixes it since Y2,- 3. _'+ 2 

is known as well as Ya _ , + 2.2, _ a - 3 . 

Consider now the boxes ( - a,n) (a + l..;;n..;;3r - 6) on 
the vertical line above ( - a,a). Associate to it Yn _ , + I, _ a 

for which sequentially in n, ( - a,n) is the only unknown 
commutator. The allowed Jacobi identity 
J( - a,n - 2r + 3,r - 2) fixes it since Yn _ 2,- a + 3,,- 2 and 
Y, _ a - 2,n _ 2, + 3 are known. 

Finally consider the limiting box (- a,3r - 5), 
a = r + 2i, O..;;i";;r - 3. Another Jacobi identity 
J( - a,r - 3,r - 1) can be used since Y,_ a _ 1,,- 3 and 
Y, _ a _ 3., _ I are known. It should be remarked that it is pre
cisely for this last Y that we need to extend the proof to the 
box ( - 3r + 4,r - 1) in the n = r - 1 horizontal line treat
ed before. 

The horizontal line (m,a) ( - 3r + 5..;;m..;; - a-I) is 
treated by the usual symmetry argument. 

This finishes the proof of the commutators within the 
finite region a and hence within subregion ii needed to com
plete inductively the full determination in the other infinite 
regions. 

E. Region (3. Extended positive-positive region 

In Fig. 7 and Fig. 8, corresponding to an even and to an 
odd case, respectively, a set of boxes are drawn. To prove the 
commutation relations for the black boxes of these figures 
one needs to know the dotted boxes to allow certain Jacobi 
identities and the hatched boxes to use these Jacobi identi
ties. 

Even case (level 2p, p> r - 2): The (p + 3r - 7) al
lowed Jacobi identities 

~ .f-
• 

r2'~ •• f.,-
~ r2' . 

~ ... ~~ ~z 

-

H ~ 

~ ;= .. ~ ;;Q-~~ , ~. 
I -, 

H 
0 -

I -, 
, , , , I I I , I I , , I , , , , , 

FIG. 7. Region /3. Even case. In the m < n lattice of region /3. the black 
commutators are obtained in terms of the hatched ones. The dotted commu
tators are also necessary to allow the Jacobi identities (3.9). 
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FIG. 8. Region /3. Odd case. In the m < n lattice of region /3. the black 
commutators are obtained in terms of the hatched ones. The dotted commu
tators are also necessary to allow the Jacobi identities (3.11) and (3.13). 

J( - r+ 2,p - l-s,p +S), O<S<p + r- 4, (3.9a) 

J( 1 - r - 2s,4 - r + 2s,2p + r - 6 - 2s), 

O..;;s..;;r - 3, (3.9b) 

J( - r - 2s,5 - r + 2s,2p + r - 6 - 2s), 

O";;s<r - 3, (3.9c) 

give, respectively, the (p + 3r - 7) commutators 

[Np_ s_ 1 ,Np+s+ d, O";;s<p + r- 4, 

[NI-,-2s,N2P +,-3]' 0<s<r-3, 

(3.lOa) 

(3.lOb) 

[N _,_ 2s,N2P +'_ 2]' O";;s<r - 3, (3.1Oc) 

i.e., those of the black boxes of Fig. 7 in terms of known 
commutators oflower level. 

Odd case (level 2p + 1, p> r - 2): The (p + 3r - 7) 
allowed Jacobi identities 

J( -r+ 2,p-l-s,p+ 1 +s), 0<s<.o+r-4, (3.lla) 

J( 1 - r - 2s,4 - r + 2s,2p + r - 5 - 2s), 

O..;;s..;;r- 3, (3.llb) 

J( - r- 2s,5 - r+ 2s,2p + r- 5 - 2s), O<s<r- 3, 
(3.llc) 

are not enough to prove the (p + 3r - 6) commutators 

[Np _ s,Np+ 1+ s], O";;s<.p + r - 3, (3.12a) 

[N,-2s,N2p +,_2]' 0..;;s..;;r-3, (3.12b) 

[N_,-2s,N2p +r-d, 0..;;s..;;r-3. (3.12c) 

The set (3.lla) has to be supplemented by one Jacobi 
identity 

J( - r + 3, - r + 4,2p + r - 5). (3.13) 

In order for (3.lla) and (3.13) to prove (3.12a),ade
terminant has to be different from zero: 

detM= (- y+,-I[(p+r-3)!/31]2(p+r-4) 

X (2p + 2r - 3)(2p + 2r - 1). (3.14) 

F. Region y. Extended negative-negative region 

An analogous discussion holds obviously for region r. 
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G. Region b. Reduced positive-negative region 

Once regions a, p, and r are completed, region D can be 
filled by using a sliding structure based on the allowed Jacobi 
identity J( - r + 2, - n,m - 1): 

J( - r + 2, - n,m - 1) 

== (n - r + 2) [ N _ 2r _ n + 3 + .,. + NI _ n ,N m - 1 ] 

+(l-n-m)[Nm _ n _ r +'" 

+ (m + r - 3)[ N m _ 2r + 2 + ... + N m ,N _ n] = O. 
(3.15 ) 

It determines [N m ,N _ n] when some (a fortiori all) com
mutators below the line m are known. 

The sliding structure is given in Fig. 9. The black com
mutator is deduced from the dotted commutator allowing 
the preceding Jacobi identity and from the hatched ones. 
(Remember that all the commutators of N _ r+ 2 are in the 
region supposed to be known. ) 

By the arguments of the preceding pages, we have 
proved that all the commutators can be deduced once our 
systems of conditions are imposed on our defining sets. 

IV. CONCLUSIONS AND REMARKS 

By constructing definite sets of defining operators and 
definite systems of conditions, we have shown that the con
stant r-term Krichever-Novikov-type algebras are finite 
structures. 

The sets of defining generators [with two elements for 
r= 1 and 2(r- 1) elements for r>2] we have proposed 
have the smallest possible number of operators. However, it 
is easy to see that there are minimal sets, i.e., sets for which 
no subset is already defining, with higher number of opera
tors. This poses the problem of the classification of minimal 
sets. 

On the other hand, the systems of conditions we have 
obtained again involve (see the Proposition) a finite number 
of conditions to guarantee the commutation relations. Once 
written in terms of the elements of the defining sets, these 
conditions become polynomials of high degree, in the form 
of nested multiple commutators. 

If other minimal sets are chosen, with different number 
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, ' -n'-n -n: -n : :-n 
-3:- -1: +1 , , 

FIG. 9. The sliding structure. The black box commutator ( - n,m) is deter
mined from the hatched commutators by a Jacobi identity allowed once the 
dotted commutator is known. 

of elements N D' we expect the number of conditions C to 
vary. It would be interesting to see whether there exists some 
invariant function of N D and C which would hence be a 
characteristic parameter of the algebra. 

Needless to say, the constant ones are only one example 
of the general [see (1.1)] r-term Krichever-Novikov-type 
algebras. The full classification of these algebras seems still 
to be lacking as the restriction on the Ck(m,n) imposed by 
the Jacobi identities has not yet been solved in general. 1,4 The 
problem of the presentation may also be asked for these oth
er algebras. 
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Fundamental representations of the m-principal realization of gloo 
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The m-principal realization of gl", is introduced and its fundamental representations are 
defined on the representation space associated with the homogeneous Heisenberg subalgebra of 
a;':) introduced by Frenkel and Kac. The Hirota equations associated with the representations 
are briefly reviewed. The main results concern the reduction of the algebras to the finite rank 
affine Lie algebras gl~l) and a~l~ I where it is shown that a complete nonredundant set of 
realizations can be obtained. This means that the associated Hirota equations can be obtained 
directly from the reduction of the Hirota equations for the fundamental m-principal 
representations of gloo without requiring the complete nonredundant set offundamental 
representations of the Lie algebra a~ I~ 1 itself. 

I. INTRODUCTION 

Recently some papers have appeared 1,2 that attempt to 
find all the solvable (integrable) equations that have a cer
tain form. Since the integrability in two independent vari
ables is related to the representation theory of affine Lie 
algebras an alternative approach might be to attempt a clas
sification of the equations in this way. The papers by the 
Kyoto school3-9 contain many results of this type, but as far 
as the author is aware no exhaustive classification has been 
attempted. 

The most suitable algebra to start with is a~ 12. 1 since it 
has the simplest representation theory. However, even in 
this case, the set of canonical representations of the funda
mental modules, defined by the maximal Heisenberg sub
algebras, is not very convenient to use because it depends 
implicitly on elements WE W, the Weyl group of an _ I .10 This 
approach also omits equations such as the Kadomtsev-Pet
viashvili and the two-dimensional nonlinear Schr6dinger 
equation3 that are related to the representation theory of 
infinite rank affine Lie algebras. 

For this reason we study the representations of the m
principal realization of the infinite rank affine Lie algebra 
gloo' The J reductions introduced by Date et al.4 are then 
shown to produce a canonical set of realizations of gl~ I) and 
a~12 I by identifyingp(n) distinct maximal Heisenberg sub
algebras as required by a Kac-Peterson theorem. 10 

The representation space for the fundamental modules 
of this realization is identical to that which arises in the ho
mogeneous representation of the fundamental modules of 
a;':). II However the lattice that occurs is not the root lattice. 
By using the wedge representation 12 the action of the groups 
associated with the m-principal realization of gloo can be 
studied. This enables an interpretation to be given to the 
lattice that arises in the vertex representations and also re
sults in explicit formulae defining the isomorphism between 
the two representations. 

a) Permanent address: School of Mathematics, Trinity College, Dublin 2, 
Ireland. 

In Sec. IV besides considering the fundamental repre
sentations of the m-principal realization ofgloo we consider 
the fundamental representations of gl~ I) and a~ 12 1 which can 
be obtained by their J reduction. The complete nonredun
dant set offundamental representations of a~12 1 is given in 
Sec. V by relating our work to the results of Lepowsky.13 

In the last section the wedge representation is used to 
derive a restricted class of solvable equations in their Hirota 
form. 14 These were first derived in Ref. 7 using the spinor 
representation. . 

The main import of the results in Sec. IV is that the 
Hirota equations associated with a complete nonredundant 
set of fundamental representations of a~ 12 1 can be obtained 
directly from the J reductions of the Hirota equations of the 
m-principal realizations ofgloo . This analysis is given in Ref. 
15. 

II. THE m-PRINCIPAL REALIZATION OF gt 
The infinite rank affine Lie algebras gIoo andaoo have, as 

is well known,3,16 the Dynkin diagram 

. ·-0-0-0-0··· , 

Realizations of the Lie algebras can be given in terms of a 
complex matrix Lie algebra gl (m 00 ). Let 

Ea,b _ ({jh,a{jb.l) 
iJ - r,j j,s r,SEZ , 

i<h.l<m 
E,!,bEc,d = {jb,cEa,c ({jb,c = {jb,c{j. ) 

IJ r,s j,r I,S l.r j,r , 

then a basis for gl(m 00) is given by {E~/}, 1 <.a,b<.m, i,jEZ. 
It is convenient to adopt a dummy summation convention so 
that g = ~/ E ~/Egl (m 00 ) and all but a finite number of the 
entries ~/ are zero. Let [·'·]0 denote the matrix commuta
tor. The algebra a (m 00 ) C gl ( moo) is the subalgebra of 
traceless matrices. 

The algebra gl(m 00 ) acts on the space V = (f):;' = 1 va, 
where V" ~coo . Let {u~} denote the standard basis for V", 
that is, u~ is the column vector with 1 in the ith entry of the 
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ath copy of C"" and zero elsewhere. Then E f/uJ = uf and 
lIE V has only a finite number of nonzero components. 

We choose for the Chevalley generators {eoj;}ieZ and 
simple coroots n v = {a/} the elements 

em(r_ I) + a = E~::+ I, fm(r- I) + a = E~:- I.a, 

a= 1, ... ,m -1, (2.1 ) 
em(r_l)+m =E;,';~I' fm(r- I) + m = E ~.~ I.r' 

a; = [eo/"]o, fEZ. 

A completion of the Lie algebra gl (m 00 ), denoted 

gl (m 00 ), is defined by requiring that in any block a,b , the 
submatrix (gfjb)j>h (a,b fixed) has only a finite number of 

J<h 
nonzero entries in any row or column. More formally define 
Vas a completion of V by V = {cfuf:cf = 0 i>O} and its 
dual V* = {cf*uf*:cf* = 0 i.(O}. Then the pairing between 
V*andViswelldefined, (x,y*) < oo,xEV,Y*EV*. Therefore 
the family of seminorms given by V* define a weak topology 
on V and V becomes a locally convex topological vector 
space. Let A be the associative algebra of continuous endo-

morphism of V. Then gl (m 00 ) is the Lie algebra associated 

with A and GL(m (0) is the Lie group of invertible map
pings. We denote by GL(m (0) the Lie group associated 
with ii (m 00 ); that is the group of invertible matrices that 
have only a finite number of off-diagonal entries. 

The Lie algebra gl(m (0) is the central extension of 

gl (m (0) defined by the C-valued cocycle 'II ( _,e), 

'II (E a .. b EC.d) = /jb.C/j~.d(B(i) - B(]'» 
IJ' r.s J,r I.S 

B(i) = {I, ~<O, 
0, l>O. 

Explicitly we have 

gl(moo) = gl(moo)EDCz, 

with the bracket on gl ( moo) [-, -], defined by 

[gl + Alz,g2 + A2Z] = [gl' g2]0 + 'II(gl' g2)Z, 

AjEC, gjE gl(moo). (2.2) 

The element ZEgl(m (0) is the canonical central element 
since the Chevalley generators, viewed as elements of 
gl(moo), give 

and 

a j
V = [eo/;] = aj

V + /jj.oz, 

_~ v z- £..aj , 

iEZ 

where nV = {a/} are the simple coroots ofgl(moo). The 
Cartan subalgebra I:J C gl (m 00 ) is spanned by n v and z. 

The algebra gl (m 00 ) contains the subalgebra 
m 

ED gl ( moo) which is the direct sum of m copies of gl ( 00 ); let 

gla ( 00 ) denote the ath copy of gl ( 00 ) in the sum. The Che
valley generators of gla ( 00 ) can be taken as e~ 

= Ef,ia+ l,ff = Ef'!;.l.j· Observe that 
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m-I 

afv = L a:'J+a-l+k, a= 1, ... ,m, 
k=O 

J. Math. Phys., Vol. 31. No.3, March 1990 

m 

where nav = {ajV = [ej,fj]}. The subalgebra ED gl( (0) 

C gl (m 00 ) has a natural gradation, the principal gradation, 
defined by 

deg ef = 1 = - degff. 

Put s"(j): = LEff+J then {s" (j), z} span a subalgebra of 
ieZ 

m 

ED gl( (0), the principal Heisenberg subalgebra, which has 

the induced principal gradation. 
m 

Proposition 2.1: (a) The Lie algebra ED gl( (0) contains 
m 

the principal Heisenberg subalgebra Sm = ED sa ED Cz and 
a=1 

sa = sa ED Cz can be identified with the principal Heisenberg 
subalgebra of gla (00). The algebra Sm is generated by 
{s"(j),z: a = 1, ... ,m,jeZ}, 

[s"(j), sb(l)] = j/j'J.'~ I z. 

(b) The Lie algebra gl (m 00 ) contains a Heisenberg subalge
bra Sm which can be identified with the principal Heisenberg 

m 

subalgebra of ED gl( (0) Cgl(moo). 

We call Sm C gl (m 00 ) the maximal Heisenberg subalge

bra of gl (m 00 ); its canonical projection onto gl (m (0) de
termines a Cartan subalgebra. 

In the case of a(m (0), s"(O)~a(moo), however it does 
contain elements of the form, 

In 

aC(O) = L A ~Sb(O), 
b=1 

m 

L A ~ = 0, c = 1, ... ,m - 1. 
b=1 

Fix a definite choice for aC (0), then the maximal Heisenberg 
subalgebra Sm Ca(moo) is generated by (Sb(j) , aC(O), 
z:jeZ \ {O}). 

m 

The principal gradation of ED gl( (0) induces the grada-

tion 

deg E~:: = (s - r), deg z = 0, 

of gl(m (0) which we call the m-principal gradation 
of gl (m 00 ). The associated generating functions are 
glm (u,v): = (gla.b(ua,vb )k;;a.b<m' where 

glab(u v ) = ~ Ea.buj v -J + /ja.b Ua Z (2.3) 
a' b ~ lJ a b • 

jJEz Ua - Vb 

The indices a, b are not summed in this expression. The func
tion ua/(ua - Vb) is always interpreted in the paper as the 
formal series (1 - Vb/Ua ) -I. This and the formal delta 
function which we also use, are defined by 

/j(k) = L k j, (1 - k) -I = L k j. 

iEZ iEZ, 

Let 
m 

Sm (j) = L saUa), ja EZ, 
a=1 
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wheresm (j)ESm Cgl(moo). The adjoint action ofsm (j) on 
glm (0, v) is well defined, 

[sm (j),glm (p,v)] = uiglm (D,V) - glm (D,V)V J, jEZ. (2.4) 

We define gl(m 00) with the m-principal gradation as the m
principal realization of gl 00 • The generating functions satisfy 
the commutation relations 

[glb,C(p\,P2),gld,e(Q\,q2) ] 

= oC,do(q\lp2)glb'~(p\,q2) _ oe,b 

X o(p/ q2) gld,C(q \,P2)' (2.5) 

III. J REDUCTIONS 

The J reductions were introduced by the Japanese math
ematicians Date, Jimbo, Kashiwara, and Miwa.3

,4 An auto
morphism is introduced that translates the basis of gl (m 00 ). 

The fixed points of this automorphism define a finite rank 
affine Lie algebra gl~ I), or rather, a completion of it. The 
principal affect of this type of reduction on the Hirota equa
tions associated with gl(m 00) is to reduce the number of 
independent variables. There are other automorphisms of 
the algebra that affect the Hirota equations, but we do not 
consider them in this paper. 

Define the automorphismpn, n = (nl, ... ,nm )EZ': by 

Pn. Ea,b E a.b z z 
• r.s ~ r+ n,I"') + "h' ~. 

Let gln(m 00) denote the fixed point set of gl(m 00) under 
pn and introduce Matn (C), the algebra of nXn matrices 

m 

over e, where n = I(n): = Ina. The algebra gl (m 00 ) 

a=1 

acts on V and through the correspondence u~", + j 
m 

--+vi(ka )': = vi ® (ka )', V can be identified with Ell e"" 
a=1 

® e [ ka' k;; l], where vi is thejth standard basis element of 
en". If g = g:::E~::E gl n(m 00 ) put 

gs- r: = (~~+ i,nhr+jFf/)EMatn (C), 

Ff/ = (OpiOjq )o<p<n,,-l' 
O<q<nh~ 1 

and it follows from the identification of vector spaces just 
introduced that without loss of generality we can put 
k = ka, a = 1, ... ,m and deduce that gln(moo) is isomor
phic to a subalgebra of Matn (e [k,k - 1 ]) with the corre
spondence given by 

g+-+g(k): = I gs ® k - 'EMatn (C[k,k -I». 
SEZ 

For/, gE gln(moo) it is easy to show that 

'II ( /,g)+-+ ~ - s Tr( fsg _ s) = Res Tr{ (~ f(k) )g(k) }. 

The J reduction of gln (m 00 ) can therefore by realized as a 
completion of the finite rank affine Lie algebra 
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From the definition of gl (m 00 ), elements belonging to the 
required completion of gl~ I) have the form 

g(k) = I gs(k) ®k -S+AZ, 
SEZ+ Uq 

qCZ_, Card q < 00. 

The bracket for gl~ I) is 

[gl(k) +A lZ,g2(k) +A2Z] 

= [gl (k), g2(k)]o 

+ Res Tr{ :k (g1(k»g2(k)}. (3.1 ) 

The generating functions for gl ~ I) are obtained by the J 
reduction of the maximal Heisenberg subalgebra Sm and the 
generating functions gl m (0, v) for gl (m 00 ). 

Lemma 3.1: Let gE gl (moo), g#O, and define Sm (j) 
m 

= Isa(ja), JaEz. ThengE gln(moo) if and only if 
a=1 

[sm (j), g] = 0, l==O mod o. 

The proof is straightforward. Applied to (1.4) the lemma 
shows that the corresponding generating functions for 
gl n (m 00 ) are obtained by imposing the restrictions 

(ua )n" = (Vb )n", a,b = 1, ... ,m. 

The solutions to the equations are 

where Wa and Aa are any na th roots of unity. The indeter
minate P is normalized by putting d: = [nl' n2, ... ,nm ], the 
least common multiple of {n w .. ,nm } and defining 
na: = dina' 

If we introduce the notation i = i mod na , [i) = i - i 
then the J reductions of the generating functions sa(j), 
gl ~c (u b' V C ) correspond to the following elements of gl~ I) 

or its completion 

'" ,d + (hnl> - Iii,.) ( h' - I)F b•c k -, 
+-+ £.. P W /l, h,/ ® , 

.'iEZ 

sa(o)+-+r"(O): = I F~ia, 
i=O 

nu - 1 

~(1)+-+r"(1):= I F~'~i+-Tf®k(i+ll, 
;=0 

(3.2) 

The indices h and I are summed in (3.2) (but not b,c), 
O<,h<,nb - 1,0<,I<,nc - 1 and w, A are nb th and ncth roots 
of unity, respectively. 

Under J reduction gl(moo) is equivalent to the 
complete Lie algebra gl~l), n = 1(0) and the subalgebra 
m 

Ell gl ( 00 ) C gl( moo) becomes the subalgebra Ell:;' ~ 1 gl~~) 

C gl~ \ ). The algebra gl~ l) contains the Heisenberg subalgebra 
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s.. generatedby{r" (j),z: jeZ,a = 1, ... ,m}. From (3.2) it is 
clear that s.. has the "root space" gradation since 

deg e'f = 0 = - deg/r, 

deg eg = 1 = - deg/g, l<i<na - 1, a = I, ... ,m, 

where 

ef!=F~ ®k[j-11J'f! 
I (i-I),; J t 

= (ef) t, i = O, ... ,na - 1. 

However this gradation is not the one defined by the generat
ing function in (3.2). In fact the gradation is fixed by the 
underlying finite-dimensional Lie algebra. 

Let 1T: gl~\) ...... gl(n) defined by g ® Ie' ...... g, z ...... O, gegl(n) 
denote the covering homomorphism. A theorem of Kac'sl6 
states that a class of dth-order automorphisms of glen) 
(an _ I) can be obtained up to conjugation in the following 
way. Put d = I.~~dajsj where for glen). a j = 1 and sjEZ+. 
Let (i) be a d th root of unity and define the automorphism u 
of type (so, ... ,sn-I ;1) for glen) by 

u(e?) = (i)Sle?, i = O, .... n - 1, 

where 1T: ej ...... e? and {e j ,/;} are the Chevalley generators of 
gl~\). The associated Zd gradation of glen), determined by 
the u-eigenspace decomposition, is called the I-s gradation 
of gl (n ). Let g (j) , jEZ d be the eigenspace of u with eigenval
ue (i)i in this decomposition. The automorphism also defines 
a Z gradation, the 5 gradation of gl~ I), 

gln = EIlg(jmodZ) ®kiElliCz, degz=O. (3.3) 
jEZ d 

Consider now the situation that arises in the J reduction 
of gl(m 00 ). Apply the covering homomorphism to the gen
erating functions defined in (3.2). This fixes a Zd gradation 
of gl(na ) given by deg e?a = na, i = O, ... ,na ~ I, that is the 

1 - na In gradation of gl(na ), where In : = (1, ... , I)EZ n •. . . 
Let X,,: = diag(1,ll/'·, ... ,(i)ii.(n. - \), where (i) is the d th root 
of unity, then the I - na In. gradation is determined by 
U a (g) = X;; IgXa, gegl(n,,). The automorphisms {ua: a 
= I, ... ,m} induce a Zd gradation of glen) defined by 
u(g) = X-lgX,gegl(n), where X: = diag(XI, ... ,xm)' This 
Zd gradation ofgl(n) is induced by the 1 - DIn gradation of 
Ell;:' = I gl(na) where DIn: = (nlln, , ... ,nm In .. ), and we shall 
call it the 1 - 0 In gradation of gI (n). It is defined on basis 
elements by 

deg F't.:r = Inb - hna mod d. 

The corresponding Z gradation of gl~ I) defined by (3.2) 
will be referred to as the DIn gradation of gl~ I). The generat
ing functions and the generators of the Heisenberg subalge
bra 5n Cgl~\) with the DIn gradation are 
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sez 

X F b.c k - (sd + hil. -Inc) 
h.1 ® , 

nu - 1 no - 1 

r"(0) = ~ Fa,a r"( 1) = ~ Fa~ ® k n. 
L ~s' L (s-l),s ' 
s=o $=0 

r"(s) = (r"(1»', seZ \ {O}, (3,4) 
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If na = 1 then gl:,a«(i)p,(i)ip) is excluded from the list of 
generating functions. 

It is appropriate to rescale the central extension in (3.1 ), 

[gl (k), g2(k)] = [gl (k), g2(k)]0 

+ ! Res Tr{ (d~ gl (k) )g2(k) } z, 

so that the defining relations for the Heisenberg subalgebra 
are canonical, 

[r"(i), I'(j)] = iOf,'t:...iz, i,jEZ. 

The subalgebra 5n is a maximal Heisenberg subalgebra of 
gl~\) , 

A set of generators for gI (n) is given by 

eo = Fm,l eO = FQ,a+ I I/a/m I o non-I,O' p._I+n. n.-I,O' ........ -, 

e~._I+i =F~~1.;' l<a<m, I<i<na -I, 

wherepa = n l + n2 + ... + na andpo = O. However the as
sociated 5 gradation of gl~ I) is not the one required since 
1(5) = md in this case and the result is only correct for 
m=1. 

The determination of the Chevalley generators of gl~ I) 

with the DIn gradation seems difficult except in the case 
when no = N, a = I, ... ,m. The Chevalley generators are 
then given by the J reduction of the Chevalley generators for 
gl(moo), 

em(N_ I) = F':!'!... I,D ® k, em(r- I) + m = F;:;~ I ® k, 

(3.5 ) 
em(r_I)+a =F~:~+I, a= I, ... ,m-l, 

l<r<N - 1. 

Then {e;,/;}, /;: = e; are the required set. The difficulty 
attached to obtaining the generators in the general case is 
easily seen by studying the J reduction of gl( 300) with 
n = (5,2,4). 

In the case of a(moo) the J reduction gives a~121 
with the DIn gradation. The generating functions are 
gl ~,b (wP, (i)ip) with the exclusion of gl ~,o (wP, wip) if 

na = I. However the definition of the maximal Heisenberg 
subalgebra requires more care. Under J reduction we obtain 
m - l1inearly independent elements 

m 

ab(O)++h b(O): = L A ~r(O), b = I, ... ,m - 1. 
c= I 

Introduce the vectors ')..b: = (A f, ... , A ~), yb 
: = (nlA t , ... ,nmA !:,) then the linearly independent ele
ments h b(O) are chosen so that 

')..a.yb = oa,b, ')..b.n = 0, a,b = I, ... ,m - 1. 

Define hn as the Heisenberg subalgebra of a~ 12 I 

generatedby{h aU ),z: jEZ, a = I, ... ,m - I}, whereh au) 
: = h a(o) ® k jd. Observe that if na = 1 then r"( I) 
= Fg'g ® k d$~I.2 I' For n" =1= I define 5n as the Heisenberg 
subal~ebra of a~121 generated by· {r"(j), z: jEZ, 
j¢O mod no}. Then put 
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(3.6) 

and Sn in (3.6) is a maximal Heisenberg subalgebra of a~ l~ I . 

It remains to specify the minimum number of generat-
ing functions for gl~1) and a~121' First we observe that 
gl!,C(liJ'P, liJ~) t = gl~,b(liJjp, liJ'P) b =j=c if pt: = p-I, k t 

: = k - I. An examination of (3.4) shows that in order to 
solve the problem we need only determine the number of 
elements from m gl!,C(liJ'P, liJjp)sn} necessary to form a ba
sis for gl (n) or an _ I' The result is given in the proposition 
below. 

Proposition 3.2: (a) A basis for gl~l), n = I(n) with the 
iHn gradation is provided by the homogeneous components 
of the generating functions 

gl~,C(liJ'P,p), i = I, ... ,nc - I, c=j=b if nb = I, 

gl!,C(liJ'P,p), i = I""'/bc, b < c c = I, ... ,m, 

and gl !,ct (liJ'P,p) where liJ is a nontrivial d th root of unity, 
d = [nl, ... ,nm ] and/be is the greatest common division of 
{nb,nc} together with the generators of the maximal Heisen
berg subalgebra So, {r"(j), z: jEZ, a = I, ... ,m}. 

(b) A basis for a~ 12 I is provided by the generating func
tions gl ~c (liJ'P,p), gl !,c (liJ'P,p), gl !b,c (liJ'P,p) listed in (a) 
together with the generators of the maximal Heisenberg sub-

algebra of a~12 10Sn = EJ) Sn EJ) hn • 
a:nu=l= 1 u 

The generating function gl ~.b (liJ'P,p) appears here rath
er than gl~,b (liJ'P,p) because it satisfies the important relation 
obtained by the J reduction of (2.4 ), 

-b .- .-
[r"(j), gln,C(liJP,p)] = (liJ1na/ja,b _ /ja,c)p1na 

X gl!,C(liJp,p). (3.7) 

This is the relationship which underpins the vertex represen
tations of the next two sections. 

The reduction given in this section is not unique since it 
depends on the enumeration of the basis {Fh:7} (e.g., 
I<h<na' 1<I<nb gives a different realization). 

IV. FUNDAMENTALm-PRINCIPAL VERTEX 
REPRESENTATIONS OF gloo AND THEIR J 
REDUCTIONS 

The m-principal realization of gloo has a vertex repre
sentation on a space which can be formally identified with 
the representation space for the Heisenberg system associat
ed with a!.:) introduced by Frenkel and Kac. II It decomposes 
into irreducible representations of the fundamental modules 
for gloo . The lattice associated with this representation is not 
a root lattice. An interpretation of it is given in the next 
section. 

The representation is really the same as arises in Ref. 7, 
apart from the implied definition of the cocycle, which is 
obtained by reversing the inequalities in the definition over
leaf. A similar approach is used in Ref. 17 for the representa
tions of gl~ I) defined by three different maximal Heisenberg 
subalgebras. 
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In Ref. (8), Lepowsky and Wilson show that with every 
maximal Heisenberg subalgebra of a~ 12 I it is possible to as
sociate a representation of a fundamental module. A maxi
mal Heisenberg subalgebra of a~ 12 I is defined by an element 
of the Weyl group Wofthe associated finite-dimensional Lie 
algebra an _ I' Thus the homogeneous Heisenberg subalge
bra corresponds to the identity element for example. Kac 
and Peterson 10 show that a complete nonredundant list of 
Heisenberg subalgebras of a~ 12 I is afforded by a set of repre
sentatives of the conjugacy classes of W. For an _ I the num
ber of conjugacy classes is p( n), where p is the classical parti

tion function. The main theorem of their paper can then be 
used to construct a representation of a fundamental module 
for each conjugacy class. We shall term these the canonical 
vertex representations of a fundamental module of a~ 12 I . 

In this section we obtain explicit formulas for some of 
the vertex representations of a~ 12 I by using J reductions. 
It is clear from the work of Kac and Peterson that we need 
only show that we obtain p( n) distinct maximal Heisenberg 
subalgebras of a~ 12 I by this process in order to establish that 
in principle a canonical set of vertex representations might 
be obtained in this way. 

Lemma 4.1: (a) Let {glq(moo): I(q) = n, I<m < oo} 
be the set of J reductions that define realizations of gl~ I) • 
Then there are p (n) distinct realizations of gl~ I) defined by 
distinct maximal Heisenberg subalgebras Sq C gl~ I) • 

(b) Let {aq(moo): I(q) = n, I<m < oo} be the set of J 
reductions that define realizations of a~l~ I' Then there are 
p (n) distinct realizations of a~ I~ I defined by distinct maxi
mal Heisenberg subalgebras Sq C a~ I~ I • 

Proof (a) Consider the set of vectors Q = {q:qEZ~ , 
I(q) =n, I<m<n}. Therearep(n) distinctpartitionsofn 
and to each such partition we can associate a vector qEQ and 
a Jreduction ofgl(moo) for some m. Thusifl::;'= I ra = n is 
one such partition then q = (rl, ... ,r m ) defines the required J 
reduction of gl(m 00 ). The corresponding maximal Heisen
berg subalgebra of gl~ I) is Sq = EJ):;' = I sn

a
' The ordering is 

arbitrary since if (7 is a permutation of (l, ... ,m), then (7: 

Ff/ ® k r -+F~(a).u(b) ® k r, Z-+Z is an automorphism ofgl~l). 
The argument for (b) is similar. 

Theorem 4.2: A canonical set of realizations of 
gl~1) (a~12 I) can be obtained from the J reductions of 
{gl(moo): I<m<n}. 

Let Sm denote the maximal Heisenberg subalgebra of 
gl (m 00 ). Let c be the vector space spanned by {1'}, 
1': = 1'(0), and {sa} the dual basis of c·, (sa' Sb) = /ja,b' 
Introduce the Z lattice associated with c·, M = EJ):;' = I ZSa 
and let C[M] denote the group algebra of M. Put L 

= EJ):;' = I sa_, where sa± = EJ) ± i>oCs"(i) and let S 
= Sym(s_) denote the symmetric algebra on L. S has the 

induced m- principal gradation and can be identified with 
the ring of polynomials C[x]: = C[x(I), ... , x(m)], where 
x(a): = (xl a>, xia>, ... ) with deg xJa) = - j. 

The Frenkel-Kac cocycle E: M X M -+ { ± I} is uniquely 
defined by 

E(a + /3,y) = E(a,y)E(/3,y), 

E(a,/3 + y) = E(a,/3)E(a,y), 
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{
I, a<"b 

E(Sa,sb) = _ 1 b , a> . 
The irreducible representation of the Heisenberg system 
{sm,M} on U = C[x) ® C[M) is given by 

Sac -/)'w®ea = Ixja)w®ea, 1>0, 

sa(O)'w®ea = (a,sa)w®ea, 

eP'w ® ea = E«(3,a) w ® ea + P, 

(4.1 ) 

where a, (3EM, w ® eaEU. The representation of gl( moo) on 
U is defined in terms of the vertex operator 

X( ±sa,k) = exp( ± k'x(a»exp(+k -1·Dx,u»T ±s)k), 
(4.2) 

where 

k'x(a): = I k ,:x~a) 
;;.1 

and 

D ,u): = (a ,u,,"" J.- a ,u" ... ). 
x XI r x, 

The first two factors of the vertex operator act on C[ x) 
whereas the last factor 

Tr (k) = exp(In k'r(O) + r), rEM, 

acts on C[M), 

Tr (k)'ea = k (r,a) + (I/2)(r.r)E( r,a)er + a . (4.3) 

The vertex operator maps U into its completion and has the 
formal expansion 

X( ±sa,k) = I X I ( ±Sa)k'. 
IEZ + 1/2 

Then, as is well known,17,18 the anticommutators of the 
components define a Clifford algebra, 

(4.4 ) 

It follows that if we put 

then {e~/,z} generates a Lie algebra that is isomorphic to 
gl(m (0) with the correspondence given explicitly by 

(4.6) 

The vertex operator corresponding to glm (u,v) can now be 
explicitly constructed. It is necessary to normally order the 
product of vertex operators that arises in this process so that 
it always makes sense. We then find that 

:X(Sb'U)X( - sc,v): = E(Sb'Sc) (u - v) - (s",s,) 

X ( ) (1I2)(s",s,·)X( ) 
UV Sb' - Sc'U'V , 

where 

X(Sb' - sc,u,v) 
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and 

= exp(u'x(b) - v'x(C»exp [ - (u-IDx(h) 

- v-IDx'c)]Ss",_s,(U,v), 

S;u (u,v) = exp(In u'r(O) + In v'u(O) + r + u). (4.7) 

Let glm (u,v) denote the restriction of glm (u,v) to the 

completion of gl (m 00 ). Then a representation (U, 1r"') of 
gl ( moo) is defined by the action of the Heisenberg subalge. 
bra Sm given by (4.1) and the homogeneous components of 
the generating functions 

1T"m: gl~C(u,v) -+Xb,C(u,v), 

where 

Xb,C(u,v) 

{ 
[u/(u - v) ](X(Sb' - sc,u,v) - 1), 

= E(Sb'Sc) 1/2 -1I2X( ) 
u v Sb' - Sc'U,V , 

b=c, 
b =/=C. 
(4.8) 

Let A denote the Clifford algebra generated by 
{XI ( ± So )} and observe that Co = 1 ® eO satisfies 

X I ( ±sa)'CO=O, 1<0. 
Consequently Co is a vacuum vector of an A-module C 
generated by {XI ( ± So )} and this plays the central role in 
the representation theory of gl(m (0) developed by Date, 
Jimbo, Kashiwara, and Miwa. 3

-
7 

The spaces C and U can be identified. Put deg ea 

= - ~(a,a) and let Vk,p. = {VEV: s(O)'v = (p,s)v, 
d·v = - kv}, where Vis Cor Uanddis the degree operator, 
A character for V is defined by 

ch V = I I Vk,p. eJJ.qk, 
ke(1I2)Z+ p.EM 

which gives in the two cases, 

co 

ch U = II (1 - qi) - m I eJJ.q( 1I2)(p.,p.) , 
j= I p.EM 

(4.9) 
m 

ch C = II II (1 + qleSu ) (1 + qle - SU). 
0= I IEZ+ 1/2 

The identification follows from the Jacobi identity for (J 

functions. 
A unique contravariant Hermitian form can be defined 

on U. Ifu = PI, ... ,Pm' w = ql, ... ,qm' Pa,qaEC[x(a)] put 

m 

HqxJ(u,w) = II li,c[x,u)](Pa,qa)' 
0=1 

For p,qEC[X(a)] define 

(4.10) 

The form H u (0,.) is made unique by the normalization 
H ( 1,1) = 1. The unique contravariant form on C is defined 
by 
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He (co,co) = 1, 

HdXi (Sa )co, ~ (Sb )co) = ~f/O( 1 - i), 

HdXi ( - Sa )co, Xj ( - Sb ) co) = ~f/O(1 - i), 

(4.11) 

agree if the completions of Vand C are considered. Define 
the Schur polynomialsPn (Y), Y = (YI'Y2"") by 

LPj(y)ki=exp Ly,k'. (4.12) 
j>O ,>1 

with all other brackets between elements {Xi ( ± Sa )co} 
zero. Existence follows from the fact that the two forms 

I 

The polynomials can be constructed from the determinantal 
expression, 

YI 
2Y2 YI 

n!Pn (y) = 
(n - l)Yn-1 (n-2)Yn_2 

nYn (n-l)Yn_' 

Then we have 

X(so,k)oco = k 1/2xa( 1 ® e'U), 

where 

-2 

X a= LXfki, 
i>1 

X~ = LPi+ I (x(al)pj ( - Dx'u,). 
j>O 

-n+1 

YI 

From the definition of (4.12) a
Yi 

Pn (y) = Pn _ j (y) and (4.13) gives 

Hqy](Pi(Y),Pj(Y» = ~ijPi( q,!, ... ) = ~ij' 

Consequently, 

HU(Xi_1/2(Sa)o1, ~_I12(Sb)o1)=Hqx](Pi_I(X(al), Pj_I(X(bl})(e'u, e'h) =~~/O(1-i), 

and the other relationships are established similarly. 

(4.13 ) 

The contravariant property of H u( 0,0) can be established directly from its definition. Thus we find that~( j )t = ~( - j ) 
and (eSU ) t = e - su. It follows that Xj (sa) t = X _ j ( - Sa ) and that the adjoint of gegl (m 00 ) with respect to H u (0, 0) is given by 
gt = (g')*(E~t = Et;a). If the formal variable k is constrained to the unit circle then 

X(so,k)t = L X/ (sa)k -j. 
jEZ+ 112 

The free fermions in Refs. 3 and 7 can be identified with tIf:- I :::::Xi _ 112 (so), tIf:"-- I :::::xt 112 (Sa)' 
The representation (U, 1T"') is reducible. Consider the action of the algebra Zu generated by the homogeneous compo-

nents of 

Z (). = ( ) ( I ) (1I4)(su - s" "'u - Shl( I( _ »(Su.s"lS () SU' - Sh U,V. E Sa ,Sb U V U U V SU' _ s" U,V , 

{ 

(s".al+l -(s,.al ( ) a+su-sh -I.b 
U V E Sa - sb,a e ,aT , 

Zs _ s (u,v)oea = E(So ,Sb) 
u' h u(su,alv -(su,al(1_vlu)-'ea, a=b. 

The vacuum space of s+ = ED;;' = I sa+, ou: = C[M] de
composes into irreducible Zu subspaces flu = ED iezO~, 
where fl~ is spanned by {eaeC[M ] : (a,/) = i, I = 1:;;'= I~}' 
It follows that Ui : = C[x] ® O~ is an irreducible gl(moo) 
module because fl~ is Zu-irreducible. 18 

Since z acts as the identity operator these are necessarily 
level 1 gloo modules and the Dynkin diagram of gloo shows 
that they can be identified with the fundamental modules. 
These are the irreducible highest weight modules generated 
by the action of the universal enveloping algebra of gl (m 00 ) 
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on a highest weight vector V A such that 

hovA = (A,h )vA , n+ovA = 0, heh, 

where n+ is spanned by the Chevalley generators {eJ. The 
pairing is the standard one (ai' a/) = aij> where a i is the 
root corresponding to the coroot a'( and (aij) is the Cartan 
matrix. 16 The fundamental modules are defined by AiEh* 
such that (AI> a/) = ~ij' ijEZ. 

Let 1:i,jezE~fuiv-j = glb,C(u,v), where glb,C(u,v), is de-
fined in (2.3). Define the action of E Jf by 
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where p = m (i - 1) + a. Then we find that 

a v ·VA = /j. VA . 
J p l,P p 

(4.14 ) 

Consequently we can identify the gl(moo) module Up with 
A 

the fundamental gloo module for Ap. In fact V Ap = 1 ® e P, 

where ApEC[M] is a particular element such that (Ap, I) 

= p which we now calculate. 

(~Xj _ 112 (Sb)X _ u _ 112) ( - Sb ujv - j) (1 ® eAp ) 

= (ulv) (ApoSb)(ul(u - v»(1 ®e"p). 

The corresponding relation from (4.14) is 

( 
lJ;b.bujv-j).v = {(UIV)i(UI(U - v»v"p' 

~ IJ Ap (UIV)i-l(ul(u _ v»vAp' 

so that ApEC[M] is given by 
a m 

b<,a, 

b>a, 

Ap =i I Sb + (i-I) I Sb' (4.15) 
b=1 b=a+1 

With this expression for Ap it is straightforward to check 
that n+ ·VA = o. 

Propo;ition 4.3: The infinite rank affine Lie algebra gloo 
has a representation (U, 1T"') on U = C[x] ® C[M] called 
the m-principal vertex representation given by the action of 
the Heisenberg subalgebra 8m , (4.1) and the homogeneous 
components ofthe generating functions Xb.c(Ub,uc)' (4.8). 
The representation decomposes into a direct sum ofirreduci
ble representations (Up, -rr;) pEZ which can be identified 
with the fundamental modules of gloo . 

Since we have irreducible representations of gl (m 00 ) 

we can use the J reductions of the previous section to obtain 
vertex representations of gl~ I). 

Let UJ be a dth root of unity where d = [nl, ... ,nm ] 

corresponds to the J reduction of gl(moo) defined by 
n = (nl, ... ,nm ) and put na = dina' The maximal Heisen
berg subalgebra Sn C gl~ I) acts as in (4.1) on the representa
tion space UgI : = C [x] ® C [M ], where M can be identified 
with the previous lattice (Ta ;:::;sa). Thus the spaces U and 
Ugi can be identified as sets, but U gi has the iBn gradation. 

deg (w(x) ® eU
) = deg w(x) - Ha,a}, 

( 4.16) 
(a) - { } - £ degxs = -sna, ra,rb =naua,b' 

In this case the character formula gives 

ch U
gi 

= IT II (1 - qjnu)-1 I el'"q(l/2)V<.p.}. (4.17) 
a=lj;.1 p.EM 

It appears that the corresponding vertex operators for 
gl~ I) with the iiln gradation should, in principle, be obtained 
from Lemma 3.1, (3.4) and Proposition 3.2(a), 
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gl!'C(UJp,p) -+X!(UJP,p): = x b,c«UJp)"b,p"c), 

X!(UJp.Ap) = exp(Eb~ (UJp.Ap»exp( - E b-: (UJp.Ap» 

X·Zb.C(UJP.Ap). (4.18) 

The explicit form of E b: (UJp.Ap) and Z b.c (UJp.Ap) are easily 
obtained. The vertex operators (4.18) satisfy the relation 
(3.7), 

[~(j),x!nUJp,Ap)] = (UJjnu/ja.b_Ajnu/ja.c) 

xpjnu X!nUJp.Ap), (4.19) 

where ~(j) acts according to (4.1),j:;i0. Then by a stan
dard argument for a gl~l) module UgI' U gi = C[x] ®!lu." 
with (s ) + '!l u = 0, but it is not clear that !l u in general 

n ~ ~ 

can be identified with C[M]. Since the vertex operators de-
fined in (4.18) satisfy the relationship (3.7) it follows that 
the required vertex operators will have a decomposition of 
the type given in (4.18) with 

Ea; (UJp,Ap) = IF 1«UJp) ±jitu~( +j) 
j;.1 

_ (Ap) ±jnl'~( =Fj». (4.20) 

The operators defined in (4.20) act on Ugi according to 
( 4.1). The generators of the Zu., algebra can be obtained by 
using the method developed in Ref. 18 to obtain the gen
eralized commutation relationships. IS Essentially the lattice 
has to be modified to include all the elements (1T(~ (j»: 
1 <,a<,m,jEZ \ {O}}, where 1Tis the covering homomorphism 
of the previous section. An alternative approach is to relate 
the realizations of Sec. III directly to the representations 
obtained by Lepowsky. 13 This is the method adopted in Sec. 
V. 

The same considerations apply to the fundamental rep
resentations associated with a~ 12. I . In addition, both the ver
tex operators and the representation spaces can be obtained 
by restrictions imposed on those for gl~ I). We now derive the 
constraints on C[x] and the action ofsn Cgl~l) so that they 
can be respectively identified with the level 1 module 
Sym (8n ) _ and the action of 8n C a~ 12. I on it where 8n is the 
maximal Heisenberg defined in (3.6). Order the Heisenberg 
subalgebra Sn so that na:;i 1, a = 1, ... ,q and na = 1, 
a = q + 1, ... ,m(q = 0 is also included and has the obvious 
meaning). Apply the corresponding automorphism to gl~I). 

Identify the generators of snu in the decomposition (3.6) 
with the following operators on C[x]: 

a = 1, ... ,q. (4.21a) 

and the generators of hn with 

h a(j) -+ i: A bax(h)' h a( - j) -+j i: A bXJ:;, 
b = I J"b b = 1 

j>O, a = 1, ... ,m - 1. (4.21b) 

Put h m(o): = i: lPa~(O) so that h m(j) = h m(o) ® k jd 

a=1 
and define fP: = (IPI, .. ·,lPm), 1/J: = (nIIPI, ... ,nmlPm)' Intro
duce the additional Heisenberg subalgebra hm generated by 
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{h m(j), z:jeZ}, 

[h m(i),h 0(j)] = i8m,zz, a = I, ... ,m. 

The action of hm is given by 
m m 

hm(j)-+ LlPbaxlb)' hm( -j)-+jLlPbXJ:;, j>O, 
b= I Jnb b = I 

and cp is uniquely determined, 

cp = a (n - :~II (n..,b)}.b ), cpo'" = 1, aERo 

This expression for cp shows that 

h m(j) = a (J(j) - :~II (noyb)h b(j) ) , 

m 

J(j): = L nor'(j)· 
0=1 

(4.2Ic) 

(4.22) 

Considered as elements of gl~ I) there is an invertible 
transformation connecting {r'(jno): I<a<m} and 
{h 0(j): 1 <a<m} for fixedj;60. However if we consider the 
restriction of the representation of Sn Cgl~1) on C[x] to 
snCa~121 on C[i]=Sym(snL CC[x] then Eq. (4.22) 
shows that we require the action of (J(j): jeZ \ {O}} to be 
trivial. The action is trivial provided 

(4.23) 

Since h m(0)u~12 I does not act on the Fock space 
Sym (sn ) _ there is no need to ensure that action is trivial. It 
follows that 

For the cases no = N, a = 1, ... ,m the matrices h 0(0) can be 
calculated by the Gram-Schmidt orthonormalization tech
nique. 

In two cases the restriction of the character formula 
(4.17) to the a~12 I module Uo : = C[i] ® C [M] coincides 
with the known expressions for a fundamental module deter
mined by a maximal Heisenberg subalgebra. The corre
sponding vertex operators are determined by restricting 
(4.18), 

X:,C(mp,).p): = X:(mp,Ap) IC[x I' (4.24) 

The space Ugi decomposes into irreducible [X:(mp,Ap)] 
subspaces 

Ug1 = 6)U~I' U~I:=C[x]®eA'C[M], 
!fEZ 

where C[M]: = {peC[M]: I(ft) =O} and I(As) =S. A 
similar decomposition holds for Uo • 

As remarked in Sec. III the case no = N, a = 1, ... ,m is 
the only case where the Chevalley generators of the J-re
duced algebra can be easily determined. The corresponding 
coroots obtained from (3.5) are 
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a,';;(N_I) =F';;'~I,N_I -F~:~ + (lIN)z, 

a,';;(r-Il+m =F:.:';m-F~'!l,r+1 + (lIN)z, 0<r<N-2, 

a,';;(r-Il+O =F~:~F~:I,o+l,a= l, ... ,m-l, 1<r<N-2. 
(4.25) 

The two known cases are the principal (m = 1, n I = N) and 
the homogeneous representations (no = 1, l<a<m).11.16 

(i) m = 1, nJ = N (principal representation of a(/i_ J): 
Heisenberg subalgebra 

rl(j)-+axPh rl( -j)-+jx]1) j>O, j=l=O mod N, 
J 

vertex operators 

X!,I(mp,p) = ~ exp( L pj(m j - 1)X]I)) 
m - 1 #OmOON 

xexp( L p-j(m- j 
-1)DxI(»)' 

#OmOON J 

The character formula gives 

ch U~ = esrl#o II (1 - qj)-I, 
mooN 

where seZ N labels the fundamental representation. The ver
tex operators corresponding to the sth fundamental repre
sentation (U~,1T') are csX!,I(mp,p) and Cs is easily deter
mined using (4.25). Since in this case v A. is a highest weight 
vector define 

{(
; + 1) 
-- VA' 

F I1 N' 
i,i VA, = (; + 1 ) 

---1 V N A,' 

;<s, 

and then (4.25) gives ajOvA , = 8j,svA ,' The identity obtained 
from1T',: glj./(mp,p)-+csX!·I(mp,p) acting on VA -+1®esrl 
then fixes Cs = mS. 

(ii) no = 1; a = 1, ... ,m (homogeneous representation of 
a~'-J)" 
Heisenberg subalgebra 

m-I 

h°(j)-+ L (A:-A~)ax'h)ha(-j) 
b= 1 J 

m-I 

-+j L (A: -A~)xJb), j>O, a= l, ... ,m-l. 
b=1 

vertex operators 

xo.b(p,p) = e(ra,rb )exP(Lpj(X(O) - X(b») 
J>I 

xexp(- LP-j(DxIQ) -DXlb») 
j>1 

Xzo,b(p,p) a;6b,a,b = 1, ... ,m. 

If is convenient to make the identification C[i] =C[y] 
: = C[y(1), ... ,y<m - I)] so that on Cry], y(O) = x(a) _ x(a + I), 
a = 1, ... ,(m - 1) and D~II = D .... ,D 1m) = - DIm-I), D la) 

y X Y X 

= -Dyla-I) +DylQ),a=2, ... ,(m-l). This is equivalent 
to the Frenkel-Kac representation l1

; the factor e(ra,rb) in 
the vertex operator is usually absorbed into the correspond-
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ing root vector. The action of Fg:g on VA,' a highest weight 

vector in U~,seZm' is defined by 

aa {(l-8 •. 0 )VAs ' a<;s, 
FO:O'vA = 

0, a>s, 

so that from (4.25) we get a)'vAs = 8),. VA,' It follows that 
A -

U~=C[YJ®e "C[MJ where Ao=O and A.=l:~=ITa' 
1 <;s<;m -l.Sincethesimpleroots{Pa: 0= 1, ... ,m -l}of 
am _ 1 are Pa = Ta - Ta + I' the A.,si=O, are the miniscule 
weights of am _ I' A highest weight vector is 1 ® eA. since 
Xj'b.( 1 ® eA

,) = 0, j> 0, whereXj'bis the coefficient ofpJin 

the formal expansion of X:,b(p,p). The character formula 
gives 

ch U~ = IT( 1 - qi) - m ~ ¢(""P)eP. 
,";>1 pEC[M) + A. 

V. THE CANONICAL FUNDAMENTAL 
REPRESENTATIONS OF a~':1 

Let 1T': gl~\) -gl(n,C) denote the covering homomor
phism so that gl(n,C) has the 1 - iiln gradation determined 
by the d th-order automorphism 0' defined earlier and as be
fore let A, ad th root of unity, determine the eigenspace de
composition ofgl(n,C) with respect to 0'. Then hO: = 1T'(sn) 
is a Cartan subalgebra ofgl(n,C). Define a trace form on hO 
by 

<11,r'j) = na8~'~=-7' 
where 

As is well known there exists a unitary matrix U such 
that jio: = Uho U -I is the conjugate Cartan subalgebra of di
agonal matrices. However since the bilinear form (.,.) is in
variant under similarity transformations we consider the 
Abelian group A which is generated by elements aeh° of the 
form [c.f. (4.20)J 

(5.1) 

where OJ and A are d th roots of unity (i.e., there exists i, j such 
that OJ = N, A = N). Observe that the a defined in (5.1) 
corresponds to an equivalence class of representations de
fined by OJ _OJNna, A _..1Nnb. In calculations we always use 
the canonical representative such that corresponding to the 
pair (11,OJ) in (5.1) we choose the element of the equivalence 
class OJEN for which {na,j} are relatively prime. 

It is clear that for a,p,e A,a + P has the form (5.1) only 
if a +P = Oor (a,p) = - 1 when a +peA. LetA be the 
set of such elements aeA. It is easy to check that the elements 

I 

of A satisfy the conditions (2.1 )-( 2.5) for the Abelian group 
L introduced by Lepowsky,15 i.e., (a,a) e 2Z, (O'a,O'p) 

= (a,/3) and (ad 12a,a) e 2Z for even d. 
Introduce a bimultiplicative function E on A XA which 

takes values in { ± l}, 

E(a + P,).) = E(a,).)(p,).), E(a,/3 + A) = E(a,p)E(a,..1), 

E(a,p)E(p,a) = ( - 1) (a,p). (5.2) 

Define E on A in the following way. Let 

{

I, 

. '_11 1, 
Eo(A'rg,Nro): = 

-1, a = b, 

-1, a>b. 

a<b, 
a=b, i<j, 

i>j, 
(5.3 ) 

Note that the evaluation here is with respect to the canonical 
representative for the pairings (rg,N) etc. Put 

( 

- I ~ - iiluJJ n
b
- I ~ , - iilO_11,.) 

E na ie~,u OJ ri' jE~'b .I\. r; 

(5.4) 

thenE(·,·) so defined satisfies the conditions (5.2) onA XA. 

Let x = ex (i) be the eigenspace decomposition 
ieZ 

of xegl(n,C) and set x(oJ: = l:jEZ x(j) ® k J and x(p) 
: = l:jEZx(j) ® kip -i. In particular define 

-112 -
xa (p): = (nanb) Eo(OJTo,..1ro)1T( gin (OJP,..1p», (5.5) 

where a is defined in (5.1). Then we have for a,p e A that 

{

E(a, - a)a, a +P= 0, 

[xa,xp]o= E(a,p)xa + p, (a,p) = -1, (5.6) 

0, (a,p);;.O, 

and [hO,hO]o=O, [h,xa]o= (h,a)xa = - [xa,h ],heho. 
The form extends naturally to the whole of gl(n,C) by put
ting (xa,xp ) = 8a, _pE(a, - a). Notice that O"Xa = Xqa' 

Put Z(a,p):=Eo(0J,o,..1rb)(nanb )-1/2 za,b(OJp,..1p), 

where a is defined as in (5.1) and 

za,b(OJp, ..1p): = exp( - Ea; (OJP, ..1p» gin (OJP, ..1p) 

Xexp(E~b(OJp, ..1p», (5.7) 

which is obtained by inverting (4.18). The quantities 
E"t(OJp,..1p) are defined in (4.20). The realization of 
Z(a,p) is determined from its action on a level one module 
U,I of gl~\). The definition (5.7) is therefore to be under
stood as the representation of Z(a,p) in this module. Its 
action on UgI is then as usual conveniently represented by •. 

The representation of Z(a,p) is determined from the 
generalized commutation relations for gIn (OJP, ..1p). This is 
given in Ref. [12J but we shall omit the derivation and state 
the result. Set len): = {jeZd:(O'ia, P) = n}. Then we can 
prove directly the following result. IS 

Lemma 5.1: For a, p, eA, 

II (1 - A -Jq/ p ) (qia,P)Z(a,p)Z(p,q) - II (1 - A -J)(a,qiP)z(p,q)Z(a,p) 
jEZd jEZd 
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In this lemma D is the degree operator Df (p) 

= p (d I dp)f (p). Lemma 5.1 is a special case of the general 
formula derived in Ref. 18 (p -. p - 1 ,q -. q- 1 to get agreement 
with the formula of Lepowsky and Wilson). 

It follows that we can write down the fundamental rep
resentations for a canonical set of maximal Heisenberg sub
algebras of gl~l) and a~l": I by using the results in Ref. 13. 
More directly we can obtain the representation by introduc
ing the operators {pa,ea: aEA} on Ugi such that 

ea·eP = E c (a,{J) ea + (J, 

pa.eP = eP-pa + (a,{J). 
(5.8) 

These operators are the obvious analogs to the operators 
defining the Ty (k) in (4.3). In this case however we do not 
require the bimultiplicative function E c (.,.) to take values in 
{± n. We can then show directly that 

Z(a,p): = d - !(a,a)f(a)eap~uia + !(~uia,a) (5.9) 

defines an operator which when restricted to A satisfies 
Lemma 5.1. In (5.9) the function f( a) is defined by 

{
!'(a)2(o"l2a,a)/2 dE2Z 

f(a) = " (5.10) 
!'(a), dE2Z + 1, aEA, 

where 

!,(a) = II (1- A _j)(uia,a), aEA. 
O<j<dI2 

The function E c (.,.) has the representation 

Ec(a,{J) = E(a,{J) IE' (a,{J) , 

where 

E'(a,fJ) = II ( - A -j)(uia,{J), aEA, 
- d/2 <j<O 

and satisfies, 

Ec(a,{J)/EC({J,a) = C(a,fJ) , 

C(a,{J) = II ( - N)(aia,{J). 
jEZd 

(5.11 ) 

(5.12) 

(5.13) 

This follows from the calculation involved in establishing 
the validity of the expression for Z(a,p). 

The corresponding vertex operators for gl~ I) with the 
iBn gradation are defined by 

Xa (p) -.X(a,p): = E+(a,p)E_ (a,p)Z(a,p), aEA, 
(5.14 ) 

and E± (a,p): =exp[ ±EO;(Wp,AP>] for a defined in 
(5.1 ). 

A level gl~l) module is defined by Ugi 

= Sym(sn_) ®Ogl, where Ogl is the vacuum space of 
Sn + , Sn + ·Ogl = O. The action of Sn on Ugi is the usual one 
given in the previous section. If Ugi is a highest weight mod
ule then Ogl is generated by the action of the Zu algebra on 

gJ 

a highest weight vector VEUgl . In particular we have 

(5.15 ) 
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Ugi is an irreducible gl~ I) module provided Ogl is an irreduci
ble Sn module, where Sn is the group corresponding to Sn' 
Let Po denote the projec~on operator Po: h°-.h~o). Put 
N: = (1 - Po)ho A and letA denote th~ unique up to equiv
alence central ex~nsion 1-. (Ao) -.A -.A -.1", where Ao 
= ( - 1 )dA. Let N be the pullback of N to A. Then Le

powsky shows that an irreducible Sn module has the struc-
A A 

ture Ogl :::::: C[A ] ® C[N 1 T where T is an irreducible N mod-
ule. The construction of Tis given in Ref. 13 and we refer the 
reader to this reference and also Ref. 10 for a detailed consi
deration of the fundamental modules. 

To obtain the corresponding an _ I fundamental repre
sentations we impose the restrictions (4.23) on the funda
mental representations Ugi and Xgl (a,p). In the notation of 
this section this requires 

m 

I nor"(jno ) = 0, /#0. (5.16) 
0=1 

The character formulas (4.17) agree with the formulas 
derived by Kac and Peterson. \0 They correspond to a grada
tion of the fundamental module defined by 

deg(w ® ea 
® t) = deg w - ~ I I oJa,a), 

2 \;Zd 

WESym(Sn_), ea®tEOgl • 
( 5.17) 

We end this section with the first nontrivial example 
which arises from n = 3 (n = 2 has only the principal and 
homogeneous representations already considered). The 
possibilities are: (i) n = (3), (ii) n = (1,1,1), and (iii) 
n = (2,1). The first two are respectively the principal and 
homogeneous representations which are easily seen to be in 
agreement with those given in the previous section [for (i) 
dim Ogl = 1]. Case (iii) corresponds to a new representa
tion. If we use C [x] Sym (sn_ ) which was introduced in the 
last section we get ± a I' ± a2, ± a 3E A and a I = a 2 - a 3, 
where 

al=rL a 2 =!(r6+ r:)-ro, a3=~(r6-r:)-ro· 
(5.18 ) 

For this case only a single infinity of indeterminants x is 
required and the irreducible ail) module is C[x] 
® 0 0 ,00 ::::::Ogl: 

X o (a3,p) =2- lexp(I( _p2j-IX2j_1 +3p2jX2j») 
j>1 
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xexp( - ~( _p-2j+ ID + 3n-2jD ») 
~ X2j_1 r X2} 
j;.1 

Xeap 3/2 + 2Poa3' (5.19) 

VI" THE WEDGE REPRESENTATION AND GROUP 
ACTIONS 

The groups GL( moo) and GL (m 00) were defined in 
Sec. III. The group GL(moo) is generated by the action of 

the exponential map on gl (m 00 ). Although gl (m 00 ) is the 
Lie algebra of GL( 00), conversely the exponential map is 

not defined on all elements of gl (m 00 ). However from 
(4.12) we have 

m 

exp I I x)a)s"(i) 
a= 1;;.1 

m _ 

= X (Ps_t(x(a»)s,IEZE GL(moo). 
a=1 

(6.1 ) 

This follows from the fact that the subgroups exp xfs°(i), 

i>O, are commutative subgroups of GL(moo), since for 
i,j> 0, [s"(i),t'(j)]o = O. DefineSm as the centralizer ofsm 

in GL(moo). Thus the element (6.1) belongstoSm • 

Let 

v(m(i-I) +a) = {i: I cJuJ + ± c~u~;ctEC} cv, 
b=lj<l b=1 

so that cv(n)cv(n+ I)C and dim v(n+ I)/v(n) = 1. 

The Grassmannian of V, Gr (n is the set of closed sub
spaces WCVsuch thatthereexistsannforwhich v(n)c W 
and dim W /v(n) < 00. This means that the subspaces 
Ware "comparable" to 1'(0) in the sense that the projection 
prw: W ..... 1'(0) is Fredholm (finite kernel and co
kernel).8,19,20 The index associated with prw is called the 
virtual dimension of W: 

virt.dim W 

= index prw: = dim(ker prw) - dim (coker prw). 

Since GL(m 00) consists of the identity component 
Gr(n decomposes into the orbits ofGL(m 00), 

Gr(n = Grp (n, 
peZ 

where Gr (n = {WEGr(n: virt.dimW = p}. However 
p -

the action of GL(moo) is transitive on Gr( V); we denote 
the identity component by GLo(moo). 

m 

Let 0: = /\ V = /\ 1'0 denote the exterior algebra on 
0=1 

V. It is convenient to order the basis elements of O. Thus let 
aO = u'! /\ u'! /\ .. 'EVa then any basis element of 0 can be 

1. i2 

written in the form a = a I /\ a 2 /\ ... /\ amEO. Introduce the 
definitions 

fJ'!' = u'!/\uo /\ "'EVo J' ) )-1 , 

fJ - fJ I /\ ••• /\ fJ a /\ fJ ° + I /\ ... /\ fJ m EO. 
m(i-l) +0 - i ; ;-1 1-1 
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The group GL(moo) acts on 0 in the usual way, 

Go(a l /\ .. '/\ao /\ .. '/\am) 

= (Goal) /\ ... /\ (GoaO) /\ ... /\ (Goam) 

GEGL(moo ), 
,..-.... 

It follows that 0 decomposes into the orbits of GL(m 00), 

0= Ell pezOp with fJpEOp. If A, = VI~ v2 /\" 'EOp, put A,w 
= {l:. I C·V·· C.EC} so that A,wEGrp (V). Therefore define 

,;> '" I 

virt.deg A, = virt.dim A,w, 

and aEOp if virt.deg a = p. 
The algebra gi( moo) acts on 0 according to 

g-(a l /\ ... /\ aO /\ ... /\ am) 

= (g"a l
) /\ .. '/\aO /\ .. '/\am 

+ a l
/\ ... /\ (g"aa) /\ .. '/\am /\ + ... 

+ a l
/\ .. '/\ao /\ ... /\ (g-am), gegl(moo). (6.2) 

Therefore we have 

n+"fJp=O, O"fJpCOp, 
(6.3) 

a~"fJp = Oi,pfJp, 
,..-.... 

where 0+ (0_) are the subalgebras of gl(m 00) spanned by 
the Chevalley generators {e;}({/;}). Consequently (6.2) 
identifies 0 ,with the action of gn moo) given by (6.2), as 
the pth fu;damental module of gI:, and fJp is a highest 
weight vector. Denote this representation by (Op,?T;). 

The representation extends by linearity to a projective 
representation (Op,1T;) of gl(moo) if we use the normal 
ordering defined by the Clifford structure in Sec. III, 

ir;'(E~::) = E~:: - o~::fJ(r)Inp' (6.4) 

where In is the identity operator on Op. A linear representa-
p 

tion (Op,1r;') ofgl(moo) is obtained by lettingzact as1np on 
Op. 

We define virt.deg aO, where a = a l /\ .. '/\ao /\ 

... /\ am, as the restriction ofvirt.deg to the algebra 1'0 asso
ciated with the Grassmannian Gr(VO). 

It is now possible to give an interpretation of C[M]. 
From (6.4) we have 

sO(O)"a = a l /\ a 2 • •• /\ s"(O)"ao /\ ... /\ am 

= (virt.deg aO)a, 

and it follows that 

s(O)oa = (I-t,s)a, 

where SEC and I-t = I-to So EM,l-to = virt.deg aO. In particular 
since virt.deg a = p we find thatl-t = Ap + A, wheres(O)"fJp 
= (Ap,s)fJp and 

/(A,) = 0 (Ap = i btl Sb + (i - 1) b=~+ I Sb) . 
The space Op is an irreducible gl(m 00 ) module and we 

can assign an m-principal gradation to it: 
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B,b {If (s - U - 'u) - ~(f..L,f..L), bo<.a, 
deg II. r,S = u = 0 

o (Note/L~~=O), bo>a, 

for'O>'I>"'>'I_1 >s- (/-1), 

where s(O)o/L ~~ = (f..L,s)/L ::~. (6.5) 

If the character for 0 is defined as in Sec. III then it can be 
evaluated by using the properties of the character function 
ch 0 = ch(A;;'= I VO). This gives 

ch 0 = [1 + L ql ] m 
1>1 (l_q)(l_q2) ... (l_ql) 

x L q< 112)(".,,) eI". 
"eM 

(6.6) 

Comparison with the character formula (4.9) for U gives 
Euler's identity. Then ch Op is obtained from (6.6) by re
stricting f..LeM so that i(f..L) = p. Conversely Euler's identity 
shows that the gl (m 00 ) modules U and 0 can be identified. 
Let 7J: 0 -+ U denote the isomorphism defined by ()o -+ 1 ® eO. 

Introduce the operators {u~,uJt} by the formulas,20 

u~oC uf.' A u~' A''') = u~ A uf.' A u~'"'' 

ubt0Cuo, Au'!'A"') = ubOCuO')uO'A'" 
I 't '1 I It '2, 

- urCu~')uf.'A"· + "', 
where uJ"cun = D~/ UJ"EV*. Then {u~,ur} generate a 
Clifford algebra An which is isomorphic to the Clifford alge
bra A generated by {Xi _ 112 (so),X _ u _ 1/2) ( - Sb )} intro
duced in the previous section. Furthermore the An module 
Cn generated by the action of An on the vacuum vector ()o 
which satisfies 

u~o()o = 0, /<.0, u~to()o = 0, i> 0, 

can be identified with the A module C. Let {3: Cn -+ C be the 
isomorphism defined by {3: ()o -+ vo so that the transported 
operators are {3: U~-+Xi_l12 (so ),u~ -+X _ (i-1I2) ( - sa)· 
The relationships between the different representations of 
the fundamental gl 00 modules can be summed up in the com
mutative diagram 

lr fa 

(U,rr"') +- (O,rr"'), 

where a and r are the isomorphisms which identify the vacu
um vector with the basic highest weight vector. 

The Hermitian contravariant form on 0 is defined on 
basis elements aa = ua A ua A'" {30 = u'! A u'! A'" by '. '2 ' It h 

m 

Hn (a l A'" Aam,{31 A'" A{3m) = II Hn (aa,{3a), 
0=1 

Hn (aa ,{r) = det(u~O(u.h »/,k> I . (6.7) 

It is made unique by the normalization Hn «()o,()o) = 1. The 
virtual degree decomposes the space 0 since a necessary 
condition for Hn (a,{3):fO is that if s(O)oa 
= (f..L,s)a, s(O)o{3 = (/L,s){3 then f..L = 11.. 
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For the group GL(moo) the action on (O,?") is pro
jective and irreducible. If WEGrp (V') let {wI' ... 'WI} be a ba
sis for Wmod v(n>,wc v(n) for some n. Then put aw 

= WI A ... AWl A ()n so that awEOp and up to a constant 
factor is independent of n and the basis Wmod V(n). For 

Ge GL(moo) the representation on (O,?") is given by 

G-UoG- 1 = (G'u), 

G-utoG -I = (uoG -1)\ 

(6.8) 

and the representation is made unique by fixing the constant 

in ao-v"" for each Ge GL(m 00) (cf. Refs. 3 and 12). 
The isomorphism 7J can be made explicit by evaluating 

the matrix coefficients associated with a particular evolution 
operator on Gr(V') (cf. Refs. 3 and 12). Let 

m 

r +(x) = X (Pi-j(X<Q»)i,.iEZE GLo(moo), 
0=1 

and denote by r + the commutative subgroup {r +(x)} 

C G Lo (m 00 ). The action of the transported operator on U 
is given by 

m 

r + (x) = exp L L x;a)~(j), 
0= Ij>1 

where ~(j) acts according to (4.1). Let v = w(x) ® el"EVp 

so that /(f..L) = p. Then if 7J- I (v) = aEOp we also have 
s(O)oa = (f..L,s)a. Put 7J- 1(1 ® eI") = a" so that in particu
lar a/\p = ()p then the isomorphism 7J implies that 

H u (r + ov,1 ® eI") = Hn (r + oa,a,,). (6.9) 

The isomorphism 7J: 0 -+ U is naturally expressed in 
terms of an orthonormal basis for C[x], with respect to 
Hqx 1(0,0) called the basis of Schur functions. 2 

I Let Par con
sist of finite sequences of nonincreasing positive integers 
/ = (fj '''',[1)' O<J. <. ... <Jj. Alternatively interpret [EPar 
as a Young diagram consisting ofj rows oflengthfj'''',[I' 
Then the basis of Schur functions for C[x] is given by 

Sf(x<O» = det(pt" _ h + I (x<O» )O<h,I<.i' 

where/ranges over Par (or all possible Young diagrams). 
If ua A UO A . "Eva i > i > ... put 

"'I-I 'I /-1 

U = (i1,il _ 1 ... ) and write u~: = u~ A u~ A .. ·. If virt-
I 1-1 

.deg u~ = 1 then U is called a set of virtual cardinal 1.19,20 
This means that for q ~O, iq = q. Let 1: > be the family of all 
such strictly decreasing sequences u. Then 

L=ll±, 
> ueZ > 

where 1:j> is the set of sequences which have virtual cardinal 
j. To any element aE1:j> we can naturally assign a unique 
element/" EPar, 

/" = (ij - j,ij _ 1 - (j - 1 ), ... ). 

Theorem 601: Let U Q E1: j
:, a = 1, ... ,m such that 1(f..L) 

= p wheref..L = jasaeM. Then under the isomorphism 7J: 0 

-+U,7J= ffJ7J, 
peZ P 
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Proo/Let 1Jp-
l : vex) = w(x) ®e'""-+u~ ... u'; , where 

, m 

virt.card. (O"a) = ja and put It = jasa' If 1J- I
: 1 ® e'"" -+a" it 

follows that a" = 0), /\ ... /\ 0;:". It is convenient to let 

jaE~ j~ also represent the sequence (ja,ja - 1, ... ); the dis
tinction is clear from the context. We have 

Put r +(x(a» = (Pi_j(X(a»)i,.iEZ ' then, 

H (r (x{\)u l ... r (x(m»um a ) n + 0'. + Urn' J.l 

m m - II det(r (x(a) )ua) - II S (x(a» - + ja - 'faa ' 
a=l a=l 

h r ( (a»Ua. _ ( ( (a») were + X ja' - PI;- (ja- k) X O<i,k , 

The relationship (6.9) and the definition vex) = w(x) ® e'"" 
establishes the result. 

Note that the action ofr + (x(a» is well defined and that 
the determinants can be explicitly calculated. This result is a 
generalization of that due to Kac and Peterson for the m = 1 
casel2

; the result for m = 1 in the spin representation was 
established by the Japanese authors. 3 

It is clear from Theorem 6.1 that the basis for Op 
m m 

(or Up) can be defined in terms of X ~ > (or X Par). Let 6. 
m m 

= (O"\>""O"m)EX~> and let FA = (/u"""/u.)EXPar be 

the corresponding partition (or sequence of Young dia-
grams) Put u . = u l ... um S (x)' = TIm S (x(a» . ao 0', Urn' Ffl. • a=l 'faa 

andsetltA = hasaEM, whereha virt.card. (O"a) ( = virt.deg. 
u~) and define virt.card (a) = l(ltA)' 

Corollary 6.1.1: (a) An orthonormal basis of Op 
with respect to Hn ( • , • ) is given by 

m 

{u A : aEX~> and virt.card. a =p}. 

(b) An orthonormal basis of Up with respect 
m 

to H u (·,·) is given by {SF,,(X)®/''': aEX~> and 

virt.card. a = p}. 
m 

Notice in part (b) that {SF (X) ®e'"": FExPar,I(It) 

= p} is an equivalent formulation of the basis. From the 
theorem and the corollary it is possible to give a concise 
expression for the action of GEG L (m 00 ) on Op or Up. 

L det( G ~ )uA 
m 

.:1ex Par 

:virt.card. A = p 

m 

AEX Par 
:virt.card.Q = p 
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In this expression if O"a = (k l ,k2, .. ·) and ub = (/1'/2"") then 

(G~ )a,b. = Ga,b 
A I,]" k;,IJ • 

VII. A RESTRICTED CLASS OF SOLVABLE EQUATIONS 

In this section we briefly review a restricted class of solv
able equations associated with gloo ; a detailed classification 
will be given elsewhere. 15 The equations are given in their 
Hirota form 14 and were first obtained in Refs. 8 and 7. 

The equations are restricted because (a) only funda
mental representations of gloo are considered, (b) the gen
eral evolution operators on GrO') are not treated. The sec
ond point refers to the specific map used to define the 
isomorphism 0 -+ U. In the previous section we used an ele
ment of r + to define the isomorphism 1J. However different 
evolution operators lead to different equations.3

•
9 This is be

cause each "distinct" isomorphism defines a new vertex rep
resentation of gJ 00 on U. 

We consider the restricted class of equations associated 
with r + for which 1J: 0 -+ U is defined by 0o -+ 1 ® eO. In this 
case U~-+Xi_1/2 (sa), u~t -+X _ (i-1I2) ( - Sa) as a result of 
uniqueness. However it is instructive to derive this result 
directly. 

The group r + C 8m C GL(moo) acts on the vector 
m 

space ffi Va{k} and its dual, where Va{k} is the vector 

space of formal Laurent series in k with coefficients in 
va. In particular let ua(k) = u~kiEva{k}, ua*(k) 

= u~*k - iEVa*(k) and put k· x(a): = L k iXi (a). Then 
i>1 

we obtain either directly or from (3.8), 

r +(x) 'ua(k) = (expk'x(a»ua(k), 

r + (x) 0 uat(k) = (exp - k 0 x(a»uat(k). 

Define €(k): = (k,~ k 2
, ... ,(1lj)k J, ... ), write uj for uj, and 

put a = L k j
- IUI+ j ' then we have 

j>1 

ua(k)oOf=kl+la /\ Of 

=kl+la /\ (ul+ka) /\ (U1_ I +kul +k 2a)'" 

=kl+l(exp€(k- l ) osa)to Of+1> 

uat (k) 0 0 f = k - 1 (u 1_ I - ku 1)( u 1_ 2 - ku 1_ 1 ) ... 

=k-/(exp -€(k-l)osa)toOf_I' (7.1) 

These are the relationships which yield the fundamental for
mulae in the Japanese papers.2,3,7 Thus for 
a" = O~, /\ ... /\ ():;"" It = Itasa, we get 

ua(k) oa" = (-I)Yk"u+
l{r +k(a)(k-I»}toa" +sa' 

uat(k) 0 a" = ( - 1)Yk -"a{r +( - €(a)(k -I»}t 0 a,,-sa ' 

(7.2) 

where r=~~::ltb' €(a)(k):=€(k), and 
r +(x(a»: = exp~i>l x}a)sau), a usage introduced in the pre-
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vious section. It is easy to show by considering the actions of 
ua(k) and uat(k) on ()o and the actions of the transported 
operators on Vo that 

Remark: There is a difference between the cocycle used 
in this paper and the (implied) cocycle used in the Japanese 
papers. This is due to a different choice of ordering for the 
elements defining the vacuum space of Sm in the spin repre
sentation. In terms of the wedge representation their choice 
corresponds to 'iip. = ( - I )P() ~, 1\ ... 1\ () ';.n' 'iip. EOp. 

The corresponding cocycle is obtained by reversing the in
equality signs in the definition of E( • , • ) in Sec. III. 

The matrix coefficients3.4.5 

r~.v(r + (x);G): = Hn(r +(x) • G· ap.,avl 

= Hu(r +(x)· G· (1 ®eI'),1 ®e'1, 

where 1(J-L) = p = lev) and GEGL(moo) are called r-func
tions. Let a,/3EO, GEGL(moo), then a calculation shows 
that 

L G • uj • a ® G • ujt • /3 
jeZ 

I<a<m 

L (G·uj).G·a®(uj·G)t·G·/3 
jeZ 

I<a<m 

= L uj • G • a ® u;t • G • /3 E 0 ® 0 . 
jeZ 

l<a<m 

(7.3 ) 

On 0 ® 0 we have the induced contravariant Hermitian 
form 

H n, (w ®W',A ®A ') = Hn (w,A)Hn (W',A ') , 

and a similar definition applies to H u' ( • , • ). Define the 
operators J, Jt on 0 ® 0, where Jt is the adjoint of J with 
respect to Ho' ( • , • ) by 

J: = L uf ® uft . 
iEZ 

Lemma 7.1: The operators J, J t commute with the rep
resentations ofgl(moo), gI(moo) and GL(moo) on 0 ® O. 

The prooffollows from (7.3) and the action of the basis 
elements of gl (m 00 ), (g1 (m 00 », defined in the previous sec
tion, on 0 ® O. 

Let b,J-LEC[M] then 

J. (ap. + b ® ap.) = 0, bEZ':, 

Jt.(ap.+b®ap.) =0, (7.4) 

bEZ~ . 

These relationships yield the Hirota equations associated 
with this restricted system. Since Lemma 7.1 is also valid for 

r + C G Lo (m 00 ) it follows that (7.4) implies the orthogo
nality relationship 

Hn,(J· r + (x) • G· (ap. + b ® ap.)' a" +c ® a,,) = 0, 

b,CEZ': . (7.5 ) 
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. ...--
Conversely smce r + (X)Er +' GEGL(m 00) only preserve 
the virtual degree of aEO it follows that further conditions 
have to be imposed to ensure that (7.5) is nontrivial. A nec
essary condition is that leA) = 1(J-L) - 1 and 
l(c) = l(b) + 2. The condition (7.5) will then be nontrivial 
for some GEGL(m 00 ). The Hirota equations are easily ob
tained from (7.5), but we proceed differently so that the 
Hirota polynomials of the system can be studied. 

The transported operator 'TJ. J. 'TJ- 1 is easily obtained, 

'TJ. J. 'TJ- 1 = Res{ k -I a~1 X(sa,k) ®X( - Sa,k)} . 

The decomposition 0 ® 0 = Ell Op ® Oq implies that 
p.qEZ 

ap.+b®ap.EOp®Oq where p=I(J-L+b),q=I(J-L). Let 
Op. + b.p. C Op ® Oq denote the GL(m 00 ) orbit of 
ap' + b ® ap' and choose CPEOp. + b.p.' It is convenient to intro
duce the notation 

'TJ:®20-+C[X',X"] ®C[M'EIlM"] 

::::: ®2(C[X] ®C[M]), 

where M I Ell M" is the Z lattice with basis vectors {s/}, 
{sa "}. Then 'TJ: cp-+cp(x',x";p,q) where 

cp(x',x";p,q): 

L vy(x')w," (x")eY '+'"" , 
I(y) = p.l(,") = q 

and r' = rasa' etc. The image of cp will only have a finite 
number of terms if GEGL( moo); however there will be an 

arbitrary number if GE GLo(moo). Lemma 7.1 and (7.4) 
imply that 

T/ 

0= J. cp f---+ Res{k -'X(s~,k)X( - s;,k) 

• cp(x',x";p,q)} = O. 

The change of variables 
y= -!(x'-x"), ra=!(S/-Sa"), 

FIG. 1. Q~ for the 2-(g1(2ao l,r +) family. 

(7.6) 

x=!(x'+x"), 
'a = !(Sa' + Sa") 
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gives a more natl!!al representation of (7.6) on the space 
q x, y] ® q AI Ell AI]. It is important to note that the degree 
of an element of this module is given by 

deg(u(x)w( y) ®el'+,"} = deg u(x) + deg u( y) + !lrl2 
+!lllJj2. 

The operator J acts on C[ y] ® C[AI], 

Jou(y)®i'= Ltl Ecra';/) ~pj(-2yCa)}pj+hu+1 

X(DyIU)}]u(y)®i+2ru. (7.7) 

Equations (7.6) therefore have the form 

L Jour(x-y)w,"(x+y) 
l(r) ~p.l(,") ~ q -- ~ ® exp [ ( Y - (i) + (Y + (i) )] = 0 , 

with J acting as in (7.7). If this relationship is projected onto 
qx, y] ® exp(c + 2,1, + c), where A and c satisfy the condi
tions defined below (7.5), and then Taylor's formula is ap
plied, Hirota's equations are obtained in the form/·7 

atl Ecu-dDz;y](f(X-Z)g(x+Z)}lz~o =0, 

where 

Eh)Z;Y]:= (_l)h,+ ... +hu I LPj(-2yCa)} 
j>O 

and 
m 

yoz= L y<a) oz(a), 
a=l 

y<a) = ( y\a) ,2y~a) , ... ,ry;a) , ... ) . 
(7.8) 

Equations (7.8) were obtained with the functions 

I(x) = Uc+A-su(X) = 1"~+b.c+A-sJr +(x);G), g(x) 
= w A + Su (x) = 1" !.A + Sa (r + (X) ;G), however their function

al form only depends upon CEZ': such that I(c) - 2 
= I (b) >0. For a given s>O the set of equations (7.8) such 
that CEZ': satisfies I (c) = S + 2 we shall refer to as the s
(gl(m 00 ),r +) family of Hirota equations. In contrast to the 
m = 1 case, (7.8) for a given s, furnishes a hierarchy of equa
tions for each allowable c and the word family seems more 
appropriate in this case. 

Define the totality of Hirota polynomials by the gener
ating functions 

Hir[z;y]: = L Hir, [z; y] , 
.<;;,0 

where 

m 

Hirs [z;y]: = L L EC
u
-2 [z;y] ®/-2ru

• (7.9) 
CEZ/; a=l 

,l(c) ~ s+ 2 

Let YEPar then Hir s [z; y] consists 
form (y(a»rp _ (z)®/-2ru over 

Y;Ca 1 

YEPar and c such that ICc) = s + 2. 

d P () c - 2ra I() 11-1 2 eg y,C
a 

- I Z ® e = Y + 4 C • 

of sums of the 

all possible 
We also have 
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The s-(gl(m 00 ),r +} family of equations involves the 
dependent variables uc + A _ Sa' WA + Sa' cEZ ': , I(c) = s + 2 
and AEM such that 1(,1,) = 1(J.l) - 1. Choose a AEM which 
satisfies this condition then a representation of the depen
dent variables is given in the following way. 

Let 

Q~ = {{«A + Sa ),(c + A - Sa )}: a = l, ... ,m} 

cEM: I(c) = s + 2}, 

Q ~ can be considered as a directed graph by joining 
(A + sa) to (c + A - sa) with the arrow directed towards 
the second point. 

Definition: A skeleton Q ~ labels the minimal set of de
pendent variables which define the s-(gl(m 00 ),r +} family. 

In general Eqs. (7.8) are differential-difference equa
tions. Fix AEM, 1(,1,) = 1(J.l) - 1 then all the other depen
dent variables can be obtained by translations of the skeleton 

J.l:Q~ ->Q~+I" ' 
where J.lEC[M] and 1(J.l) = O. Figure 1 depicts the case for 
the 2-(gl(200 ),r +} family. 
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Repr~sentations of the braid group obtained from quantum sl(3) enveloping 
algebra 
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The quantum Clebsch-Gordan (CG) coefficients for the coproduct 6 X 6 of the quantum sl (3 ) 
enveloping algebra are computed. Based on the representation 6, the representation of the 
braid group and the corresponding link polynomial are obtained. The link polynomials based 
on the representations of the quantum sl (3) enveloping algebra with a one-row Young tableau 
are discussed. 

I. INTRODUCTION 

Two years ago, Akutsu and Wadati I "found an unex
pected close connection between physics and mathematics," 
that is, they found out the similarity between the quantum 
Yang-Baxter equation (QYBE) and the multiplication 
rules of the braid group. 2 Taking the spectral parameter u in 
QYBE to be infinity, they obtained a set of representations of 
the braid group from the Boltzmann weights of the N-state 
models, which are the solutions of QYBE, in terms of nor
malizing, the symmetry breaking transformation and the 
limit process of u -+ 00. Then, they successfully found a set of 
link polynomials. This method was discussed independently 
by Jones. 

On the other hand, from the trigonomatric solution3 of 
the classical Yang-Baxter equation (CYBE) 

r= -Co -2C_ 

- 'LHjXHj -2 'L E_aXEa' (1) 
j aE<l., 

where Hj and Ea are the Cartan bases, and .Il+ is the set of 
positive roots, we computed, based on the quantum s1(2) 
enveloping algebra (q-sl (2», the explicit forms of Rq ma
trix,4.5 satisfying QYBE without the spectral parameter, 
which is the same as the multiplication rule of the braid 
group. We found out that the solutions Rq we got are just the 
same, up to an unimportant factor, as the RAW matrix of 
Akutsu and Wadati. Thus we have obtained the explicit 
form of RAW with any j (or N = 2j + 1). 

In our computation for q-s1(2) ,4 we used the same nota
tions as those in the theory of angular momentum, and com
puted the analogies of CG coefficients, Racah coefficients, 3j 
symbol, and 6j symbol, step by step. Unfortunately, we are 
not able to compute quantum CG coefficients (q-CG) for 
the quantum sl( 3) enveloping algebra [q - sl( 3)] general
ly, because even in su (3) Lie algebra, CG coefficients were 
computed only for some definite representations.6 

Encouraged by the success of computation on q-s1(2), 
we are interested in generalizing this method to q-s1( 3 ), al
though we are ab~ to compute only for some definite repre
sentations. Here, Rq matrices based on the fundamental rep
resentations of q-sl (n) were calculated7 and proved to satisfy 

a) On leave from the Institute of High Energy Physics, P. O. Box 918(4), 
Beijing 100039, People's Republic of China. 

the Hecke algebra. The fusion of the fundamental represen
tations was discussed.s Recently, the operator form of Rq 
matrix for q - sl (n) was given.9 But, in order to construct 
link polynomials, more explicit forms of Rq matrices are 
needed. 

In this paper, we compute the q-CG coefficients for the 
v 

coproduct 6 X 6, then obtain the Rq matrix and construct the 
corresponding link polynomial. Throughout this paper, we 
assume that q is not a root of one so that all the finite irredu
cible representations (lR) are nonsingular. In Sec. II, we 
review q-s1(3) briefly. In Sec. III, we make some conven
tions on enumerating the states of the irreducible representa
tion, and their relative phases. For the convenience for q
sl (3), we have to change some conventions used in su (3) Lie 
algebra. 6 The q-CG coefficients and relevent representation 
matrices are computed in Sec. IV, and then, the Rq matrix in 
Sec. V. In terms of the general methods, 1,10,11 we construct 
the link polynomials in Sec. VI. In Sec. VII, some discus
sions are given for the representations of q - sl (3) with one 
row Young tableau, We left the computation on the copro
duct 8 X 8 of q-sl (3) in the next paper. 

II. QUANTUM 51 (3) ENVELOPING ALGEBRA 

Deform the generators A a of su ( 3 ) algebra to those of q
s1( 3): 

U 3 -+hl' v'3As - A3-+ h2' AI + lA2-+el, 

AI - iA2-+JI' ..1.6 + iA7-+e2, ..1.6 - lA7-+h' 

which satisfy the following multiplication rules: 

k - h,/2 a-q , 

kaea =qeaka' kaeb =q-I/2eb ka, 

kala = q-1a ka' kJb = ql/2Jb ka' 

[k l,k2] = [e l'/2] = [e2'/1] = 0, 

[ea,fa] = (k~ -k a-
2)/(q_q-I), 

e~eb - (q+q-I)eaebea +ebe~ =0, 

J~b - (q + q-l)faJJa + JJ~ = 0, 

where a, b = 1,2, and a#b. 

(2) 

(3) 

The explicit forms of generators in the fundamental rep
resentation of q-sl (3) are given as follows: 
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hI = diag( 1, - 1,0), h2 = diag(O,I, - 1), 

e, ~f. ~(~ ~). e, ~/, ~G D· 
1 0 

0 0 (4) 

0 0 

where and in the rest of this paper the tilde denotes trans
pose. 

Following the nomenclature in the SU (3) theory, we 
call the subalgebra q-sl(2) spanned by hI' e" and f. q
isospin and that spanned by h2, e2 , andlz q-U-spin, and use q
isospin and q-superspin Y to assign the states in IR: 

13 = h';2, Y = (hI + 2h 2 )/3, 
2 -I -I _I -12 (5) 

I = (k l - k I ) (qkl - q k I )/(q - q ) + fle l· 

III. CONVENTIONS FOR IRREDUCIBLE 
REPRESENTATIONS 

We choose the bases of an IR of q-sl( 3) so that hI' h2, 
and I 2 are diagonal, namely, each state is the common eigen
state of I 2, 13 , and Y: 

I2II,l3'Y) = [1][1+ 1]II,I3,Y), 

h ll!,l3'Y) = 2I3II,l3'Y)' 

h2 II ,l3'Y) = (3Y 12 - 13) II,l3'y), 

where and throughout this paper 

Because q is not a root of one, we have 

[m] #0 if m#O. 

(6) 

(7) 

Now, we enumerate the states of an IR from 1 to N as the 
following order.6 

(a) The state with the highest weight, i.e., with the high
est eigenvalue of Y, and the highest eigenvalue of 13 among 
the states with the same highest eigenvalue of Y, is enumerat
ed by one. 

(b) The states with the same Yand 13 are ordered so that 
I decreases. 

(c) The group of states for the same Y but different 13 
are ordered such that 13 decreases. 

(d) The group of states for different Yare ordered such 
that Y decreases. 

Sometimes, we denote an IR [..1 1,..12] of q-sl(3) by its 
dimension N. For example, the fundamental representation 
[1,0] is denoted by 3, [1,1] by 3*, [2,0] by 6, [2,2] by 6*, 
[ 4,0] by 15, and [3,1] by IS'. Note not to confuse the nota
tion of an IR [..1 1,..12 ] with [m] in (7). The enumerations of 
the states of the relevant representations are listed in Fig. 1. 

In this paper, we use some different notations to denote 
the states of IR. When we emphasize the eigenvalues 
(weight), for example in (6), we use the notation II,l3'Y)' 
but in the usual case, in order to reduce the notation we use 
the enumerated number m to denote a state, for example, 
I [2,0]m) or 16,m) to denote a state in IR [2,0]. 

To be able to define later uniquely q-CG coefficients of 
q-sl (3), it is necessary first of all to define precisely the rela
tive phases of the states within an IR. For convenience we 
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1 

2 

3 2 

(I) IR [1, OJ (b) IR [l,lJ (e) IR [2,OJ (eI) IR [2,2J 

12 11 10 

14 13 

15 

(e) IR [4,OJ 

13 
11 
12 

15 14 

(Q IR [3,lJ 

FIG. I. The enumerations of the eigenstates ofIR of q-sI(3). 

10 

adopt a little different conventions as those adopted in 
SU(3).6 

(i) The relative phases within a definite q-isomultiplet 
are determined by q-sl(2) phase convention4

: 

eIII,l3'Y) = r I
_ I , (q)II,l3 + I,Y), 

fIII,l3'Y) = rt (q) 11,13 - I,Y), (8) 

r~ (q) = {[j + m][j - m + 1]}1/2. 

(ii) The relative phases between the different q-isomul
tiplets are determined so that the matrix elements of e2 andlz 
are non-negative when q is positive real. 

(iii) The coproduct of two IR's is defined as 

ka (INI,m l ) 1N2,m2» = (ka INI,m l» (ka IN2,m2», 
ea (IN"m l ) 1N2,m2» = (ea INI,m l ) )(k a-

I IN2,m2» 

+ (ka INI,m l» (ea IN2,m2», 
(9) 

and that replaced ea by fa. 
(iv) The q-CG matrix is real orthogonal when q is posi

tive real, and orthogonal for any q. 
As an example, we calculate representation matrices of 

IR [2,0] of q-sl(3) and the q - CG coefficients for the de
composition of coproduct [1,0] X [1,0] = [2,0] + [1,1] 
(3 X 3 = 6 + 3*). The states in IR's [1,0], [2,0], and [1,1] 
are denoted by 1m), 16,m) and 13*,m), respectively. 

The state with the lowest weight ofIR [2,0] is simple 
and can be expressed as a direct product of 13) of IR [1,0]: 

16,6) = 13)13). ( lOa) 

According to the definition of coproduct (9) and the repre
sentation matrices (6) of q-sl(2), we have 

16,5) = [2] -'/2e2 16,6) 

= [2]-1/2{ql1212)13) +q-1/213>12)}, 

16,4) =eI16,5) = [2]-1/2{qI/211)13) 

+ q-1/213> II)}, 

16,3) = [2]-1/2e2 16,5) = 12)12), (lOb) 

16,2) = [2]-1/2eI 16,3) 

= [2]-1/2{q Il2 11)12) +q- 1/212)11)}, 

16,1) = [2]-1/2etl6,2) = 11)11). 
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From the requirement of orthogonality of states, we get the 
state with the lowest weight of IR [1,1] 

13*,3) = [2]-1/2{q- 1/212)13) _ qI/213)12)} (lla) 

then, 

13*,2) =eI13*,3) = [2]-1/2{q- 1/211)13) 

-qI/213)ll)}, 

13*,0 = e213*,2) = [2] -1/2{q- 1/21012) 

-qI/212)II)}. 

( lIb) 

Equations (10) and (11) give both representation matrices 
ofIR [2,0] and q-CG coefficients: 

D: (k l ) = diag(q,l,q-l,qI/2,q-1/2,1), 

D: (k2) = diag(l,qI/2,q,q-1/2, l,q-I), 
(12) 

D : (e I ) 12 = D : (e I ) 23 = D : ( e2 h5 = D : (e2 ) 56 = [2] 1/2 

D:(e l )45 = D:(e2)24 = 1, 

the rest of matrix elements are vanishing, and the matrices of 
fa are the transpose of those of eo: 

1 0 0 0 0 

0 A 0 0 0 0 

0 0 0 A 0 0 

0 B 0 0 0 0 

(C!3)6 = 0 0 0 0 0 , 
0 0 0 0 A 0 

0 0 0 B 0 0 

0 0 0 0 B 0 

0 0 0 0 0 1 

0 0 0 

B 0 0 

0 B 0 

-A 0 0 

where A = {ql[2]}1/2 and B = {q[2]}-1/2. The rows of q
CG are ordered by m I m2 of two fundamental representa
tions. 

IV. DECOMPOSITION OF COPRODUCT 6X6 IN q-sl(3) 

The calculation for the decomposition of coproduct 
6 X 6 in q-sl ( 3) is straightforward but tedious. The key is to 
determine the states with multiple weights, i.e., the states 
with the same Yand 13, by the requirement of orthogonality. 
Most of the representation matrices can be obtained directly 
from the enumerations of the states and the representation 
matrices of q-sl (2). The matrices of fa are the transpose of 
those of eo' What is only needed to list is the matrix of e2 in IR 
[3,1 ], because there are multiple weights in this IR. The 
non vanishing matrix elements of e2 in IR [3,1] are listed in 
Table I. 

The rows of the q-CG matrix for 6 X 6 in q-sl ( 3) are 
ordered by m I and m2 which both go from 1 to 6, and the 
columns are denoted by (l5,m), (l5',m) and (6*,m) for the 
different IR's, respectively. The q-CG matrix is a block ma
trix, and some submatrices are equal to each other. The non
vanishing matrix elements are listed in Table II. The equal 
submatrices are listed in the same table and distinguished by 
(a), (b), and so on. 

V. REPRESENTATIONS OF BRAID GROUP 

Now, we are going to compute the representation ma
trix of the generator bi of the braid group 

v 
D(bi ) = IX'" XIXRq Xl'" Xl, (14) 

where Rq is located ~ the ith and (i + 1 )th positions in the 
direct pre-duct. The Rq matrix is defined as follows. 4 

(a) Rq has r as its classical limit 

Rq -{I + (q - l)r}p, 

where P is the transpose, and r is the solution of classical 
YBE: 

(C!3h. = 0 0 0 

B 
(13) r= - (hi Xh l + 3Y X Y)/2 

0 0 

0 -A 0 

0 0 -A 
0 0 0 

TABLE I. The nonvanishing matrix elements of e2 in IR [3,1]. 

Row I 2 5 2 
Column 4 5 10 6 

D.(e2) {l~} '/2 
[3] 

{Bl}'/2 
[3] 

{N}'/2 
[3] 

Row 8 8 
Column 11 12 

D.(e2) {~}'/2 
[3][2] 

[3]"2 
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- 2( II Xe l + Axe2 + [A,J.1 X [e l,e2]), (15) 

where the quantum parameter q = 1. 

6 
10 

(b) R NoN'D NoN, = D N,NoR NoN, q q q q' 

3 3 
7 8 

7 
11 

{N}1I2 1 { [4][2] t2 [2] 
[3] [3]"2 [3] [3]"2 

11 12 9 13 
14 14 13 15 

{Nt2 
[2] 

[2]"2 [2]"2 
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TABLE II. Nonvanishing matrix elements of q - CG for 6X6 in q - si(3). 

(a) (15,1 ) (b) ( IS,S) (e) (15,15) 

(a) 1 1 
(b) 3 3 
(e) 6 6 

(a) ( 15,2) (b) (15,6) (a) (15',1) (b) (15',4) 
(e) (15,4) (d) (15,9) (e) (15',3) (d) (15',9) 
(e) (15,13) (f) (15,14) (e) (15',14) (f) (15',15) 

(a) 12 (b) 14 
(e) 23 (d) 35 {Bl]112 -I {Bl]112 

(e) 46 (f) 56 
q [4] q [4] 

(a) 21 (b) 41 
(e) 32 (d) 53 _I {Blj'12 _ {Blj'12 

(e) 64 (f) 65 
q [4] q [4] 

(a) (15,3) (a) ( 15',2) (a) (6*,1 ) 
(b) (15,10) (e) ( 15',10) (b) (6*,4) 

Row (e) (15,12) (e) (15',13) (e) (6*,6) 

16 2 { [2] r2 
{Blr 

q-I[3]-I!2 

(e) 36 
q [4j[3J [4] 

(a) 22 
(b) 44 { [2] r ( -1- ) {Blr - [3]-112 

(e) 55 
[2] [4j[3J q q [4] 

(a) 31 
(b) 61 -2 { [2] ]1/2 - {Bl]112 q[3]-1/2 

(e) 63 
q [4j[3J [4] 

( 15,7) ( 15',5) ( 15',6) (6*,2) 

2 { [2] r2 
{~r2 q [4j[3J [4][3] 

[3]-1/2 q-I[3]-112 15 

q"2[2] q-"12[2] 
([4][3])1/2 ([4][3])1/2 

_ q"/2 _qll2 

([3][2])1/2 ([3][2]) 112 
24 

q-1/2[2] - q'I2[2] 
([4][3])112 ([ 4][3]) 112 

q-.1/' _q-1/2 

( [3][2])112 ([3][2]) 1/2 
42 

-2 { [2] ]1/2 _{~j'!2 q [4j[3J [4][3] 
- [3]-112 q[3]-1/2 51 

( 15,8) ( 15',7) ( 15',8) (6*,3) 

q-'1'[2] q 112[2] 
([4][3])112 ([ 4][3]) 1/2 

q II:! q .'12 

([3][2])112 ([3][2]) 1/2 
25 

{_[2_] ]li2 -2{ [2] ]112 
[4][3] q [4j[3J - q[3]-1I2 - [3]-1/2 34 

{_[2_] ]1/2 2 { [2] r2 

[4][3] 
-q [4j[3J q-I[3]-112 - [3]-112 43 

q-.1/2[2] - qll2[2] 
([ 4][3]) 112 ([4][3])1/2 

_ qll2 q'l2 
([3][2]) II' ([3][2]) 112 

52 
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TABLE II. (Continued.) 

Column 
Row (15,11 ) (15',11 ) (15',12) (6*,5) 

26 2{ (2) )'12 {Bi}'/' 0 q-I (3)-1/2 
q [4][3] (4) 

45 
qll2(2) q-1/2 _ q'l2 

(q[2))-1/2 
_q1l2 

([4](3))'12 (4)'/2 ([3 ](2)) 1/2 

54 
q-II2(2) q--'/2 _ q'l2 -{-&r _q-1I2 

([4](3)) 112 [ 4)112 ([3](2))'/2 

62 _2 { (2) )'12 -{Bir' 0 q(3)-I/2 q [4][3] (4) 

where D :,N, is the coproduct of IR's NI and N2, in our case 
NI = N2 = 6, and usually, we will omit the superscripts of 
Rq • 

(c) (Rq)-I =PRq ,P. 

From the definition, it can be proven that Rq satisfies 
the QYBE without the spectral parameter, and can be ex
pressed as 

v ~ 

Rq = I.sNqT/(N"N"Nl(C:,N')N(C:,N')N' (16) 
N 

where N = 15, 15', and 6* when NI = N2 = 6, Cq is the q
CG matrix given in the previous section, 5N is the symmetry 
of the CG coefficients of su (3) for exchanging NI and N2 to 
each other, and given as 

515 = 56> = 1, SIS' = - 1, (17) 

and 1] (NI ,N2,N) is calculated in the classicallevel4
•

11 

~ 

1](NI,N2,N) = (CN,N')Nr(CN,N')N 

= C2 (NI ) + C2(N2) - C2(N), (18) 

where C2 is the Casimir operator and calculated for su (3) in 
the Appendix: 

C2([A,I,A,2]) = (A,i -A,1A,2 +A,~ + 3A,1)/3. (19) 

In our case, 

C2(3) = C2(3*) = 4/3, C2 (6) = C2(6*) = 10/3, 

C2 (15) = 28/3, C2 (15') = 16/3. 

To make the expression more simple, we remove a factor of q 
v 

from the definition of Rq such that the term related to the IR, 
the first row of whose Young tableau is the longest and 
whose dimension is denoted by No, has factor one, i.e., define 
1]' instead of 1]: 

( 18') 

Therefore, after removing a factor q-2/3 for the fundamental 
representation, we have 

(20) 

and after removing a factor q-8/3 for the IR [2,0], we have 
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v r-.J 
Rq = (Cq ) 15 (Cq ) 15 - q4( Cq) 15' (Cq ) 15' 

6 r-.J 
+q (Cq )6> (Cq )6>' 

Obviously, R !3 satisfies the Hecke algebra 

(R!3_1)(R!3+ q2) =0 

and Rq satisfies 

(Rq - 1) (Rq + q4)(Rq - q6) = O. 

(21) 

(22) 

(23) 

Through the straightforward calculation, we obtain 

1 0 0 0 0 0 0 0 

0 0 0 q 0 0 0 0 0 

0 0 0 0 0 0 q 0 0 

0 q 0 A 0 0 0 0 0 
R 33 = q 0 0 0 0 1 0 0 0 0 , (24) 

0 0 0 0 0 0 0 q 0 

0 0 q 0 0 0 A 0 0 

0 0 0 0 0 q 0 A 0 

0 0 0 0 0 0 0 0 1 

where A = 1 - q2. Obviously, this R!3 matrix coincides 
with the grevious result.7

•
8 

The Rq matrix based on IR [2,0] of q-s1(3) is also a 
block matrix and some submatrices are equal to each other. 
The calculation results are listed in Table III. The equal sub-
matrices are listed in the same table, and distinguished by 
(a), (b), and so on. 

VI. LINK POLYNOMIALS 

Substituting the Rq matrix into ( 14), we obtain the rep
resentation of generators of the braid group, then the repre
sentation D(B,n) of any element B of the braid group Bn 
with n strands. Define a direct product matrix V of n matri
ces v 

V= vXvX "·Xv. (25) 

For the fundamental representation [1,0] v is a 3 X 3 diag
onal matrix 
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TABLE III. Rq matrix based on IR [2,0] of q - 51(3). 

~mn 
~ 
(a) II (b) 33 (e) 66 

(a) 12 (b) 
(d) 35 (e) 

(a) 12 (b) 14 
(e) 23 (d) 35 
(e) 46 (f) 56 

(a) 21 (b) 41 
(e) 32 (d) 53 
(e) 64 (f) 65 

(a) 13 
Column (b) 16 

Row (e) 36 

(a) 13 
(b) 16 0 
(e) 36 

(a) 22 
(b) 44 0 
(e) 55 

(a) 31 
(b) 61 q. 

(e) 63 

Column (a) 15 (a) 24 
Row (b) 26 (b) 45 

(a) 15 
(b) 26 0 0 

(a) 24 
(b) 45 0 0 

(a) 42 
(b) 54 0 q' 

(a) 51 
(b) 62 q. q2(1 - i) (1 + i) 1/2 

:st,m, 
Row 25 34 

25 0 0 

34 0 0 

43 0 l 
52 q' i(l_q2)(l +i)1/2 

(26a) 

and for IR [2,0], v is a 6 X 6 diagonal matrix 

v = diag(q-4,q-2,l,l,q2,q4)/(q-4 + q-2 + 2 + q2 + q4). 
(26b) 

It is easy to check that 

L {(lXv)Rq}mn,m'n = {)mm· T , 
n 

(27) 
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14 
46 

0 

i 

(a) II (b) 33 (e) 66 

(e) 23 (a) 21 (b) 41 (e) 32 
(f) 56 (d) 53 (e) 64 (f) 65 

q2 

1-q· 

(a) 22 (a) 31 
(b) 44 (b) 61 
(e) 55 (e) 63 

0 q. 

q2 q(1 _ q4) 

q(1- q.) 1_ q2_ q.+ q" 

(a) 42 (a) 51 
(b) 54 (b) 62 

0 q. 

q"' q2(1 _ q2) (1 + q2) 1/2 

q2( 1 _ q2) q(1 - q2)( 1 + q2) 1/2 

q(1 - q2) (1 + q2) 1/2 1- q2 _ q. + q" 

43 52 

0 q' 

q. q2(1 _ q2) (1 + q2) 1/2 

0 i(1_q2)(1 +q2)1/2 

q2(l-i)(l +q2)'/2 1_2q4+q" 

where for the fundamental representation 

T= (1 +q2+q4)-I, 'T=q4T 

and forIR [2,0] 

- II T=q T. 

(28) 

(29) 

Thus the link polynomials defined as follows are invariant 
under the Markov moves: 

a(B,n) = (T'T) - (n - 1)12 ('Th)e(B)12 Tr{VD(B,n)}, 
(30) 

where e(B) is the exponential sum of the generators in B.] 
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For the fundamental representation [1,0], the Alex
ander-Conway relation (or called the Skein relation) is 

a(Ab 2B,n) = q2(1- q2)a(AbB,n) + q6a (AB,n), 

A,BeBn (31a) 

and 

a(E,2) = q-2 + 1 + q2. (31b) 

This link polynomial is a little different from the Jones poly
nomial. For comparison we give the analogy of the Jones 
polynomial: 

aJ(Ab 2B,n) = q(1 - q2)aJ(AbB,n) + q4aJ (AB,n), 

A,BeBn , (32a) 

a J (E,2) = q-] + q. (32b) 

For the IR [2,0], the Alexander-Conway relation is 

a(Ab 3B,n) =q4(1_q4+ q6)a(Ab 2B,n) 

+ q12( 1 _ q2 + q6)a(AbB,n) 

- q22a (AB,n), A,BeB,,, (33a) 

a(E,2) = q-4 + q-2 + 2 + q2 + q4. (33b) 

This link polynomial is different from the Akutsu-Wadati 
polynomial. I 

VII. DISCUSSION 

We have computed q-CO coefficients and the Rq matrix 
for IR [2,0] of q-sl (3). Now, we are going to discuss the 
general properties of those for IR [A,O] of q-sl (3) with a 
one-row Young tableau. 

The decomposition of the coproduct [A,O] X [,1,0] in q
sl(3)is 

[2.1,0] + [2,1, - 1,1] + [2,1 - 2,2] + ... + [A,A]. 
(34) 

The symmetry of the CO coefficients of SU (3) is 

SI2A -1l.1l J = ( - 1)1l 

and the difference of the Casimir operators of SU (3) is 

1]'( [2,1 - ,u,,u]) = C2([U,0] - C2([U - ,u,,u]) 

(35) 

Both Sand 1]' happen to coincide with those in the decompo
sition of the coproduct [A,O] X [,1,0] in q-sl(2), namely, 
their Rq matrices have the same eigenvalues and satisfy the 
same conditions: 

II {R q - SNq'l'(N)} = o. (36) 
N 

Following the standard method to build the link polynomi
als, 1,10.]] we define 

v = diag(q - 2A,q - 2,1 + 2,q - 2A + 4, ... ,qO,q - 2,1 + 4, 

(37) 
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then, we obtain 

(38) 
T = q4A1'. 

Therefore, the link polynomials (30) basedonIR[A,O] orq
sl(3) are different from those on IR [,1,0] of q-sl(2). 
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APPENDIX: CASIMIR OPERATOR OF SU(3) 

Define 

T2 ( [A],A 2 ]) = TrUD, 
where [,11,,12] is an IR of SU(3), As a representation of 
SU(2) it can be decomposed as a direct sum ofIR's [,u],,u2] 
ofSU(2), for which we have 

nO) ([,u1,,u2]) = -M,ul - ,u2)(,u1 -,u2 + 1) 

X (,ul -,u2 + 2). 

Thus 
A, A, 

T2([A I ,A2 ]) = L L nO) ([,u1,,u2] ) 
Il, = ° Il, = A, 

= MAl + 2)(A2 + l)(A I - A2 + 1) 

X (A i -,11,12 +,1 ~ + 3A I)· 

Since the dimension of IR [A 1,;1.2] of SU ( 3 ) is 
(AI + 2)(A2 + 1 )(A I - A2 + 1 )/2, we obtain (19). 
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The potential group approach and hypergeometric differential equations 
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This paper proposes a generalized realization of the potential groups SO (2, I) and SO (2,2) to 
describe the confluent hypergeometric and the hypergeometric equations, respectively. It 
implies that the classes of SchrOdinger equations with solvable potentials whose analytical 
solutions are related to the confluent hypergeometric and the hypergeometric functions can be 
realized in terms of the above group structure. 

I. INTRODUCTION 

Group theoretic techniques are useful in many fields of 
physics .•. 2 However, most of the applications involving dy
namical groups3.4 were restricted to bound state problems. 
In the attempts to extend these techniques to describe scat
tering states, another kind of group, the potential group, was 
suggested.s This group connects states that have the same 
energy but belong to different potential strengths. Both 
bound and scattering states can then be realized within the 
same differential realization. This is made possible since the 
potential group, being noncom pact, has both discrete and 
continuous representations. Such realizations were applied 
to various classes of solvable potentials.6-8 In this paper we 
propose a way to generalize the realization of the potential 
groups SO(2, I) and SO(2,2) in order to describe the conflu
ent hypergeometric equation and the hypergeometric equa
tion, respectively. The realizations of these equations would 
imply a general proof that potential problems whose analyti
cal solutions are given in terms of the confluent hypergeome
tric or hypergeometric functions could be described alge
braically in terms of the group SO(2,1) or SO(2,2). In Ref. 9 
we give examples of such solvable potentials, the Natanzon 10 

and Ginocchio potentials,·· and obtain their bound state 
spectra and scattering matrices by using purely algebraic 
techniques developed in Refs. 5, 12, and 13. 

II. SO(2, 1) AS A POTENTIAL GROUP 

A. The algebra SO(2,1) and Its realizations 

The SO (2, 1) algebra consists of three generators J ± ,J3 

satisfying the commutation relations 

[J+,J_l = - 2J3, 
(2.1 ) 

[ J3,J ± ] = ± J ± . 

Consider the differential realization of the SO (2,1) algebra 

J ± = e±i"'[ ± ~+ k.(X)(i~ += ~) + ko(x)], 
ax a¢ 2 

J3 = - i ~ , (2.2) 
a¢ 

where k. (x) and ko(x) are real functions to be determined 

and J + and J _ are Hermitian conjugate to each other, i.e., 
J_ = (J+)t. 

In order that J ± ,J3 form an SO (2,1) algebra, the com
mutation relations (2.1) have to be satisfied. This require
ment provides the conditions which determine the functions 
ko(x) and k. (x), i.e., 

dk~~X) +k~(x) = 1, 

dko(x) --+ ko(x)k. (x) = o. 
dx 

(2.3) 

It can be shown that the most general solution for k. (x) is 

{

tanh(X - e), for ki < 1, 

k.(x) = ± 1, for k~ = 1, (2.4) 

coth(x - e), for k ~ > 1. 

For any choice of k. (x), the function ko(x) can be found by 
solving the above first-order linear equation for ko(x). 

The basis for an irreducible representation of SO (2, 1 ) is 
characterized by 

C2 li,m) = j(j+ 1)lj,m), 
J3 li,m) = mjj,m), 

(2.5) 

where C2 = J~ - ! (J +J _ + J _J +) is the SO(2,1) Casimir 
operator. 

In the realization (2.2) the Casimir operator can be 
written as 

C2 = ~ + (k i (x) - 1) (~ + ~) 
ax2 a¢2 4 

+2 ako(X) i(~)-k~(X)-~ 
ax a¢ 4' 

(2.6) 

and the basis (2.5) as 

(2.7) 

The functions rfjm (x) in (2.7) are the solutions of a one
dimensional SchrOdinger equation with an m-dependent po
tential 

.) Present address: Department of Physics, UniversityofTennessee, Knox- [ - ::2 + Vm (x) ]rfjm (x) = Erfjm (x), (2.8) 
ville, Tennessee 37996 and ORNL, Oak Ridge, Tennessee 37831. 

b) Alfred P. Sloan Fellow. where 
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v (x) =(ki(x) -1) m -- + 2m--+ 0 x , (
z 1 ) dko(x) k Z ( ) 

m 4 ~ 

(2.9) 

and the energy is 

E=_(j+!)z. (2.10) 

Due to (2.10) the Hamiltonian is related to the Casimir 
invariant ofSO(2, 1) by 

H = - (Cz +!). (2.11) 

Notice that in a given irreducible representation ofSO(2, 1) 
the energy is fixed since the Hamiltonian is a function of the 
SO(2,1) Casimir invariant Cz only. States belonging to the 
same multiplet correspond to different potentials (2.9) char
acterized by the various values of m. For that reason we 
called the above SO(2,1) a potential algebra.5 

B. Unitary representations of SO(2,1) 

The realization (2.2) and (2.4) includes two classes of 
unitary representations 14 of SO (2,1 ). 

(i) The discrete principal series D / for which 

}= -!-n/2 (n=0,1,2, ... ), 

m = -}, - } + 1, - } + 2, ... . 
(2.12 ) 

The corresponding states of the Schrodinger equation 
(2.8) describe bound states with energy E = - (j + 1/2) z. 
If the potential in (2.8) does not have bound states the dis
crete series will not appear in the corresponding realization. 

(ii) The continuous principal series where 

} = -! + ik (0 < k < 00 ), 

m = 0, ± 1, ± 2, ... , 

or 

(2.13 ) 

It describes the scattering states of (2.8) with energy 
E=kz>O. 

If in (2.12) we fix the potential strength m, then by 
varying} we obtain from the discrete series a finite number of 
bound states with energy 

(H) = - (j + !)2 = - (m - n - !f, 
n = 0,1,2, ... {m - n, (2.14 ) 

where { } means the integer part. From the continuous se
ries we obtain the continuous spectrum with 

(H)= +k2 (0<k 2<00). (2.15) 

The third class of the unitary representations of 
SO(2,1), the supplementary series,14 is missing in (2.2). 

C. Classes of SO(2,1) realizations 

Depending on the choice of solutions to (2.3), Eq. (2.2) 
leads to three basic classes of SO (2,1) realizations: 

(i) kl (x) = 1, ko(x) = e- x
, 

for which 

J = e±iif>[ + ~ + (i ~ + l.-) + e- x
], (2.16) 

± - ax a~ 2 

(ii) kl (x) = tanh x, ko(x) = 0, 
for which 
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J =e±iif>[ +~+tanhx(i~ + l.-)] (2.17) 
± -ax a~ 2 ' 

(iii) kl (x) = coth x, ko(x) = 0, 
for which 

J± =e±iif>[ +~+cothX(i~ + l.-)]. (2.18) 
- ax a~ 2 

Anyone of the above classes can be generalized by intro
ducing a similarity transformation J ± -+SJ ± S -I with 
S = eS(x) or a coordinate transformation x = x(z). The com
mutation relations will be preserved no matter how compli
cated these transformations are. 

Each class describes a certain set of solvable SO (2,1 ) 
potentials. In Sec. III we shall show that the first class leads 
to the general confluent hypergeometric equation and thus 
to any potential related to it. The second and third classes 
lead to special cases of the hypergeometric equation and 
some solvable potentials related to it (Sec. IV). To obtain 
the general hypergeometric equation whose solution de
pends on three parameters we need to enlarge the group, 
since SO (2,1) provides only two parameters (},m). This is 
accomplished in Sec. V and Sec. VI by using the algebra 
SO(2,2). 

III. THE FIRST CLASS OF SO(2,1) REALIZATIONS 

A. The Morse potential 

Using the realization (2.16) we obtain in Eq. (2.8) 

[. _~_2me-X+e-2X] tPjm(x) = EtPjm (x). (3.1) 
dx2 

A shift x = x' - log m would transform it to the one-dimen
sional Schrodinger equation with the Morse potential, 15 

which after dropping the prime in x' is 

[ - ~ + mZ(e- ZX - 2e- X)]tPjm (x) = EtPjm (x). 
dx2 

(3.2) 

Both discrete series (2.12) and the continuous series 
(2.13) appear in this realization as explained in Sec. II. Fig
ure 1 shows several SO(2,1) multiplets for the Morse poten
tial. 

20 

m=4 m=3 m=2 
-20 

FIG. 1. Morse potential Vm (x) = m2(e- 2x 
- 2e- X

) for m = 2,3,4 are 
plotted in solid lines. TheSO(2,l) multipletsfor j= - 2, - 3, - 112 + ik 
are shown by the horizontal dashed lines. 

J. Wu and Y. Alhassid 558 



                                                                                                                                    

B. The confluent hypergeometrlc equation and SO(2,1) 

We shall now show how to generalize the Morse realiza
tion of Sec. III A in order to realize the confluent hypergeo
metric equation with the potential group SO(2,1). This im
plies that all solvable potential problems whose solutions are 
related to the confluent hypergeometric function can be cast 
into differential realizations of the SO (2, 1) algebra. 

Consider the Morse SO (2,1) realization (2.16). After a 
coordinate transformation y = 2e - x we have 

1 ± i.A[- a (.a _1) y] =e V' +y-+ 1-+- +-
± ay at/J 22' 

13= -i~. 
at/J 

The Casimir operator in this realization is 

Z a
2 

a (. a) yZ 1 
Cz = y ayZ + y ay - y 1 at/J - "'4 - "'4 . 

Next, we define a null operator 

Q= (1ly)(Cz -j(j+ 1) 

(3.3 ) 

(3.4) 

a Z a . a y ( . + 1)2 -I (3 5) 
=Yayz+ay-l at/J-"'4- ] "2 y , . 

where j( j + 1) is the eigenvalue of the Casimir operator. 
The action of Q on the simultaneous eigenfunction of Cz and 

13 
'I' - .f, ( ) im.p 

jm - 'f'jm Y e , 
leads to a differential equation for tPjm (y), i.e., 

[ 
d2 d 

Qc tP(y) =. y dy2 + dy 

(3.6) 

+m- ~ -(j++Yy-l] tPjm(y) =0. 

(3.7) 
Using a similarity transformation 

S= eaYyb, (3.8) 

we can transform Qc into the following operator: 

HCR =SQcS - 1 

=y~ + (1- 2b - 2ay)!£ + (b 2 
_ (j + 1-)2) 1-

dy2 dy 2 y 

+ (a2 - V y + (2ab - a + m). (3.9) 

Ifin Eq. (3.9) we choose 

a=!, 
b =j +!, 

we obtain the confluent hypergeometric operator 

d 2 d 
HCR =y dy2 + (r-Y) dy -a, 

(3.10) 

(3.11 ) 

where a and r are related to the algebraic quantum numbers 
jand m by 

r= - 2j, 
(3.12) 

a= -j-m. 

It follows that the confluent hypergeometric functions 
IFI ( - j - m, - 2j;y) are related to a basis I j,m) of 
SO(2,1). By comparing (3.9) to (3.11) we obtain another 
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solution if j is replaced by -j-l in (3.10) and (3.12). 
This is in agreement with the fact l6 that 
i - Y1 FI (1 + a - r,2 - r,y) is also a solution of (3.11). In 
the language of group theory, it is known that the transfor
mation j-+ - j - 1 carries us to an equivalent representa
tion. 14 Notice that for the discrete series D / we have 
m = - j + n where n is an non-negative integer. It follows 
that 

a= -n, (3.13 ) 

which is exactly the condition that the confluent hypergeo
metric series will terminate at some order and, becomes a 
polynomial. 16 

IV. THE SECOND AND THIRD CLASSES OF SO(2,1) 
REALIZATIONS 

A. POsch!-Teller potentials 

If we choose the realization (2.17), then Eq. (2.8) be
comes the one-dimensional Schrodinger equation with the 
Poschl-Teller potential I? 

[ 
d2 m 2 

_ 1 ] 
- -2 - 24 tPjm (x) = EtPjm (x). 

dx cosh x 
(4.1 ) 

Both the discrete and continuous series appear in this real
ization as in Sec. II B. 

If we choose the realization (2.18), we obtain 

(4.2) 

which is a repulsive modified Poschl-Teller potential and 
only continuous series representation are allowed. 

Generalizations of the above realizations lead to other 
solvable potentials whose solutions are special cases of the 
hypergeometric functions. Such generalizations are dis
cussed in the next section. It is not possible to obtain within 
the SO (2,1) realizations the general hypergeometric func
tion since it contains three independent parameters and 
SO(2,1) provides only two (j and m). 

B. Ginocchio potentials 

The discrete spectrum appearing in the realization (2.2) 
is quadratic. It is, however, possible to find more complicat
ed examples which are in the same above classes of SO (2,1 ) 
realizations but where the spectrum has a more complicated 
structure. The technique IS to do that is by transforming the 
realization to one in which the resulting potential is not only 
a function of m but also ofj. For a given potential with fixed 
parameters the energy is then given by a more complicated 
form than (2.14). Now we illustrate the technique to poten
tials discussed by Ginocchio. II 

Starting from the second class realization (2.17), we 
apply a similarity transformation S to it and obtain 

K± =SJ±S-I, 

K3 = SJ3S -I =.13, 

where 

S-I = cosh l / z xl(A. 2 + sinh2 X)I/4. 

(4.3) 

(4.4) 

Then we perform the following coordinate transformations: 
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z=tanhx, 

Y = Z/(A 2 + (1 - A 2)r)1/2. 

r= (1/A 2)[arctanhy + (A 2 _ 1)1/2 

xarctan«A 2 _ 1)1/2y)). 

(4.5) 

In the algebraic equation for the Casimir operator 

- (C2 + D \{Ijm = - (j + ~)2\{1jm' (4.6) 

we multiply it by a factor/(z), where 

fez) = A 4/[A 2 + (1 - A 2)r]. (4.7) 

In order to restore its eigenequation form we subtract 
A 4(j + 1/2)2 from/(z) to obtain 

HG\{I}m = E'\{Ijm' (4.8) 

where E' = - A 4(j + !)2. In Eq. (4.8), we have 

HG = f/(z) - A 4] (j + !)2 - /(Z)(C2 + D, (4.9) 

where 

C2 = K; - !(K+K_ + K_K+). 

Equation (4.8) has a solution of the form 

\{Ijm = 1/Ijm (r) ejm~, 

where 1/1 jm (r) satisfies a Schrodinger equation 

[ 
d2 ] , - dr2 + VCr) 1/Ijm (r) = E 1/Ijm{r), 

with a potential 

VCr) = - A 2V ( v + 1)( 1 _ y2) 

+ [(1 - A 2)/4 ][5(1 - A 2)y4 

- (7 -A2)r+2](1-y2). 

(4.10) 

(4.11 ) 

( 4.12) 

In (4.12), the parameter v depends on both m andj through 

(v+~)2=m2+ (j+!)2(A 2 _1). (4.13) 

The potential (4.12) was recently discussed in Ref. 11. For a 
given such potential with fixed A and v we can find the dis
crete spectrum by using ( 4.13) and the condition 
m = - j + n, n = 0,1,2, ... to solve for j + 1/2 and the al
lowed values of n, i.e., 

E' = -A 4(j + !)2 = - !{[(1-A 2)(2n + 1)2 

+A 2(2v + 1)2p/2 - (2n + 1)p, (4.14) 

where n = 0,1,2, ... ,{v}. 

v. SO(2,2) AS A POTENTIAL GROUP 

A detailed discussion of SO (2,2) and solvable potentials 
associated with it can be found elsewhere. 9 Here we just sum
marize the main results which are needed for the discussion 
of the hypergeometric equation in Sec. VI. 

A. The algebra SO(2,2) and Its symmetric 
representation 

Consider the differential realization of the SO(2,2) al
gebra on the (2,2) hyperboloid H3: 

(5.1 ) 

This hyperboloid can be parametrized with three parameters 
(X,t/J,O) as follows: 
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X, = P cosh X cos t/J, X2 = P cosh X sin t/J, 
X3 = P sinh X cos 0, X 4 = P sinh X sin 0, 

(5.2) 

where t/J and 0 are rotation angles in 1-2 and 3-4 planes, 
respectively. It can be shown that the six operators Jj , 

K j (i = 1,2,3) defined below form an SO(2,2) algebra: 

where 

Mab = xaPb - XbPa , 

Nab = XaPb + XbPa - i~a.bI, 

fora,b = 1,2,3,4. In (5.4) 

P =-i~ 
a a' Xa 

(5.4) 

(5.5) 

and I is the unit operator. The Casimir operator of the 
SO(2,2) algebra 

C2 =J; +K; -Ji -J~ -Ki -KL 

is found to be 

a2 a 
C2 =-2 + (tanh X + cothx)-

ax ax 

+ COS~2 X ( - :t/J22 ) - sin!2 X ( - ;(22)' (5.6) 

This is a symmetric representation of the SO(2,2) group. A 
basis Iw,m l ,m2) for this representation is characterized by 

C2Iw,m l m2) = w(w + 2) Iw,m l ,m2 ), 

J3 Iw,m"m2) = mdw,m"m2), 

K3 Iw,m"m2) = m2Iw,m l ,m2)· 

This basis can be written explicitly as 

\{I = ej(m,~+ m,e)./, (X). 
w,rn •• m2 'f/wm,m2 

B. The modified POschl-Teller potential 

Here we summarize results from Ref. 9. 

(5.7) 

(5.8) 

Performing a similarity transformation with 
S = [sinh( 4x)] 1/2 on the realization given in Sec. V A we 
find thatthe algebraic Eqs. (5.7) have a solution of the form 
(5.8) where 1/Iwm,m, (X) satisfies 

[ 
1 d 2 mi - 1/4 m~ - 1/4 ] 

-"4 dr - cosh22X + sinh22x 1/Iwm,m, (X) 

= - (w + 1 ) 21/1cum,m, (X). (5.9) 

This is a Schrodinger equation with the modified Poschl
Teller potential which depends on two parameters m l and 

m2• 

Two types of symmetric representations appear in 
(5.9). 

(i) The discrete series with 

w = - 1, - 2, - 3, ... , 

m 2 = 0, ± 1, ± 2, ... , (5.10) 
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The corresponding states are the bound states of (5.9). 
(ii) The continuous series where 

w = - 1 + ik (0 < k < 00 ), 

m"m2 = 0, ± 1, ± 2, .... 
(5.11 ) 

These are the scattering states. 

VI. THE HYPERGEOMETRIC EQUATION AND SO(2,2) 
GROUP 

In order to obtain from the SO(2,2) realization in Sec. 
V A the hypergeometric equation, we use a coordinate trans
formation 

z= tanh2 X' (6.1 ) 

and then write the Casimir operator (5.6) as 

C2=4[Z(1_Z)2~+ (1_Z)2~ 
Bz2 Bz 

+ 1 ~ z ( _ :;2) _ 1 ~ z ( _ :022
)]' (6.2) 

Next, we define a null operator 

Q= 1 [C2 -w(w+2)] 
4(1 - z) 

=z(1-z) ~+ (1-z) ~+l..(_~) 
Bz2 Bz 4 B¢i 

1 ( B2) w(w+2) 
- 4z - B0 2 - 4(1 - z) . (6.3) 

The null action of Q on the basis states '11 ",m,m, leads to the 
equation for'" wm,m, (z) as 

[ 
d2 d 1 

Q .1, (z)= z(l-z) -+ (1-z) _+_m2, c'/'",m,m, dz2 dz 4 

_l..m2 _ w(w+2) ]''' z =0 4z 2 4(1 _ z) '/'",m,m, () . 

(6.4) 

A similarity transformation 

S-' =z"(1-Z)b (6.5) 

will transform Qc to 

HHG =SQcS -' 

d 2 d 
= z( 1 - z) --;:2 + (20 + 1 - (20 + 2b + 1 )z)-

dT dz 

+ (02 _ m~) l.. + (b 2 _ b _ w(w + 2) ) _1_ 
4 z 4 1-z 

2 m 1 2 
( 

2 ) - b -4+2ob+o . (6.6) 

By choosing in (6.5) 

0= !m2 , 

b = !(w + 2), 
(6.7) 

we obtain from (6.6) the hypergeometric operator 

d 2 d 
HHG =z(1-z) --;:2+(y- (a+p+ 1)z)--ap. 

dT dz 
(6.8) 
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The parameters a,p,y of the hypergeometric function 
2F, (a,p,y-,z) which satisfies HHG 2F, = 0, are given in terms 
the group quantum numbers w,m"m2 by 

(w + 1)2 = (a + P - y)2, 

mi = (a_p)2, 

m~ = (y_1)2. 

A possible solution to (6.9) is 

y=m2 + 1, 

P = ! (w + m, + m2 + 2), 

a = ! (w - m, + m2 + 2). 

(6.9) 

(6.10) 

Another solution to (6.9) is obtained by the substitu
tions w- - w - 2 and m,,2 - - m,,2 in Eqs. (6.7) and 
(6.10). This agrees with the fact'6 that 

zl-Y(1-zV- a - P 2F,(1-a,1-p,2-y;Z) 

is also a solution of (6.8). 
An alternative realization of the hypergeometric equa

tion in terms of y = 1 - z can be achieved through the re
placement 

y-a+p-y+1, (6.11) 

in the above parameters and the prescription of the algebraic 
quantum numbers. 

A solvable class of potentials associated with the hyper
geometric equation is the modified Poshl-Teller potential 
described in Sec. V B. A more general class is that of the 
Natanzon potentials lO whose SO(2,2) description is pro
vided in Ref. 9. 

The hypergeometric equation can also be realized with 
the SO(m,n) group on the (m,n) hyperboloid for m,n>2 
with the replacements: 

(w + 1)2_ (C im,n» + «m + n - 2)/2)2, 

mi _(Cim» + «m - 2)/2)2, 

m~ - (Cin» + «n - 2)/2)2, 

(6.12) 

where Cim,n),Cim), and Cin) are the Casimir operators of 
SO(m,n), SO(m), and SO(n), respectively. The SO(2,2) 
realization is the simplest case of the nontrivial SO(m,n) 
realizations. 

VII. CONCLUSIONS 

In this paper we have proposed generalized realizations 
of potential groups to describe the confluent hypergeometric 
equation and the hypergeometric equation with the SOC 2, 1 ) 
and SO(2,2) potential groups, respectively. Our work im
plies that all solvable potential problems whose solutions are 
related to the hypergeometric and confluent hypergeometic 
functions can be cast into such group structures. In Ref. 9 we 
discuss in detail classes of solvable potentials associated with 
SO(2,2) and the general class of the Natanzon potentials, 
Poschl-Teller potentials, Rosen-Morse potentials, and oth
ers. We also use algebraic techniques to calculate the bound 
state spectra and scattering matrices of these potentials. For 
further solvable potentials we may have to explore other 
groups and special functions. 

As a concluding remark, we would like to point out the 
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relationship between the SO(2,2) realizations and SO(2,1) 
realizations. In Sec. II, we have shown that there can be 
three solutions to kl (x). Two of them are related to the hy
pergeometric equation, i.e., the cases where q (x) # 1. 
These realizations can be reached from the SO(2,2) realiza
tion by setting one of the m quantum numbers equal to a 
constant, since the SO(2,2) group contains several SO(2,1) 
subgroups with different choices of generators. The other 
case where k i (x) = 1, which provides the confluent hyper
geometric equation, can also be obtained from the SO(2,2) 
realization by properly taking the limit 7 

(m l - m2 )/2-+ 00. 

It is the same limit which carries the hypergeometric equa
tion into the confluent hypergeometric equation. 
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Parametrization of SU(n) with n-1 orthonormal vectors 
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A generalization to SU(n) ofa well-known relation in SU(2) is proposed. It relies on the 
observation that an element ofSU(n) has associated with it in a natural way n - I 
orthonormal vectors in R n

' - I . The meaning of these n - 1 vectors is discussed as they relate 
to the geometry of the adjoint representation of SU (n). 

10 INTRODUCTION 

Various parametrizations of SU (n) [and in particular 
of SU (2) and SU (3) ] have been discussed in the literature. 
In this paper, we follow closely the procedure of Macfarlane, 
Sudbury, and Weisz l in arriving at the parametrization de
scribed in Sec. II. In discussing the geometry of the adjoint 
representation in Sec. IV, we followed the lead of Michel and 
Radicati. 2 A number of additional references are given in the 
above two papers, between which we should like to call at
tention to the paper by Rosen. 3 

If g is an element of SU (n) then, as is well known, it can 
be parametrized as 

(1.1 ) 

where B is a Hermitian traceless n X n matrix. If Ai' 
1 <i<n2 - 1, are a basis for such matrices then we may write 

( 1.2) 

with b a vector in Rn
' - I . Thus we obtain a parametrization 

of gin terms of the n2 
- 1 real numbers, the components ofb. 

At the SU (2) level, one introduces (J as the magnitude of 
b so that 

b = Om, (J = ~bob, (1.3 ) 

with m a unit vector. This yields the famous relation (with 'A. 
given by the Pauli a) 

ei}".b = 1 cos (J + i'A.om sin (J. (1.4) 

In this version, g is parametrized by an invariant and a unit 
vector. 

The question is how should Eqs. (1.3) and (1.4) be 
generalized to SU (n)? It is clear that at the SU (n) level one 
must have 

(1.5 ) 

simply because the 'A. and the unit matrix span the space of 
n X n matrices. Moreover, Mo must be a function of invar
iants formed out ofb, and M must be a vector formed out of 
b. Since one can form out ofb n - 2 additional linearly inde
pendent vectors we may write 

n-I 

M=bMI + L baMa, ( 1.6) 
a~2 

where ba , 2<a<n - 1, are the additional vectors, and Ma , 

I<a<n - 1, are functions of invariants formed out ofb. 
This is the generalizaion to SU (n) proposed by Macfar

lane, Sudbury, and Weisz. I Although perfectly satisfactory 
in its way, it does not really parallel the parametrization in 

Eq. (1.3). To this end we propose setting 

b = (Jama' ( 1.7) 

where the (Ja are invariants formed out of b, ma are unit 
vectors, and a ranges over n - 1 values. We shall show that 
this parametrization arises naturally and that the ma have 
interesting properties. In particular they form an orthonor
mal set: 

maomp = Dap. (1.8) 

Using these concepts we shall obtain two different gen
eralizations to SU (n) of Eq. (1.4). In Sec. II, we summarize 
some well-known facts and obtain our first generalization of 
Eq. (1.4). In Sec. III, a generalization in the form of a prod
uct is proposed. In Sec. IV, we comment on the geometry of 
Rn' - I and the meaning of the n - 1 directions associated 
with the various ma. 

110 THE PARAMETRIZATION b=9a ma 

As basis for the SU (n) algebra we take the n X n matri
cesA i , l<i<n2 - 1, defined to satisfy 

AiAj = (2In)Dij 1 + (dijk + i/;jk )Ak, 

implying 

Tr AiAj = 2Dij' 

[Ai,Aj] = 2i/;jkAk' 

{Ai,A) = (4/n)Dij 1 + 2dijkAk' 

(2.1) 

(2.2) 

(2.3 ) 

(2.4 ) 

For n = 2 these are the Pauli a, for n = 3 these are the Gell
MannA. 

Let the matrix B and the vector b be defined by Eqs. 
( 1.1) and (1.2). If B' is obtained from B by a similarity 
transformation 

B'= UBU- I, 

then 

Tr(B')k = Tr( UBU-I)k = Tr Bk. 

(2.5) 

(2.6) 

Taking UE SU (n) it follows that traces of powers of Bare 
SU (n) invariants. In view of the Cayley-Hamilton theorem 
and since 

TrBo=n, TrBI=O, (2.7) 

there are altogether n - 1 such independent invariants, 
namely, 

h = Tr B k, 2<k<n. (2.8) 
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Specifically for k = 2,3,4 we have 

12 = b;bj Tr A;A'j = 2bob, 

13 = b;bjbk Tr A;AjAk = 2dijkb;bjbk, 

14 = b;bjbkbl Tr AiAjAkAI 

= « 4/n )8ij8kl + 2dijsdkls}b;bjbkbl' 

(2.9) 

(2.10) 

(2.11 ) 

which are explicit examples of how the n - 1 invariants are 
formed out ofb. Note that the invariance of 12 is the state
ment that the length ofb is an invariant. 

As is well known, we may associate with B a different set 
of invariants, namely its n eigenvalues ({Jk' 1 <.k<.n, which 
are the roots of the characteristic equation of B. Because B is 
traceless we have 

(2.12) 

and we may form out of the ({Jk n - 1 independent combina
tions. 

We would like to call attention to one more choice of 
n - 1 independent invariants. The matrix B may be diago
nalized and if S denotes the appropriate diagonalizing trans
formation matrix then 

(2.13 ) 

where we expand the diagonal matrix SBS - I in terms of the 
basis A; using only the subset involving the diagonal matrices 
Aa. Quite explicitly these Aa are n - 1 in number and, set
ting a = 3,8, ... , n2 

- 1, we may write 

Aa' _ I = (1 - a)Da + L Dk , 2<.a<.n, {
a-I }ji.S 
k=1 a(a-1) 

(2.14 ) 

where Dk denotes the matrix with zeros everywhere except 
for unity at the intersection of the k th row and k th column. 

It follows that ({Jk and ()a are related by 

({Jk = - ()k'-I + L ()I'-I , l¥(k-1) n ~ 
k 1=k+1 1(1-1) 

(2.15) 

l¥(k-1) 1 n 
- ()k'-I k = ({Jk + -k L ({JI' 

l=k+1 
(2.16) 

for 1 <.k<.n. 
We now observe that the invariants lk are also easily 

expressed in terms of the () a : 

Specifically for k = 2,3,4 have 

12 = Tr Aa ()aAp ()p = 2()a()a, 

13 = Tr Aa()aAp()pAy()y 

=2I()a'-1 ~{(2-a)()~'_1 
a=3 '\Ia(a-1) 

+ 3ail()~, _ I}' 
b=2 
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(2.17) 

(2.18 ) 

(2.19) 

14=4{ L ()!'_la2-3a+3 
2,a,n a(a - 1) 

+ L [()!'-I()b'-I 4(2-a) 
2,a<b,n ~a(a - 1 )b(b - 1) 

+()~'_I()~'_I 6 ] 
b(b - 1) 

+ L ()~'-I()b'-I()c'-I 12 }, 
2,a<b<c,n ~b(b-l)c(c-1) 

(2.20) 

where the details of the derivation are given in the Appendix. 
The crucial point is that Eqs. (2.9) and (2.18) yield 

(2.21) 

and because the n2 
- 1 components bi , on the one hand, and 

the n - 1 () a' on the other hand, are independent it follows 
by differentiation ofEq. (2.21) that 

(2.22) 

as advertised in Eq. (1.7). 
If we denote by b the one--column matrix with n2 

- 1 
rows, by () the one-column matrix with n - 1 rows, and by m 
the rectangular matrix with matrix elements 

a()a i = 1,2,3, ... ,n2 
- 1, 

m;a =--, 2 
ab; a = 1,3,8, ... ,n - 1, 

(2.23 ) 

then Eqs. (2.21) and (2.22) become (where T indicates 
"transpose" ) 

(2.24) 

and 

b = m(). (2.25) 

InsertingEq. (2.25) into (2.24) shows that m is an orthogo
nal matrix 

(2.26) 

or 

maomp = 8ap , (2.27) 

i.e., the ma form a system of n - 1 orthonormal vectors. 
We shall come back to the geometry ofthese ma later. 

At this point we return to Eq. (1.5) and observe that 

and 

Mo = (1/n)Tr eiJ..'b 

1 ~ i'l'k 
=- £...e 

nk=1 

=- LexPI -()k'-I 1 n.[ I¥(k-l) 

nk=1 k 
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M IT "I iA,·b 1 T a iA,·b 1 a T u..·b _ _ n aMo = -- rl,..e = -- r--e = --- re = 
2 2 ab 2 ab 2 ab 

= - I mk , I - I ms' I i n [ ~(k-l) n ~] 
2 k=1 - k s=k+1 - s(s-l) 

Xexpl -()k'-I + I ()/'-I . .[ ~(k-1) n ~] 
k /=k+1 /(/-1) 

(2.29) 

Quite explicitly for, say, n = 4 we obtain the result III. PRODUCT PARAMETRIZATION 

In this section, we propose to generalize Eq. (1.4) to 
SU (n) in the form of a product of n - 1 factors. With the 
summation-over-repeated-indices convention suspended we 
write 

where we have introduced for convenience 

(i)k' _ I ='()k' _ I ~2/(k(k - 1), 

0k'_1 =.mk'_I~2/(k(k-l». 

(2.30) 

(2.31 ) 

(2.32) 

eiA,.b = S -ISeiA,.bS -IS 

where 

= S -I(exp i ± A,k' -I ()k'_I)S 
k=2 

=IIk=2Pk~)-I' (3.1) 

= (k-l)ei'"k'-'S-I{~1 + ± A,P'_I }S 
n p=k~2p(p-l) 

+ei(l-k)'"k'_'S-I{~1_~k-IA,k'_I+ ± A,"'_I }s 
n 2k P= k+ I ~2p(p - 1) 

+S-I{n-k 1-k ± A,p'_1 }S. 
n P= k+ I ~p(p - 1) 

(3.2) 

Next we note that Eqs. (2.13) and (2.22) imply 
n n 

I}..·mk'-I()k'-I = IS-IA,k'_I()k'_IS, (3.3 ) 
k=2 k=2 
and therefore 

}..·mk'_l =S-IA,k'_IS, (3.4) 

because the ()k' _ I for different k are independent. This 
means that we may rewriteEq. (3.2) for Pk~)-l' 2<k<n, as 
follows: 

1 [(k 1) iWk' I X ""0k' _ 1 + - e -

i(l-k)Wk'_1 k][ 11 I ~ 1 ] + e - - + - ~ ,..·Op' _ 1 . 
n 2 p=k+1 

(3.5) 

Quite explicitly for, say, n = 4 we obtain the following 
product representation: 

(3.6) 
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where 

P ~4) = 1 + i sin (i)3}..·03 + (cos (i)3 - 1) 

X q1 + }..·os + }..·OI5)' (3.7) 

X (!1 + !}..·OI5)' (3.8) 

P l~) = 1 ei'"" + (e - 3i,"" - eiw,,)(! 1 -l}..·oI5)' (3.9) 

while for n = 3 we have 

(3.10) 

where 

P P) = 1 + i sin (i)3}..·03 + (cos (i)3 - I )(j1 + }..·Og) , 

(3.11) 

P~3) = 1eiw, + (e- 2iw, _ ei",,) 01 - }..·os); (3.12) 

and for n = 2 we have 

(3.13 ) 
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IV. GEOMETRY OF THE ADJOINT REPRESENTATION 

Here we discuss the meaning of the n - I orthonormal 
vectors ma involved in the parametrization of the adjoint 
representation according to Eq. (1. 7): b = 8 a ma' The pa
rameter space of the adjoint representation of SU (n), i.e., 
the space of n2 - 1 real parameters hi, l<i<n2 - 1, is 
Rn' - 1 . As is well known, this space is isotropic under the 
group of rotations O( n2 

- 1). 
We are interested in the transformations that leave 

Ik = Tr(A·b)k, 2<k<n, invariant. The invariance of 12 is 
the invariance of the length of b to which the group 
0(n2 - 1) corresponds. Since, however, we also demand in
variance of I k , 3<k<n, we are dealing with a subgroup of 
0(n2 - 1) that leaves 13,14"", In invariant. 

It is perhaps worth noting that for n = 2 we have just the 
one invariant 12 and so as far as the adjoint representation is 
concerned SU (2) and O( 3 ) are indistinguishable. More pre
cisely we have here the well-known isomorphism between 
SU(2)/Z(2) and 0(3). Since Rn'-l is isotropic under 
0(n2 - 1) we have for n = 2 that R3 is isotropic-there is 
only one kind of vector m3 . 

For n:> 3 the corresponding R n' - 1 is not isotropic, there 
are n - 1 different types of vectors ma' These vectors may be 
distinguished by considering their little groups. Consider an 
arbitrary vector b defined by B = b·A, BESU (n), and we ask 
for its little group. We can transform B into diagonal form in 
view of the theorem according to which a Hermitian matrix 
may be diagonalized by means of a unitary similarity trans
formation and this, of course, leaves all h invariant. 

The resultant diagonal matrix is of the form 
n. n... n 

a 1 I Dk + a2 L Dk + ... + ap I Dk, (4.1 ) 
k=l k=n,+l k=np+l 

where a 1 is the n1-fold degenerate eigenvalue, a2 is the 
(n2 - n1 )-fold degenerate eigenvalue, ... , ap is the (n - np )

fold degenerate eigenvalue. It is clear that the little group of 
the above matrix is 

S[U(n1) XU(n2 - n1) X··· xU(n - np)]. (4.2) 

In particular, this group is minimal if all eigenvalues are 
different, the corresponding b might be called generic and it 
is given by Eq. (1.7) with 8a #0 for all a. The minimal little 
group is 

S[U(1)n], (4.3) 

whose dimension is (n - 1). 
On the other hand the little group (4.2) is maximal if as 

many eigenvalues as possible are the same. All eigenvalues 
cannot be the same since these matrices have zero trace but 
we could have just two distinct eigenvalues. Thus the maxi
mal little group is 

SU[U(n -l)xU(1)]' ( 4.4) 
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whose dimension is (n - 1)2. The corresponding b might be 
called special and it is given by Eq. (1. 7) with only 
8n '_1 #0: 

(4.5) 

We can now state the meaning of the different unit vec
tors ma, _ 1 , 2<a<n: their little groups are given by 

S[U(a-l)XU(1)XU(n-a)], 2<a<n. (4.6) 

We conclude with the remark that for SU(2) the little 
group for the generic and special case are the same--every 
direction in the SU (2) case is special. In SU (3) the little 
group for the special case is S [U (2) xU ( I ) ] whereas for the 
generic case it is S [U ( 1 )3] and so they are different. This has 
been remarked upon by Michel and Radicati who called the 
special vectors q-vectors, and vectors orthogonal to them r
vectors. In our language this means that mg is a q-vector and 
m3 an r-vector. 

V. ADDITIONAL REMARKS 

We thank the referee for calling to our attention some 
additional references. Of these, the work by Macfarlane, 
Sudbury, and Weisz4 and Macfarlane5 continues in the spirit 
of Ref. 1 to develop further parametrizations of unitary ma
trices in a manner that does not require the knowledge of the 
eigenvalues. Conceptually closer to our approach is the work 
of Barnes and Delbourg06 and Barnes, Dondi, and Sarkar.7 

In fact, these authors introduce and make extensive use of a 
set of n - 1 orthonormal vectors PA (A ranging over n - 1 
values). It follows from a comparison of their work with 
ours that our orthonormal vectors mk , _ 1 are related to the 
PA by 

mk'_l = {(1-k)Pk + :t:Pa}[k(k-l)]-I12, 

2<k<n. 

In addition, Barnes and Delbourgo mention, but make no 
use of, another set denoted by p~, which they find by apply
ing the Schmidt orthogonalization procedure. Remarkably 
enough we find by comparison of their work and ours that 

mk , _ 1 = p" _ 1 , 2<k<n. 

The Schmidt orthogonalization procedure is by its very 
nature somewhat arbitrary. Our results would seem to indi
cate that this set mk , _ 1 of n - 1 orthonormal vectors arises 
natually and so may have a canonical significance. It must, 
of course, be noted that this set is natural relative to our 
choice of the ..1 k ' _ 1 matrices in the standard way given by 
Eq. (2.14). 

APPENDIX 

Here we derive the expression for 14 given by Eq. (2.20). 
The derivation ofEq. (2.19) is similar and simpler: 
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UsingEq. (2.14) (fora<b<c<d): 

TrA.!'_1 = [2/(a(a-l»F[a-l + (a_l)4] 

= 4(a2 
- 3a + 3)/(a(a - 1), (A2) 

TrA.!'_IA.b'_1 =4(2-a)/~ab(a-l)(b-1), 

(A3) 

TrA.a'_IA.~'_1 =0, (A4) 

Tr A. ~'_IA. ~'_I = 4/(b(b - 1), (AS) 

TrA.~'_IA.b'_IA.c'_1 =4/~bc(b-l)(c-1), (A6) 

TrA.a'_IA.~'_IA.c'_1 =0, (A7) 
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TrA.a'_IA.b'_IA.~_1 =0, 

TrA.a'_IA.b'_IA.c'_IA.d'_1 =0. 

(AS) 

(A9) 

Introducing Eqs. (A2)-(A9) into (A1) yields Eq. (2.20). 
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This paper is devoted to the study of the description of elementary physical systems interacting 
with an external constant electromagnetic field and the construction of their differential wave 
equations from a group-theoretical point of view. In this context certain local realizations of 
the Poincare group are studied. The linearization of this problem is carried out by building the 
associated representation group that turns out to be the well-known Maxwell group. In this 
way the usual method (concerning local realizations) that has been employed in studying free 
systems to the interacting case is extended. 

I. INTRODUCTION 

It is well known that a physical system in quantum me
chanics is described by a (semiunitary) projective represen
tation of the group of space-time transformations that leaves 
invariant the quantum system. I If the representation is irre
ducible the physical system is said to be elementary. The 
physical relevant representations in the space-time descrip
tion are characterized by locality, and they are called locally 
operating realizations or local realizations (I.r1.'s).2 These 
realizations have been exhaustively studied in several pa
pers.2-4 It is possible to obtain the differential equations sat
isfied by the wave functions via the realizations associated to 
the system. This theory has been working when applied to 
free systems, but unfortunately the situation is quite differ
ent when interactions appear. There is not a general charac
terization of the interacting systems and the differential 
equations are then usually obtained modifying the free equa
tions with the help of conditions such as invariance, minimal 
electromagnetic coupling, etc. 

There are in the literatureS
-

7 some attempts to give a 
group-theoretical formulation ofthe most simple interaction 
case: an elementary particle with an external constant elec
tromagnetic field (e.m.f.). This study, in spite of its limita
tions, is relevant if it allows us to answer some basic ques
tions such as how the charge appears, what is the parameter 
of the interaction, how to obtain the local equations and the 
minimal coupling or the kind of local realizations linked 
with these equations. Thus Schrader,6 in his paper of 1972, 
computes the irreducible representations of the covariance 
group of the Klein-Gordon and Dirac equations with mini
mal electromagnetic coupling (the Maxwell group) and 
compares them with those supported by the equations. He 
finds that each equation contains a family of irreducible rep
resentations. Hoogland7 studies the local realizations of the 
invariance group of a constant e.m.f. subgroup of the Poin
care group, and finds the minimal coupling equations related 
with these local realizations. In this work we continue Hoog
land's program not only considering a subgroup of the Poin
care group but the whole Poincare group, so we will connect 
the method of Hoogland with the results of Schrader. Fur-

thermore, we will pay attention to some questions posed in 
Hoogland's work, as we will see later. The work of Bacry et 
af.5 on this subject is also worthy to mention. They study the 
invariance subgroup of the e.m.f. and its irreducible realiza
tions. The origin of the electrical charge is explained in a 
similar way as the mass is in the Galilei group, Le., it is 
connected with the second cohomology group. However, 
they assumed since the beginning the existence of the mini
mal coupling equations. In some sense the paper of Hoog
land7 completes that work by adding the locality concept. 
Let us finally quote that Becker and Hussins have extended 
the Schrader's method to find a nonrelativistic Maxwell 
group. 

Our paper is deeply concerned with the questions that 
have already been dealt with in the previous mentioned 
works. Our results are not completely new but they are un
derstood from a different point of view, which in our opinion 
will contribute to the clarification of the whole subject. This 
work participates in Levy-Leblond's9 spirit about the refor
mulation of the quantum theory making use of symmetry 
principles. 

This paper is structured as follows. Section II is devoted 
to a study of the local realizations of the Poincare group 
when the physical system lives in a constant e.m.f. We as
sume the existence of a phase called factor system that de
pends not only on the group elements but also on the e.m.f. 
These new factor systems, now not trivial, of the Poincare 
group define an extension of this group, the Maxwell group, 
as it is possible to see in Sec. III. In Sec. IV, we construct the 
local representations (l.rp.'s) of that group which give rise 
to the local realizations of the Poincare group of Sec. II. That 
is, we prove that the Maxwell group is a representation 
group for the Poincare group. Section V is devoted to the 
irreducible representations of the Maxwell group already 
computed by Schrader.6 We will mainly pay attention to 
some details about the little groups and their invariants. In 
Sec. VI we formulate some invariant equations like Klein
Gordon or Dirac, starting from the local realizations, and we 
point out a method to obtain the corresponding minimal 
coupling equations when the e.m.f. is not constant. Some 
remarks and conclusions end the paper. 
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II. REALIZATIONS OF THE POINCARE GROUP WITH A 
CONSTANT ELECTROMAGNETIC FIELD 

A. The general outlook 

Let us consider an elementary physical system interact
ing with a constant e.m.f. in such a way that the field is not 
modified by such elementary quantum systems, i.e., the field 
is external. Thus, the transformation properties of that field 
are well known. In some sense the field can be described 
under a kinematical point of view, in a similar way as the 
space-time is. We will also suppose that the interacting phys
ical system will be described by a realization of the Poincare 
group such that if the field disappears then we will get a free 
system described by the corresponding irreducible local real
ization of the Poincare group. 

Making use of the above assumption about the kinema
tical character in the description of the external e.m.f., the 
Poincare group P will act on the manifold X X F, where X is 
the space-time manifold and F the set of constant e.m.f. 's, in 
the following way: 

g: (xj) -+ (Ax + a, Aj) =. (gx,gf) =.g(xj), (2.1) 

with g=. (a,A)EE', (xj)EX XF, and (Aj)!-'v = A~APfa{3, 
f being the e.m. skewsymmetric tensor. Although the ac

tion of Pin the space-time is transitive, its action on Fis not; 
for this reason we must be limited to an orbit. Let ()(X,,J.,) , be 
the orbit of X X Funder P corresponding to the generic point 
(x%). The isotopy group of the point (xoJo) will be 

(2.2) 

Different points of the same orbit have conjugated isotopy 
groups. The group r (x",r.,) is a subgroup of the Lorentz group 
L. Let ()f" be an orbit of Funder P, withfo a generic element 
of F. We call r f" the isotopy group of 10. The relationship 
between both orbits is clear: 

()(X",r.,) =XX()f", (2.3) 

and between the corresponding isotopy groups is 

r f" = T4/\ r (x",r.,) . 

The orbit ()(X",r.,) is diffeomorphic to the homogeneous space 
P /r (x",r.,)' If we take a normalized Borel cross section 
s: P /r(X",r.,) -+P defined by 

s(xj) = (x,Ar)EE', (2.4) 

where AreL verifying Arlo = J, we can write the elements of 
Pas 

g=. (a,A) = s(g(xoJo»y(g) =.s(g)y(g) (2.5) 

with y(g)er (x",r.,) . If Xo = ° then 

g=. (a,A) = (a,Ag[., )(O,y(g», (2.6) 

since (a,1)erf,,"ifaeT4 then if g= (a,A), y(g) =y(A) 
"if gEP, so we will usually write y( A) instead of y(g). On the 
other hand, the orbit ()f" is diffeomorphic to P /rf". Having 
chosen a normalized Borel cross section r: ()f" -+P by 
r(j) = (O,At ), we can decompose the elements g of P in a 
unique way as 

g=.(a,A) = (O,Ag[.,)(Ad"I(a),y(A», (2.7) 

where (A~,I(a),y(A»erf" and Ag[." y(g) are defined as in 
the previous case. 

569 J. Math. Phys., Vol. 31, No.3, March 1990 

In the sequel we will ever consider the universal cover
ing group p. of PcP· = T4 /\SL(2,C), while P= T4 /\L). 
Evidently the action of p. on X X Fis given by the canonical 
homomorphism existing between a group and its universal 
covering group. For the sake of simplicity, we will call P the 
universal covering of the Poincare group, and we shall not 
make any distinction between the Lorentz group and its cov
ering group SL(2,C). 

The wave function describing a system interacting with 
an e.m.f.1o will be denoted by t/J(x/o) , xEX, and it will live in 
the Hilbert space Hf". For another observer characterized by 
an element g of P relative to the initial reference frame, the 
wave function will be t/J' (xj), "if xEX withf = do and it will 
belong to the Hilbert space Hr' The quantum system will be 
described up to a local equivalence by wave functions of any 
of the Hilbert spaces Hr.!e()f". That is, we assume the exis
tence of a local relationship between the wave functions de
scribing the same physical state in different frames. Math
ematically, 

t/J'(g(xj)=. (U(g)t/J)(g(xj) 

= A (g;xj) t/J(xj) , "if(xj)e()(x",r.,l' (2.8) 

where A is a Borel nonsingular matrix-valued function, 
called a gauge matrix: A: P X ()(X",r.,) -+GL(n,C). The set of 
transformations {U(g)}gEP is a generalization of the well
known locally operating realizations.2

•
3 Here the transfor

mation also depends on the e.m.f. as well as on the group 
element and the space-time point, as usual. We call U a local 
realization in a constant field, or an F-Iocal realization. 
(However, we shall speak of U as a l.rl. simply, since from 
the context there is no risk of confusion with the usual ordi
nary 1.r1.'s.) Note that this kind of realizations with a local 
phase, i.e., depending on the group element and the point of 
the space-time, was also used by Jackiw lO in his study ofthe 
two-dimensional conformal group. 

The composition of the transformations U(g') and 
U(g) must have the same physical effect as U(g'g) when 
they act on the state given by t/J. This leads to the following 
relationship between the corresponding gauge matrices: 

A(g';g(xj)A(g;xj) = w(g',g;/)A(g'g;xj), (2.9) 

where the phase w is a factor system of P which is a Borel 
function: w: G X G X ()r-+ U(1). Owing to the associative 
nature of the transformations, the factor systems are charac
terized by the following property: 

W(g3,g~I;/)W(g2,g1;/) = W(g3,g2;gJ) 

(2.10) 

The relationship (2.10) shows that w is a two-cocycle. 
We will say that two local realizations U and U' are 

locally pseudoequivalent if there are: (i) a local operator S 
defined in every Hr , "ifje()f" , i.e., (St/J) (xj) = S(xj)t/J(xj), 
with S: ()(X",r.,) -+GL(n,C) a Borel matrix-valued function 
and (ii) a Borel function A: P X ()f" -+ U( 1) verifying 

(U' (g) t/J)(g(xj) 

= A(gj) [(SU(g)S -1)t/JI(g(xj). (2.11) 

Then the gauge matrices associated to local pseudoequiva
lent realizations are related by 
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A '(g;xJ) =). (gJ)S(g(xJ)A (g;xJ)S -I (xJ), 

and the corresponding factor systems by 

w'(g',g;j) = w(g',g;j)).(g',gf)).(gJ)). -1(g'gJ). 

(2.12) 

(2.13 ) 

The relationship (2.13) defines a relation of equivalence 
among the factor systems of P. The set of equivalence classes 
offactor systems has a group structure, H}(P,B/,,;U( 1». 

B. The characterization of the factor systems 

Now, our task is to characterize the factor systems ap
pearing in the local realizations. First of all, we obtain a 
matrix realization of the group r(X"J.,)' according to the 
expression (2.9) when we take the restriction of the gauge
matrix A to r (x"J.,) X {(xoJo)}. Then the restriction of the 
factor system to r (x"J.,) X r (""J.,) X {to} is a factor system of 
r(X"J.,) in the usual sense, i.e., 

w( Y3'Y2YI;!;»W( Y2'YI;!;» 

= w( Y3'Y2;!;»W( Y3Y2'YI;fo) , (2.14 ) 

that is, independent of 10. 
Secondly, the restriction ofw to r/" X r/" X {to} is also a 

factor system now associated to a unitary local realization of 
r/" For this reason we are going to study the different iso
topy groups r /" and its factor systems. 

.. The manifold Fsplits into orbits of the type B/" under the 
action of P. Different orbits can have isomorphic conjugated 
isotopy groups and then we say that they belong to the same 
stratum. The different strata are classified as follows. 

There are two invariantsS characterizing the elementsf 
which belong to an orbit B/" offunder P:J-f ( = fl'JPo') and 
*f-j ( = !€l'vpufPOfI'V), so we have five different kinds of or
bits: 

(i) *J-f=lO (*J-f= -4E·B). Where the electric and 
magnetic fields are defined by E i = .f) I and B i = !€ijkJjk' 
iJ,k = 1,2,3, respectively, as usual. In this case there is one 
element in every orbit, iCE, ill, such that E = (0,0,E3 ), 
A A A A 

B = (0,0,B3 ), with E3ER*, B3ER+. Then the orbit is said to 
be of parallel type. 

(ii) *J-f= 0, J-f>O (f-j= 2(B2 - E2». We can con-
A AA 

sider here the following Roint in each orbit, f(E,B), 
E = (0,0,0), II = (0,0,B3 ), B3ER+. This field is called of 
magnetic type. 

(iii) *J-f = 0, f'f <0. Now, we can choose a field of 
A A A A 

electric type, E = (0,0,E3 ), B = (0,0,0), E3ER+. 
(iv) *f-j = 0, J-f = 0, f =10. There exists only one or

bit. It is pos~ble to consi9,.er as representative field the fol
lowing one: E = (1,0,0), B = (0,1,0). 

(v) f = O. The orbit is only one point. 
The three first orbits belong to the same stratum. The 

isotopy group rf", when we takefo =f. is made up by the 
space-time translations and the rotations and boosts along 
the z axis. Thus, r f" is a six parameter Lie group. The factor 
systems of r/" are well known2 and each element of 
H 2(r /,,' U(1» is labeled by two real parameters (€,,8]. A 
two-cocycle lifting of [€,,8] is, for example, 

w€.P (k ',k;fo) = exp{q (a' 1\ a1") I'v <l>l'v}, (2.15) 

where k', kErf", being k = (a,y), with aET4 and yer(X"J.,) ' 
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ar = (O,y)(a, I )(O,y) -I, (a' 1\ a)l'v = ~(a~av - a~al')' 

and 

{

€ = <1>03 = <1>30 

<J>I'V= ,8 = <1>12 = _ <1>21 

0, otherwise. 

(2.16) 

Later we shall discuss about the dependence between the 
parameters €,,8 and the fieldlo, i.e., <l>I'V = <J>I'v(fo). 

The isotopy group of the fourth orbit r/" is made up by 
the space-time translations and the parabolic transforma
tions generated by 12 - KI and II + K2 (being Ii and K;. 
i = 1,2, the generators of rotations and boosts along the i 
axis). In this case H 2(r /,,' U(1 » = RS

• We can choose the 
following lifting as a two-cocycle representative of each 
class: 

5 

w(k ',k;fo) = II Wi (k ',k) 
i=l 

being 

WI (k ',k) = exp{ia 1 !(a' 1\ a1")I'Jbv}, 

w2(k ',k) = exp{iaz!(a' l\a1")l'v *fbv}, 

w3(k',k) = exp{ia3 [p'a2 + a'al + !(p,2 - U'2) 
• 

X (ao - a3 ) n, (2.17) 

w4 (k ',k) = exp{ia4 [p'a 1 + a'a2 - a'p'(ao - a3 ) n, 
ws(k',k) = exp{ia~'u}, 

with aiER, i = 1, ... ,5; k,k 'Er/", where k = (a,y(p,u» with 
aET4 and 

y(p,u) = exp{p(/2 - K ,) + u(/1 + K 2 )}Er(x"J.,)' 
(2.18 ) 

However, not all the five-factor systems are physically 
interesting. Thus, if we also consider the discrete symmetries 
a 2 and a 4 become zero, 2.11 while the factor system as cannot 
be related with a local realization. 3 

Finally, the last orbit is trivial because it corresponds to 
the zero field. 

The unknown factor systems have some properties that 
we are going to enumerate. The interested reader can prove 
them making use of equivalences (2.13). 

(i) w(e,e;j) = w(e,g;j) = w(g,e;j) = 1, VfEB/." VgEP, 
where e is the identity element of P. 

(ii) w(k,r(j);fo) = w(r(j),k;fo) = 1, VkEr/." VfEB/." r 
being the cross section from B/., to P defined above. 

(iii) w{r(j'),r(j);fo) = 1, Vf', fEB/., 
(iv) w(r(j)k ',k;!;» = w(k' ,k;!;» , V k ',kErf" ,fEBf", 

w(k ',r(j)k;fo) = w(k'r(j),k;fo). 
(v) w(r(j')k',r(j);fo) = w(r(j') ,r(j) k;fo) = 1, 

Vk,k 'Er/., , Vf', feB/". 
(vi) w(r(j') k ',r(j) k;fo) = w(r(j') k ' r(/) ,k;!;» 

=w(c5(r(j')k'r(j),k/o), 

Vk', kEr/., , Vf',fEBf" , c5Er (f.,)' 
(vii) w(g',g;j) = w(g',gr(j)/o), Vg', gEP, VfEB(jo). 

(2.19) 
In particular, if g' = (a',1), g = (a,l), and 

r(j) = (O,Af ), then 
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w«a' ,1),(a,1);j) = w«a' ,1),(a,1)(0,Af )!o) 

= w(Aj l(a'),Af-l(a)/o), (2.19vii/) 

with (Af-
l (a),1) = (O,Aj l)(a,1)(0,Af )· 

We wish to make a comment on the meaning of these 
properties. If two groups are isomorphic, it can immediately 
be shown that this isomorphism can be extended in a canoni
cal way to their extensions (in particular, extensions by R). 
So if we have two subgroups H, H I of the same group G, 
related by an inner isomorphism given by gEG [i.e., 
g: h-+g(h) =ghg- I

, hEB, g(h)EB/] then, given a factor 
system w of H, it will determine the factor system wg of H I 

defined by 

w(g(h),g(h '»=w(h,h '), 

h,h 'EB, g(h),g(h ')EB'. (2.20) 

The property (2.19vii) tells us that if the factor system w is 
restricted to r I.,' then the section r: (}I., -+ P determines in that 
way factor systems defined in every r f , V/E(}I., Thus, let 
k,k 'Erl., , and Af(k),Af(k ')Erf , then if we apply properties 
(2. 19i-vii) , we find that w(Af(k '),Af(k)/) = w(k ',k!o), 
in agreement with (2.20). 

We shall apply the above properties to get the explicit 
form ofthe factor systems. First, we consider the factor sys
tems associated with the strata of the three former kinds of 
orbits. Ifwe restrict ourselves to rl.,' we can give w(k ',k/o) 
by (2.15). It is straightforward to check that 

w(y(a'),y(a)!o) = w(a',a!o), VYEr(x"J,,) (2.21) 

and 

(2.22) 

with the notation of (2.19). These properties imply that w is 
a scalar function under Lorentz transformations of the argu
ments a,a' ER4 and/E(} I., The values of w (g' ,gj) are indepen
dent of the choice of the section r of () I., on P. The only inde
pendent scalars that can be made out of a, a', and I are 
(a' 1\ a) -J and (a' 1\ a) . *J, thus w must be an arbitrary func
tion of such scalars. In fact, comparing with (2.15) we see 
that it must be a linear combination of both terms. The por
portionality constants can be interpreted as the electric and 
magnetic charges, respectively, of the interaction system. 
However, the term containing *1 disappears, as well as the 
magnetic charge, when discrete symmetries are included. 2. I I 

Finally we obtain 

w(a',aj) = exp{Fe(a' l\a)"J"v}. (2.23) 

Taking into account (2.17) we have € = eE3 and f3 = eEl' 
where/= (E,B) and E = (0,0,E3 ), B = (6:0,E3 ). Maki~g 
use of the other properties we get 

w(g',gj) = exp{Fe(a' l\A'a)",. (A'Aj)"'}, (2.24) 

where g', gEP. 
Now we shall consider the fourth orbit type. As noted 

above, when w is restricted to rj ;, X rl., X {f;)} there are two 
kinds of inequivalent classes of factor systems given by 
(2.17) I and (2.17 h For the factor system (2.17) I we arrive 
at the same results as those we have obtained for the stratum 
just seen. However the factor systems obtained from (2.17) 3 
have much different features than the ones already studied. 
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In this case w(k ',k!o) #w(y(k '),y(k)!o), with k', kErl.,' 
and r', yEr (x"J,,) ' so it is not a scalar function of its argu
ments. It means that w depends on the choice of the section r. 
Another section r' gives rise to a distinct system Wi, although 
equivalent to w. Due to this reason the explicit expression of 
w is not easy and will not be written down here since we shall 
not make any use of it in this paper. 

While the factor system originated from (2.17) 1 has the 
same functional form as the ones existing in the other kinds 
of orbits (i), (ii), and (iii), the factor system that comes 
from (2.17 h is exclusive of orbit (iv). We also observe that 
the local realization associated to this strange factor system 
has few signs of "electromagnetic character." In fact, the 
construction of such realizations is done by making use of 
the subgroup r I., and the homogeneous space P Ir I.,' but it is 
not possible to obtain from them any object transforming 
like an e.m.f. does, such as it happens to be with the realiza
tions associated to "covariant" factors. Because of such rea
sons we shall not take them into account for the rest of our 
work, although its study, when we do not consider its rela
tion to the e.m.f., has its own interest. 2 

c. The gauge matrices 

To complete this section it remains to write down the 
explicit expression of the gauge matrices, and this labor will 
be carried out in the sequel. We will make use oflocal equiva
lences whenever possible in order to compute a representa
tive within each class of realizations. 

Being given a normalized gauge matrix A (g;xj) of P 
(i.e., such that A (e;xj) = 1, V (Xj)E(}(x"J,,» there is another 
one equivalent and normalized, A " such that 
A '(s(g);xoJo) = 1, VgEG. According to (2.12), it suffices to 
take S(xj) = A(s(xj);x%). Thus, the expression of a 
gauge matrix VgEP and at the point (xoJo) is 

A(g;x%) = A(y(g);x%). (2.25) 

And the general expression at any point (xj) is 

A(g;xj) = w(gs(xj)!o)A(y(gs(xj);x%), (2.26) 

where w is the factor system of P associated to A according to 
(2.9). Making use of the explicit expression ofw (2.24) we 
get 

A(g;xj) = exp{ie ~(a 1\ Ax)· Aj}A (y(gs(xj);x%) , 

Vg= (a,A)EP. (2.27) 

Note that a system of gauge matrices of P is determined 
by (i) a factor system of P and (ii) a finite dimensional 
matrix realization of the subgroup r (x"J,,) . 

Taking into account (2.27), the local realizations of the 
Poincare group have the form 

(U(g)1f)(g(xj) = exp{ie ~(a 1\ Ax)· AI} 

XA (y(gs(xj) );x%) 1f(xj). (2.28) 

III. A REPRESENTATION GROUP FOR P: THE MAXWELL 
GROUP 

Our plan is to find a new group for P, such that the local 
realizations of the Poincare group that we are studying can 
be lifted to linear representations of this group.3 Evidently 
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such a representative group cannot be a central extension of 
P by R, because as it is well known such extensions are 
trivial. 

Let Of" be the orbit under P ofthe e.m.f. /0. We consider 
the real vector space V( Of" ) of the real functions defined on 
0f". Let V( Of" ) X P be the set with the following composition 
law: 

(t/J',g') (t/J,g) = (t/J' + g't/J + t/J(g',g) ,g'g) , (3.1) 

with (t/J,g)EV(0f,) XP. The action of P on V(0f,) is 
(gt/J)(j) = t/J(g-1) and t/J(g',g) (j) =p(g',gj), p being the 
exponent of a factor system of P, i.e., w(g',gj) 
= exp{;p(g',gj)}. It is easy to prove that this law endows 

that set with a group structure. However, there is a difficulty 
due to the infinite dimension of that extended group. Since 
the aim of the representation group concept is the building of 
a "minimal" group that allows us such a lifting, we may 
restrict ourselves to a finite dimensional subgroup in the fol
lowing way. We take the minimal subspace of V(0f,,) invar
iant under P including the functions t/J(g'.g) (j) = p(g',gj). 
Such a subspace is easy to compute. It is made up of func
tions aEA(4,R), where A(4,R) is the real vector space of 
4 X 4 real skewsymmetric matrices, hereafter named A sim
ply, which are defined by: a(j) = a,..J,..v,JE0f". Thus we get 
a six-dimensional extension of Pby the Abelian groupA. The 
action of P on A is given by (ga) (j) = a(g-Ij) -+ (ga)"'v 

= A~A~aPu, g = (a,A)EP, and t/Je(g.g,) = ~e(AA')-' 
X (a /\ Aa'), g, g' EP is a system of two- (exponential) cocy
cles of P with values on A with the mentioned action. 

The composition law of the extended group is 

(a',g')(a,g) = (a' + A'a + !e(A'A)-' 

X (a' /\ A'a),g'g), (3.2) 

and the inverse of a generic element (a,g) is 
(a,g)-I = ( - A-la, - A -'a,A -I). 

Now this group is useful when one is interested in the 
realizations associated to the exponent pe, corresponding to 
the factor system (2.23) labeled with the real number e, and 
any of the orbits Of" , since in the course of the construction of 
the extended group, we have lost any track of orbits. In fact, 
as it will be checked later (Sec. IV), it is enough to consider 
only one value of e (e.g., e = 1) to obtain a representation 
group to lift any local realization (independently of the orbit 
or the value of e). Such a group (e = 1) will be called the 
Maxwell group, (, M. 

The canonical epimorphism p: M -+P is given by 
p(a,g) = g. Thus, we can extend the action of P on X XF 
(and on F) to M by g(x,/) = p(g)(x,/) 
~g(x,/), 'fIg= (a,g)EM. Then I'f" = p-I(rf,) 

(r(X.,Jol.. = p-l(r(Xn.r.,»)· Fixing a cross section 
s: M Irf" -M by 

sex,/) = (O,x,A/ ), (3.3 ) 

each element g of M factorizes as 

g-= (a,a,A) = (O,a,A"r )(A -I"r a,O,y(g», (3.4) 
&fn &In 

where (Ay,,'a,O,y(g» = y(g)EI'f,. With this cross section we 
get 
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s- 1(g(X,/) )gs(x,/) = r(gs(x,/) = (A - I A~ + !A - I 

X (a/\ Ax),O,A- ' A/AA/)' (3.5) 

In a similar way the cross section r: M 1I'(xn.r..) -M is de
fined by 

r(j) = (O,O,A/ ). (3.6) 

The Maxwell group has 16 infinitesimal generators, ten 
of them, M,..v and II,.., corresponding to the Poincare group 
and the other six, F,..v, to the Abelian group A. The Maxwell 
Lie algebra is defined by the following nonzero commuta
tors6 

[M,..v,Mpu] = gvpM,..u + g,..uMvp 

- gPPMvu - gvuM,..p, 

[M,..v,F pu] = gvpF,..u + g,..oMvp 

- g,..pMvu - gvuM,..p, 

[M,..v,IIp] = gvP II,.. - g,..p IIv, 

[II,..,IIv] = F,..v' 

(3.7) 

IV. THE LOCAL REPRESENTATIONS OF THE MAXWELL 
GROUP 

First of all, we check here that the local realizations of P 
with an external constant e.m. f. (2.8) are related with some 
local representations of the Maxwell group that we call 
"physical" representations. 

Fixed a cross sectionp: P-+Mby peg) = (O,g) then we 
prove that the application R of M defined by 

(R(a,O)f/!)(x,/) = eieCLIl/J(x,/) , (4.1) 

with eER and (a,O)EA, 

(R (O,g) 1/')( (O,g) (x,/) =(R (p(g) ) 1/')(0 (g) (x,/) 

= (U(g)I/')(g(x,/), (4.2) 

where U is the local realization of the Poincare group given 
by (2.28) and R(a,g) =R(a,O)R(O,g) constitutes a local 
representation of M. 

Indeed, the explicit form of R is 

(R (a,g) I/')«a,g)(x,/) = eiea · AlA (g;x,/)l/J(x,/), (4.3) 

where the matrices A (g;x,/) obey (2.9). Ifwe define the new 
matrices A (g;x,/) by A (g;x,/) = eieCL ' AlA (g;x,/) , it is 
straightforward to show that A is a system of gauge matrices 
with associated factor system iii = 1, i.e., they verify (2.9) 
with iii = 1, since (O,g') (O,g) = (p.(g',g),g'g) and 
w(g',gj) = exp{;ep(g',gj)}, 'fig', gEM. Note that now we 
are working with factor systems of M. This means that the 
gauge matrices A (g;x,/) originate a local linear representa
tion of M. 

A. The local representations as induced 
representations from r(Xo.fo) 

We will show now a property similar to that one satis
fied by the ordinary (physical) local representations,3 i.e., 
physical local representations are induced from the isotopy 
group of a fixed point, subgroup of the representation group. 
In our case we take the point (xoJo) of the orbit O(Xn.r..) and 
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its isotopy group r (x"J,,) , a subgroup of the Maxwell group. 
Being given a finite-dimensional linear representation u 

ofr (x"J,,) and a normalized Borel cross section s: ° (x,,J.,) --+ M, 
defined by (3.3) s(xJ) = (O,s(xJ» = (O,x,Af ), where s 
was defined in (2.4), then the linear representation R ~ of M 
induced by u of r (x"J,,) has the following expression: 

(R ~(g)ttr)(g(xJ» = o(S-I(g(XJ»gs(xJ»ttr(xJ). (4.4) 

This induced representation is a local representation of M as 
it is easy to see if we realize that o(S-I(g(XJ) )gs(xJ» is a 
system of gauge matrices with an associated trivial factor 
system. It is possible to prove that if we take another cross 
section S', the induced representation R ~ is locally equiva
lent to R~, for that reason from now on we will remove the 
superindex s. On the other hand, if we take two equivalent 
representations u and u' ofr(x"J,,), the induced representa
tions Ru and Ro' are locally equivalent as can be shown as 
well (for more details about induced and local representa
tions see, for example, Refs. 3, 12). Conversely, if we choose 
the following special representation of r (x"J,,) , 

u(a,O,y) = exp (iea'fo) a (y), (4.5) 

with a a finite-dimensional representation of r (x"J,,)' then 
taking into account (3.5) and replacing in (4.4) we get 

(R 4 (g)ttr)(g(xJ» 

= exp{ie[ A-I A~"lO + !A -I Af(a 1\ Ax) "lo]} 

X a(A -I /\fAAf)ttr(xJ), (4.6) 

and when werestrictR 4 toA,R 4 IA, we recover (4.1). Since 

A -I "~'fo + ~A -I Af(a 1\ Ax)·fo 

= a' AI + ! (a 1\ Aj) . AI ( 4. 7) 

and y(gs(xJ» ==S-I(g(XJ) )gs(xJ) = A -I AfAAtEr (x"J,,) , 

then R4 is a representation like that one defined by (4.3), 
with the gauge matrices given by (2.28); so any local phys
ical representation of M is locally equivalent to a r(X"J,,)

induced representation. 
Finally, if we give a physical local linear representation 

R of M and choose a cross sectionp of PonM,p(g) = (O,g), 
then we have that R(P(g» = R(O,g) == U(g) defines a local 
realization of P. So from R4 we get, up to a local equivalence 
a local realization of P like (2.28), as it was to be expected 
from the last results. 

We recall that we are looking for a kind oflocal realiza
tions of P such that they could describe the interaction 
between an elementary quantum system and a constant 
e.m.f. in such a way that if we eliminate that field we should 
obtain a realization of P describing a free physical system. 
These free realizations U of P are induced from finite-dimen
sional representations D of the Lorentz group L, and they 
have the expression 

(U(g)'I')(gx) = D(A)'I'(x). (4.8) 

Now, suppose that the finite dimensional representation a of 
r (x"J,,) has the property that it can be extended to the whole 
Lorentz group, i.e., there exists a finite-dimensional repre
sentation D of L verifying D I r (x"J,,) = a. With this assump
tion, let U D be the local realization of P induced by it accord
ing to (4.5) and (4.6), then if we make an equivalence by 
means of the operator T defined by 
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(4.9) 

the new local realization U D locally equivalent to U D is 
U D (g) = TU D (g) T - " and its explicit expression is 

(UD (g)'I')(g(xJ» = exp{!ie(a 1\ Ax)· Aj} 

XD(A)'I'(xJ), (4.10) 

and of course, when I~O we recover the free realization 
( 4. 8). Such local realizations U' (or the corresponding rp.'s 
R) are called local covariant realizations (local covariant 
rp.'s). 

B. Pseudoequivalence of local realizations 

In preceding papers,2.3.7 the local pseudoequivalence 
(l.pe.) of ordinary l.rp.'s of the extended invariance sub
group r.r., of the field/c) has been studied. Here we study the 
l.pe. of the l.rp's of Pby means ofits representation group M, 
and try to relate it with the well known one ofr.r.,' We shall 
reach the following main result: 

Theorem 1: The local pseudoequivalence classes oflocal 
representations of M are in a one to one correspondence with 
the ones ofr.r. .. 

Proof First, we write down some basic facts on l.rp.'s of 
M. As already mentioned, the system of gauge matrices A of 
a l.rp., R, of M verify a relationship like (2.10) with ill = 1, 

A(g' ;g(xJ»A (g;xJ) = A (g'g;xJ). (4.11 ) 

Thus A Ir(x"J,,) X {(xoJo)} is a matrix representation of 

r(X,,J.,), and A if.r., gives rise to a l.rp. of the subgroup r.r., in 
the Hilbert space HI., . 

If we have two pseudoequivalent l.rp.'s, Rand R ' of M, 
i.e., there exists a local operator T and a one-coboundary 
map A: M X 01., --+ U( 1 ) homomorphic in the first 
argument A(g'g;l) = A (g';g{)A (g;l), such that 
R ' (g) = A (g;l) TR(g) T - 1 in the Hilbert space Hf , /E0.r., 
[recall that they are strictly equivalent only when 
A(q) = 1, 'v'/e0.r.,] . It is immediate to showthatR 'Ir.r., and 
R I r.r., must be also pseudoequ~alent and the corresponding 
gauge matrices restricted..,!o r (x"J,,) are pseudoequivalent 
matrix representations of r (x"J,,) • 

Conversely, let Rand R ' be two l.rp.'s of M such that 
R if.r., ==R.r., and R 'Ir.r., ==R;', are pseudoequivalent; then R 
and R ' are pseudoequivalent too. The proof goes on as fol
lows. The pseudoequivalence of R.r., and R ;" implies the e~s
tence of a local operator S and a homomorphism A: r.r., 
--+U(1), such that R;',(k) = A (k)SR.r.,(k)S-', 'v'ker.r., ' 
then the associated gauge matrices must verify 

A'(JC;xJo) =A(k)S(kx)A(k;xJo)S-'(x). (4.12) 

Making use of an equivalence we arrive at the following 
expression for A (and A '): 

A(g;xJ) =A(Ay 'gAiAf-'xJO)' (4.13) 

where by (3.6) '!..(j) ~ (O,O~ .. Af) ==~. Then if we apply 
(4.12) and call Ay 'gAf = k(gJ)er.r.,' we obtain 

A '(k(gJ);Ay 'xJo) 

= A(k(gJ»S(k(gJ)Af- Ix)A(k(gJ);Af-1xJo) 

XS-'(Af-1x). 
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With the new notation: A.(kCgj)=A.(gj), S(Aj-1x) 
=S(xj), we can rewrite (4.14) as 

A'(g;x.j) =A.(g.j)S(g(x.j)A(g;X.j)S-I(X.j). (4.15) 

Thus the gauge matrix systems A and A ' are pseudoequiva
lent and so are the associated l.rp.'s Rand R " respectively, of 
M. 

In fact, since the pseudoequivalence classes of ordinary 
l.rl.'s o!.r.r. are given in terms of those of the inducing sub
group r(XoJo) ,3 the result given above can be stated in the 
following form. 

Theorem 2: Two l.rp.'s Rand R ' of M, and, therefore, 
the associated l.rl. 's U and U' of P, are locally pseudoequiva
lent if and only if they are induced from pseudoequivalent 
ma.!.rix realizations of r (x"J,,) and the homomorphism 
A.: r (x"J,,)::: U( 1) involved can be extended to a homomor
phism ofr!." or what is the same, it can be extended to a one
coboundary of M, as was defined at the beginning of this 
section. 

C. Representations of M in the phase space 

Ifwe replace the manifold X X F for X XA the action of 
M, via P, on X XA is transitive. Such a manifold is diffeomor
phic to the homogeneous space MIL. The action of a generic 
element g= (a,a,A) at a point (x,t/J)EX XA is 

(a,a,A) (x,t/J) = (Ax + a,At/J + a 

(4.16 ) 

with At/J=A~A~if;Pu. Here, we have chosen the cross section 
s: M IL-+Mby s(x,t/J) = (t/J,x,I). 

Ifwe fix the point (xo,t/Jo) = (0,0) of X XA, its isotopy 
subgroup is L, so we compute the induced representations of 
M from L. Being given a finite-dimensional representation D 
of L, the induced representation R D of M acts on the support 
space offunctions defined on X XA in the following way: 

(RD (g) iii) (g(x,t/J) = D(s-I(g(X,t/J) )gs(x,t/J) ) iii (x,t/J ). 
( 4.17) 

After a brief computation we get 

(RD (g) iii)(g(x,t/J» = D(A) iii (x,t/J). (4.18 ) 

Note that in this representation the phase factor does not 
appear explicitly, but it is hidden at the point transformation 
g(x,t/J). 

The relationship between F and A goes via duality, 
which means that each point ofF labels a unitary representa
tion of A. Thus the relationship between both kinds of repre
sentations of M is given by a Fourier transformation such as 

'I'(x.j) = J iii (x,t/J) exp (ieft/J)dt/J. ( 4.19) 

The representation R D of M defined in the space of functions 
'I' obtained from R D is 

(RD(g)'I')(x.j) = J{RD(g)iii)(x,t/J)eXP(ieft/J)dt/J. 

(4.20) 

Substituting (4.16) and (4.18) we get 
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(RD (g)'I')(xj) = exp(ie ~(a A Ax) 'j)D(A) 

X 'I'(g-I (x.j). 

This can be written in our usual notation as 

(R D (g)'I')(g(x.j) = exp(ie ~(a A Ax)' Aj) 

XD(A)'I'(x.j), 

(4.21) 

(4.22) 

which corrresponds to the local realization of the Poincare 
group as expressed in (4.10). 

That kind of representations R of M is not of physical 
interest because it contains implicitly a family of represent a
tions corresponding to different values of the orbits in Fun
der M and to different values of e as well, both being of 
physical meaning. The trouble is that each of these physical 
l.rp.'s labeled by the field's orbit and the charge, cannot be 
described in a local way out of the R representations. 

V. IRREDUCIBLE REPRESENTATIONS OF THE 
MAXWELL GROUP 

As it is well known, local representations, in general, are 
not irreducible representations. In this section we will char
acterize the unitary irreducible representations (u.i.rp.'s) of 
M following closely Schrader's program,6 so we will not give 
a very detailed explanation. Only some attention will be paid 
to the computation of the generators of the little groups. This 
study will clarify the origin of some invariants which will be 
employed later in the next section. 

A. The Mackey-Kirillov method 

Let M = HAL be the Maxwell group as a semidirect 
product, where H is the subgroup A of the 4 X 4 real skew
symmetric matrices and the space-time translations T4 • The 
composition law in H, according to (3.1), is 

(a',a')(a,a) = (a' + a + ~(a' A a),a' + a). (5.1) 

Since H is a maximal nilpotent subgroup of M, the u.i.rp. 's of 
M (M satisfies the regUlarity conditions required by the in
ducing theory of Mackey l3 ) can be computed inducing from 
the ones of H founded by means of Kirillov's theory. 14 This 
program is applied as follows. 

Let if be the set of equivalence classes of u.i.rp.'s of H. 
The group M acts on if in the following way. Being given a 

A A _ 

u.i.rp. U which belongs to the class UElf, then g: U -+ U g, 

with 

ug(h) = U(g-Ihg), VhElf, VgEM. (5.2) 

This action splits if in orbits e(U). If Mo is the isotopy 
group of fr, then we must find the u.i.rp. 's of Mo which when 

A 

restricted to H are multiple of U. Finally, we obtain the 
u.i.rp.'s of M induced from such representations of Mo. Note 
that Mo = HALo, where LoCL, and that the equivalence 
cla~es of ~.i.rp.'s of Mo are given in terms of: (i) an orbit 
e( U) of H under the action of M, and (ii) a u.i.rp. up to 
equivalence of Lo if H 2{Lo' U( 1 » = O. The invariants of the 
representation specify these two conditions and so are re
ferred to as orbital or little group invariants. In this subsec
tion we develop, in several steps, the part of that program to 
find the orbital invariants. The next one will be devoted to 
the little group invariants. 
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t. The computation of H 
The infinitesimal generators of H are denoted by pi.tV 

and rI" (Sec. III). A generic element of the Lie algebra U of 
H is denoted (/3,b) , i.e., 

(/3, b) =p"v/3"v + rI"b", 

where /3eA and hER4. The action of M on U is 

g: (/3,b)-+g(/3,b) = (Af3+aI\Ab,Ab), (5.3) 

where g = (a,a,A) EM. Let u* be the dual of the Lie algebra 
U, if ({,p)EU* then 

((,p)'(/3,b) = -f"v/3"v +p"b", (5.4) 

withfeA and pER4. Now the action of M on U* is given by 

g({,p) . (/3,b) = ((,p). g-I (/3,b). (5.5) 

Explicitly 

g({,p) = (AJ,A(p + aj»), (5.6) 

where af = a,.f"v. In particular the subgroup H acts on u* 
by 

h= (a,a,l): ({,p) -+ ({,p + aj). (5.7) 

The construction of the u.i.rp.'s of H starts by fixing an ele
ment ({,p )EU* and computing a maximal subalgebra N C U 
such that [N,N]CKer ((,p). Let N be the subgroup of H 
corresponding to N. A unitary representation of N is given 
by 

U(f,P): (a,a) -+exp{;(pa - fa)}, (a,a)EN. (5.8) 

This representation induces the representation U (f,p)N of H. 
Two induced representations U (f,p)N and U (f',p')N' are equiv
alent if and only if ({,p) and if' ,p') lie in the same orbit under 
H. Thus, the equivalence classes ofu.i.rp.'s of Hare in a one 
to one correspondence with the orbits of u* under H. Ac
cording to (5.7) these orbits can be classified in the follow
ing way: 

(i) Orbits oftype I. Heref = 0, and the orbits have one 
point 9(0,p) = {(0,p)},pER4

• 

(ii) Orbits of type II. They are characterized by 
/,*f= C2 #0(¢Xlet(f) #0). These orbits are four-dimen
sional and are given by 9(f} = {({,p) jpER4}. 

(iii) Orbits of type III. In this case det (f) = 0, with 
f#O. Here the orbits 9({,q) = {({,p)l*fp = q, pER4}, 
qEIm * J, are two-dimensional. 

2. The action of M on H 
As we have mentioned above the group M acts on the 

representations U (f,p)N giving rise to orbits. Bearing in mind 
that the class of U (f,p)N is labeled by an orbit ofU* under H, 
then the points of any orbit under M are orbits under H, so 
we will call them superorbits, and are determined by (5.6). 
An element A of the Lorentz group acts on any orbit 9 by 

(I) A : 9(0,p) -+9(0,Ap). The superorbit originated 
here is denoted by 9 [p ] . 

(II) A: 9(f} -+e(Aj). Notation: eU]. 
(III) A : e ({,q) -+ 9 (AJ,Aq). Notation: e [f,q ]. 
The superorbits 9 [P] correspond to the well known 

u.i.rp.'s of the Poincare group because of the null field. 
The superorbits of type II, e [j], are made up of points 

575 J. Math. Phys., Vol. 31, No, 3, March 1990 

((,p), where pER4 andf belongs to a four-dimensional mani
fold given by the values of two invariants: /,f = C I and 
/' *f = C2, so it has dimension eight. The stability group of 
each point is a two-dimensional Abelian group. In each su-

perorbit 9 [j] it is po§sible to find a characteristic element 
AA A A A A 

1;.,= (E,B) such that E = ~,0,E3) and B = (0,0,B3), with 
B3ER * and, for example, E3ER +. So this orbit is called of 
parallel type. The stability group of/is generated by rota
tions and boosts along the z axis; i.e., J3 and K 3• 

The superorbits of type III, 9 [f,q], are classified de
pending on the values off and q in the following way. A 

(1) AM~~etic-like (M). Th~e exists an ~ement r,t;q] 
where f(E,B) has the form E = (0,0,0), B = (0,0,B3), 
'" B3ER +. The characteristic values of q give the subclassifica-
tion: 

Mo, q = (0,0,0,0), 

A '" ° M" q = B3 (O,O,O,p ), 

M" q = B3 (p3,0,0,0), (5.9) 

M I , q = B3( ± 1,0,0, ± 1) (four cases), Po,p3ER. 

The invariants characterizing these orbits are: 
(a) /,f=//=,., C 1 >0, 
(b) /,*f=/,*f= ° = C2, 
(c) (*/,p)2=q2=C3, «0 in M s ' >0 other

wise). (5.10) 

A sign operator6 should also be added to distinguish the sign 
of pO in M" p3 in M" etc. The isotopy groups of 9 (j;q) are 
generated by {J3} in superorbits M" M" M I , and {J3,K3} in 

Mo· A"'''' '" '" 
(2) Electric-like (E). In this casef(E,B), E = (0,0,E3), 

'" '" B = (0,0,0), E3ER+, and q gives rise to 

Eo, q = (0,0,0,0). 

E q ,q=E3(0,_p2,0,0), p2ER*. (5.11) 

The invariants here are the same as in the magnetic type 
superorbits but C1 < ° and C3<0. The little groups of 9 ({,q) 
are given in terms of their generators by {J3,K3} (Eo super-
orbit) and {K3} (Eq superorbit). A 

Pll1adig.tion-like (R):.-, The characteristic elements [f,q] 
aref(E,B), E = (0,0,1), B = (0,1,0), and 

Ro, q = (0,0,0,0). 

(5.12) 

R+, q = (O,O,po + pl,O), pO + pIER*. 

The manifold of these superorbits is specified by the same 
invariants as in the magnetic and electric type superorbits, 
more a sign in R_, R+, however CI = 0, C3<0. The isotopy 
groups ofe(j;q) are generated by {J2 - K 3,J3 + K 2} in Ro, 
R_ superorbits, and {J3 + K 2 } in R+. 

Let us summarize the general facts on type III superor
bits. (i) Concerning the invariants whose values label the 
superorbits: there are two of them which have the same func
tional form,ff = C 1 and/, *f = C2, as in type II superorbits. 
The third one, (*f'p)2 = C3, is specific of type III superor
bits. (ii) Concerning the isotopy groups: they are one-di
mensional and J3, K 3, J3 + K2 are the respective generators 
when the point is the characteristic element of M, E and R 
superorbit. Only for some special cases, they are two-dimen-
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sional Abelian subgroups of L. These cases are Mo' Eo, Ro, 
andR_. 

B. The computation of little groups 

As we have just stated, each superorbit contains a set of 
orbits each of which consists of a set of points (j,p). We 
recall that the action of M on this set was given by (5.6). The 
task to be done here is the computation of the generators of 
the isotopy subgroup of a point (j,p) belonging to any of the 
type II or III superorbits. Of course we already know its 
dimension: two for points of type II, and one for those of type 
III, except for the special cases already marked that will not 
be discussed along this paper. Since the isotopy subgroups 
are Abelian, we can show that a u.i.rp. of M can be fixed by 
the real eigenvalues of their hermitian generators, which cor
respond to their unidimensional u.rp.'s. 

1. Type 1/ superorbits 

Let (j,p)E8Ul We begin with the search of the sub
group of L which leaves invariant! According to (5.6), the 
infinitesimal action of WEL onfis 

cu: pw -+p.tv + oI';.!).v + cu).fIL).. (5.13) 

If cu leavesfinvariant then oI';.!).v + cu).fJLA = O. Making use 
of a vectorial notation cu(v,a),J(E,B), we can rewrite it as 

a /\ E + v /\ B = 0, 

0/\ B - v /\ E = O. (5.14) 

There are two independent solutions,5 

a) (v,a) cc (E,B) -+oI'V ccfILV, 

b) (v,a) cc ( - B,E) -+oI'v cc *fILv. 

The second step is to display how the elements of M having 
the form (O,a,A), where A belongs to the Abelian subgroup 
generated by {j-M, *f' M}, act on the other component p of 
the point (j,p). By an infinitesimal translation, a, we get, a: 
P-+P + a·f, while the Lorentz transformation cu gives cu: 
P-+P + cu·p. The notation (a'j)IL = aJVIL, (j-a)IL =fILvav' 
has been used. The element (O,a,cu) of the little group must 
satisfy 

j-a+cu'p=O (5.15) 

whose solutions are as follows. 
(a) If cu =f, j-a -j-p = O. This implies that a-p is in 

the Ker off, but as we are in a type II superorbit, this is {O}, 
and a = p. The corresponding transformations are 
exp{alLnlL + !CUILvMILV}. If we use for the generators the no
tation of Sec. III, and if we insert the above solutions we 
obtain: exp{PlLnlL + !i;.vMILV}. Ifwe keep in mind that FILV 
is represented by - ifILV, nIL by ipIL, and that p IL nIL acts on 
(j,p) as !n· n, we have the following first hermitian gener
ator of the little group 

!nILnlL - !FILvMILV=!(n2 - F·M). (5.16) 

(b) If cu = *f, we havejILvav - *fILVpv = O. Multiplying 
by *f, we get! *J-fav = *fvIL *fJLAp).. Then we obtain the sec
ond generator substituting that expression for aIL: 

4(n'*F)2 - (*F·F) (M·*F). (5.17) 
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However, the eigenvalues of these two generators cannot be 
arbitrary because the isotopy subgroup has a compact part 
and it provides discrete values. For example, the fieldj has 
{J3,K3} as generators of its isotopy group, and it must be 
granted that J3 should be represented by an operator with 
half-integer eigenvalues. Thus, the u.i.rp.'s are labeled by 
one real and one half-integer numbers. Nevertheless, such a 
restriction on the values of the Casimir operators is not con
sidered at this moment because it has not a covariant expres
sion. 

2. Type 1/1 superorbits 

The Lorentz subgroup which leaves invariantf is gen
erated, as in type II, by f M and *f M. Then we look for 
solutions of the equationfa - CU'p = o. 

(a) When we try with cu = f, one solution, not unique 
this time, is a = p, and one gets the same generator as in type 
II superorbits (5.16): 

n2 
- M·F. (5.18) 

(b) However, when cu = *f, there is no solution of that 
equation, as can be easily proved, except for the special cases 
quoted above, which are not included here. Observe that 
when the superorbit is of magnetic type, the isotopy group is 
compact and so its u.i.rp.'s are given by a half-integer num
ber, but in the other cases of type II there is not such a con
straint. 

These computations end our program of characterizing 
the u.i.rp.'s of the Maxwell group. We shall make use of 
them in the next section devoted to the wave equations. 

VI. INVARIANT EQUATIONS 

To begin with, we consider the formulation of the equa
tions describing a spinless elementary system interacting 
with an external constant e.m.f. The local realization of the 
Poincare group and the equation when the system is free are 

(Uo(g)tf)(gx) = tf(x), xEX, gEl', 

p2tf(X) = m2tf(x), pIL=iJIL, m2ER+. (6.1) 

The local representation of M which describes this system, 
now interacting, must be, c.f. (4.3) and (4.10), 

(Ro(a,g) 1JI)«a,g) (xJ) 

= exp{ie(a'l\f + !(a /\ Ax)· Aj)}1JI(xj), (6.2) 

with (a,g)EM, g = (a,A), (xJ)EX XF. This l.rp. of Mis 
reducible and it contains a family of irreducible representa
tions labeled by the values of the Casimir operators (Sec. V): 

(a) F'F, 

(b) F'*F, 

(c) nlLnlL -MILVFILv , 

(d) 4(*F·n)2 - (M'*F) (F'*F). (6.3) 

To this list, we should add the operators associated to some 
signs of some orbits, as we remarked before, but they are not 
taken into account here because they have not a local trans
lation as differential equations. We recall that this is not a 
new problem, for example, we already know that the Klein-
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Gordon equation describes systems with both positive and 
negative energies. 

The explicit expressions of the Maxwell group genera-
tors n, M, F in the l.rp. (6.2) are: 

no = - ao - ~iex'E, 

n = a - ~ie(x!\B + tE), 

M"v = (x"av -xva,,) +M"v(j), 

F"v = ief"v' (6.4) 

where f"v== (E,B) and M"v (j) acts on the /-part of wave 
functions 'I'(xj) as M"v (j) == (j~av;' + f~a,,;.) 
- (j~a;.v - f~a;.,,) with a"v = a /a!"v. Substituting in 
(6.3) the generators (6.4) and considering that M(j) ·f has 
eigenvalue 0 when it acts on 'I'(xj), we get the following 
wave equations: 

(a) f2'1'(Xj) = CI'I'(xj), 

(b) f*f'l'(xj) = C2'1'(xj), 

(c) (ia" - eA" (Xj)2'1'(Xj) = m2'1'(xj), 

whereA" = (- !xoE, !(x!\B + tE». (6.5) 

( d) We write this equation in a particular frame of 
reference and for a special orbit. The general expression is 
too complicated at least to understand its physical meaning. 
When the e.m.f. is of magnetic type, for example (the same 
conclusions can be drawn when it is of parallel type), our 
frame is such that we have the characteristic fields 
A A A 

E = (0,0,0), B = (O,O,B). Then we obtain 
• 2 • 2 A A 

[(la3 ) - (lao) ]'I'(x,B) = C3'1'(x,B). (6.5d) 

Ifwe mix Eqs. (6.5c) and (6.5d), we arrive at the equation 
A A A 

wa, - eA I(x,B»2 + (ia2 - eA2(x,B)f]'I'(x,B) 
A 

= C''I'(x,B). (6.5d') 

This is the known equation of the Landau levels of a charged 
particle interacting with a constant magnetic field. Only dis
crete values C' = eB (2n + 1) are allowed for the existence 
of square integrable solutions,3.7 and as it was mentioned 
before this is related with the compactness of the little group, 
i.e., when we use these values we get assured that exp{21TJ3 } 

is represented by the identity. When the superorbits are of 
electric or light type, the corresponding equatiO...(ls (6.5d') 
~low con!.!nuous values of C'. For example, if B = 0, and 
E = (O,O,E), Eq. (6.5d') becomes 

A 2 A 2 A 

wao - eAo(x,E» - (ia3 - eA 3 (x,E» ]'I'(X,E) 
A 

= C''I'(x,E). (6.5d") 

Note that iff=> 0, the only surviving invariant is (6.3c) and 
we find the Klein-Gordon equation as one can expect. So 
when (6.3c) is the only specified invariant, together with 
those selecting/, it describes a whole family of u.i.rp. 's of M, 
each labeled by the values of C' which are discrete or contin
uous, depending on the superorbit off 

In the case of a !-spin system interacting with a constant 
e.m.f., first we write the associated local realization of the 
Poincare group and the Dirac equation when the system is 
free, which are, respectively, 

(UI/2 (g)tP)(gx) = DIl2.l12 (A)tP(x), 
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-y'p"tP(x) = mtP(x), 

with 

yk= [~ ;]. ~= [~ ~]. 

(6.6) 

k = 1,2,3, a" are the Pauli matrices, ~(-y'rv 
- rV-y') = id'.v, D II2.112 (A) = exp{i !w"vd'v}, P" = ia", 
g= (a,A)EP. 

The local representation that we associate to the inter
acting system is, cf. (4.3) and (4.10), 

(R 1/2 (a,g) '1')( (a,g) (xj) 

= exp{ie(a"/ + !(a!\ Ax)· Aj)}DII2,112 (A)'I'(xj), 
(6.7) 

with (a,g) == (a,g,A)EM. This choice has been made be
cause: (a) when f=>O, the representation (6.7) becomes 
that one of the free system (6.6), and (b) when in a reference 

A""A A A A A 

system wheref=f(E,B), with E = (O,O,E), B = (O,O,B), 
we consider rotations around the z axis this realization acts 
in the same way as it does a free !-spin system. This is part of 
the track of spin in an interacting system. In this representa
tion the infinitesimal generators n", M"v, F"V of Mare given 
by the same expressions as they were in the last representa
tion (6.4), except that M "V must be enlarged by adding the 
spin term !(-y'rv - rV-y') = !ioPv. Replacing such an 
expression for the generators in (6.3) we find the wave equa
tions: 

(a) ff'l'(xj) = CI'I'(xj), 

(b) f*f'l'(xj) = C2'1'(xJ) , (6.8) 

AAA A A A A 

(d') when we havef(B,E), E = (O,O,E) and B = (O,O,B) 
we have, making use of (c) 

wa, - eA I(xJ»2 + (ia2 - eA2(x.f»2]'I'(x.f> 

= (C' ± eB)'I'(x.f>, 

the signs + or - correspond to + ~ or -! spin, respec
tively. Equation (6.8c) is equivalent to the Dirac equation 
written as a second degree equation. It is connected with the 
two-component Feynmann-GellMann equations. IS As 
clear from its origin, this equation gives the characterization 
ofthe little group representation, i.e., the spin characteriza
tion. In Casimir (6.3d) the spin appears ifthe e.m.f. verifies 
F'*F #0. However,equations (6.8c) and (6.8d) jointly give 
the equation (6.8d'), which corresponds to Landau's levels 
with energy eigenvalues depending on the spin whenever the 
field is not of electric or radiation type. Again the origin of 
these discrete levels comes from the fact that exp{21TJ3 } is 
now to be represented by - 1. 

Now we wish to make some comments on the above 
results. The l.rp. Ro contains a number oflocal subrepresen
tations (l.srp.'s), each one characterized by the orbit of the 
e.m.f. (invariants CI and C2 ), the mass (m2

) and, for exam
ple, the Landau levels (C'). It can be shown that all these 
l.srp.'s are locally inequivalent, and as a consequence they 
must describe different physical situations. The same can be 
said on the l.rp. R I 12 used to describe interacting ~-spin parti
cles. 
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Note that we did not make use of the minimal electro
magnetic coupling (p - eA) from the beginning, but it ap
peared when the realizations of the generators were substi
tuted in the Casimir expressions and after a counterbalance 
term. So, the Casimir TI2 - M' F is not generalizable to the 
case in which the e.m.f. is not constant if we want to obtain 
the correct minimal electromagnetic coupling equations. 
There are two main questions to be answered when one is 
dealing with a general not constant e.m.f. The first one is to 
compute the factor systems w(g',g;l) associated to a general 
fieldj = j(x). The second one is to find the equations related 
with such realizations. In the computation of the factor sys
tems the difficulties are derived from the fact that the group 
is infinite dimensional and that makes it impossible to gener
alize our preceding method. However, we will show another 
way that carries directly to. the minimal coupling (6.5c) 
which may be applied to the not constant e.m.f. situation, 
once the general factor systems have been founded out. 

Making use only of the generators of the Maxwell 
group, we are looking for an equation such that ifj=:} 0 it 
becomes the free wave equation.:.. At the poi~ Xo = 0, the 
generators of the isotrop), group rr.,' TIJL anq Mp-v act in the 
same way as the P P- and L JLV (generators of the subgroup r I., 
of the Poincare group.) Thus, if the free equation is 

E(PP-)\fI(x) = 0, (6.9) 

we can consider the support function space of the covariant 
representation of M (4.10) with the condition that at the 
point (x% ) verifies 

E(TIP-)\fI(x%) = O. (6.10) 

Independently of the correct equation satisfied by \fI at any 
point (xj) of the orbit O(X"J,,) , it is clear that just at the point 
(xolo) the equation (6.10) is fulfilled. Now making use of 
Lorentz transformations, (6.10) becomes 

(6.11 ) 

withjE0r., (remark that Xo = 0). Finally, if we make a trans
lation from Xo to another point xEX, we get 

E(PP- - eA P-)\fI(xj) = 0, ( 6.12) 

which is the free equation (6.9) with the right minimal cou
pling. This procedure to construct wave equations is general 
enough and it gives more importance to the characterization 
of local realizations than it does to the description ofirredu
cible representations. Observe that in this way, the Dirac 
equation with e.m. coupling appears directly and we do not 
have to make use of a second-degree equation. 

VII. CONCLUSIONS 

In the study of the problem of elementary systems inter
acting with an external constant e.m.f., we have made use of 
a new kind of local realizations of the Poincare group, with 
an equivalence relation physically reasonable. It has been 
determined the classes of relevant factor systems, as well as a 
representation group known as the Maxwell group. The phy
sically interesting l.rp. 's of this representation group were 
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characterized and we fixed the equivalence criteria to classi
fy them. Finally, we have compared such l.rp.'s with the 
irreducible ones by means of invariant equations. Some of 
these equations can be obtained from the ones for the corre
sponding free system by means of a minimal coupling. 

This point of view is interesting by itself because it shows 
the importance that l.rI.'s have in describing interacting sys
tems. Ifwe study the l.rI. 's of the whole Poincare group with
out having to restrict to an in variance subgroup, we obtain 
the maximum of information and furthermore, it allows a 
covariant formulation. For example, in this context we can 
speak about the spin of the interacting system. Also, this 
formulation leads to an easy comparation with free systems, 
which is of most importance. On the other hand, this is a 
natural extension of ordinary l.rI.'s so that the Maxwell 
group can be thought of as a particular case of the represen
tation group concept, and then its origin should not be con
sidered as an isolated special case. 

This theory can be developed for any kinematical group. 
Indeed we have made use of a very general notation and the 
results may still be valid, with some slight changes if neces
sary, when the group is not Poincare. However, we have to 
define a suitable constant e.m.f. consistent with such a kine
matical group. 16 Therefore, we shall give some results in a 
forthcoming paper on the Galilean case. 
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Two classes of irreducible highest weight modules of the general linear Lie algebra gl ( 00 ), 

corresponding to two different Borel subalgebras, are constructed. Both classes contain all 
unitary representations. Within each module a basis is introduced. Expressions for the 
transformation of the basis under the action of the algebra are written down. 

I. INTRODUCTION 

During the last decade the infinite-dimensional Lie alge
bras became a field of increasing interest in several branches 
of mathematics and physics (see Refs. 1 and 2 and the refer
ences therein). We mention here as an example, related to 
the topic of the present paper, the results of the Kyoto 
schooP-6 on the applications of certain highest weight repre
sentations of gl ( 00 ), which led to solutions of a large class of 
integrable equations. The algebra gl ( 00 ), and more precisely 
its completion and central extension a.. (see Refs. 2 and 7), 
has several other applications (string theory, two-dimen
sional statistical models, etc.). This is due to the circum
stance that the highest weight irreducible modules of a .. are 
carrier spaces for several representations of the infinite-di
mensional Heisenberg algebra, the Virasoro algebra, and 
other Kac-Moody algebras (see Ref. 8 for applications in 
quantum physics). 

The present paper is devoted to a study of two classes of 
highest weight representations of the infinite-dimensional 
general linear Lie algebra gl ( 00 ), corresponding to two dif
ferent matrix realizations of gl( 00 ), namely (see the nota
tion at the end of the Introduction), 

glo( 00 ) = {(aij) li,jeN, all but a finite 

number of aijeC are zero}, 

gl .. = {(Aij) li,jeZ, all but a finite 

number of AijeC are zero}. 

(1.1 ) 

( 1.2) 

In both realizations the Lie bracket is the ordinary matrix 
commutator. Leteijeglo( 00), i,jeN (resp. Eijegl .. , i,jeZ) be 
a Weyl matrix, i.e., a matrix with 1 on the ith row and the jth 
column and zero elsewhere. All eij' i,jeN (resp. Eij' i,jeZ) 
constitute a basis in gl( 00 ), usually called a Weyl basis. The 
commutation relations on gl( 00) are a linear extension of 
the relations 

[eij,ekd = 8jk eU - 8/iekj , i,j,k,leN, (1.3) 

[Eij,Ekl] = 8jkEU - 8/iEkj , i,j,k,le'l. (1.4) 

Let 

N°+ = lin. env. {eij Ii <jeN} C glo( 00) (1.5) 

and 

N+ = lin. env.{EijlkjeZ} C gl.. (1.6) 

a) Permanent address: Institute for Nuclear Research and Nuclear Energy, 
blvd. Lenin 72, 1184 Sofia, Bulgaria. 

be subalgebras of gl( 00 ), consisting of all strictly upper 
triangular matrices in glo( 00) and gl .. , respectively. The 
irreducible gl( 00) module V is said to be a gl.. [resp. 
glo( 00 )] highest weight module2 [corresponding to the 
"Borel" subalgebra N + (resp. to N°+ )], if there exists a 
vector X A eV, called a highest weight vector, such that 

N +X A = 0 , Eiix A = M;x A' V ieZ ( 1. 7) 

(resp. N°+ x A = 0, e/ixA = m;xA> 'lieN). 0.8) 

The sequence of complex numbers 

[M] ={M;lieZ} (1.9) 

(resp. [m] ={m; lieN}) ( 1.10) 

is said to be the highest weight (that is, the signature) of the 
gl"" [resp. glo( 00)] module V. 

The highest weight irreducible gl ( 00) representations 
are infinite-dimensional analogs of the finite-dimensional ir
reducible highest weight representations of gl (n). In the 
case of gl( n), the finite-dimensional irreducible highest 
weight representations give all finite-dimensional irreduci
ble representations, irrespective on the choice of the Borel 
subalgebra. This is no more the case for the infinite-dimen
sional algebras and, in particular, for gl( 00 ). Here we study 
the highest weight representations, corresponding to N°+ 
and N +, which we called highest weight representations of 
glo( 00) and gl .. , respectively. The highest weight represen
tations of glo ( 00) are a natural generalization of the repre
sentations of gl (n) in the Gel'fand-Zetlin basis.9

•
10 This ba

sis is, however, inappropriate for a direct generalization to 
gl"" . Therefore, we first modify it, introducing a new labeling 
for the basis vectors. We write down the transformations of 
this basis, which we call a central basis (C basis), under the 
action of the generators. It is difficult to say how rich are the 
two classes of representations we consider. It turns out, how
ever, that they contain all gl .. and glo{ 00 ) highest weight 
modules, for which 

E;f = Eji' V i,je'l (resp. e;f = eji' V i,jeN), (1.11) 

where a+ is the Hermitian adjoint of the operator a with 
respect to a certain scalar product in the representation 
space. Following the terminology2 accepted in the literature 
we call these representations unitary. 

The exposition is organized as follows. In Sec. II we 
recall the way one introduces the Gel'fand-Zetlin basis in 
the gl(n) fidirmods (Sec. II A). In a similar way we define 
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the C basis and write dowp. the transformation of the basis 
under the action of the generators (Sec. II B). Section III is 
devoted to the study of the highest weight irreducible gl( 00 ) 

modules. First (Sec. III A), we investigate the glo( 00) mod
ules. In Sec. III B we extend the concept of the C basis to the 
infinite-dimensional case and apply it to gloo . 

Throughout the paper we use the following abbrevia
tions and notation: 

LA, LA's-Lie algebra, Lie algebras; 

fidirmod (s )-finite-dimensional irreducible module (s); 

GZ basis-Gel'fand-Zetlin basis; 

lin. env.{X}-the linear envelope of X; 

C-the complex numbers; 

R-the real numbers; 

Z-all integers; 

l+ -all non-negative integers; 

N-all positive integers; 

[M] = {MiliEl, MiEC}; 

[m] = {milieN, miEC}; 

(1.12) 

0.13) 

(1.14 ) 

[Mbk+ 8 = [M _ k.2k+ 8,M - k+ 1.2k+ 8,···,Mk +8-1.2k+ 8]' 

0=0,1, kEN; 

lij = mij - i, Lij = Mij - i; 

(x, Y)o = x, y, (x, Y) I = Y,X; 

if p<qEl, then [p,q] = {k Ip<k<,q, kEl}; 

O(x) = 1, for x>O, O(x) =0, for x<O. 

(1.15) 

( 1.16) 

(1.17) 

(1.18) 

( 1.19) 

II. FINITE-DIMENSIONAL REPRESENTATIONS OF 
gl(2N+1) 

Consider the LA gl(2N + 1), NEl+, and let V be a 
gl( 2N + 1) fidirmod. In this section we introduce a basis in 
V, labeled in two different ways. The first one is the known 
Gel'fand-Zetlin basis (GZ basis),9 which can be easily ex
tended to a basis in the highest weight glo( 00) modules. The 
second basis, which we call a central basis (C basis), is more 
appropriate for generalization in the gloo modules. In both 
cases the definition of the basis makes use of the following 
proposition. 

, ... 

Proposition 1: Consider the glen) fidirmod V(n) as a 
gl( n - 1) module. Then 

k 

V(n) = L Ell Vi(n-I), (2.1) 
;=1 

where each Vi (n - 1) is a gl(n - I) fidirmod and all 
VI (n - 1 ), ... , Vi (n - 1 ), ... , Vdn - 1) carry inequivalent 
representations of gl (n - 1). 

As in the case of gl ( 00 ) it is convenient to use two differ
ent matrix realizations for the same LA gl (2N + 1), namely, 

g10(2N + 1) = {(aij) laijEC, i,j = I,2, ... ,2N + 1}, (2.2) 

g12N+ I = {(Aij) IAijEC, 

i,j = - N, - N + 1, - N + 2, ... ,N} . (2.3 ) 

A. GZ basls9.10 

Let eij' i,j = I, ... ,n, be the Weyl generators of 
glo (2N + 1). Consider the chain of subalgebras 

glo(n) :J glo(n - 1) :J ... :J glo(k) 

:J ... :J gI0(2) :J gloO) , (2.4) 

where glo(k), k = I, ... ,n, is a linear span of the generators 
eij' i,j = I, ... ,k. Let 

V([m]n):J V([m]n_I):J "':J V([m]k) 

:J ... :J V([mb) :J V(m ll ) (2.5) 

be a flag of glo(k) fidirmods V([m] k), k = 1,2, ... ,n, where 

(2.6) 

is the signature of V( [m] k ). In an ordered basis of the Car
tan subalgebra 

(2.7) 

of glo(k) (so that the linear envelope of all positive root 
vectors is a Borel subalgebra), mik is the eigenvalue of eii on 
the highest weight vector x (k) E V( [m] k ), 

eiix(k) = mikx(k), i = I, ... ,k . (2.8) 

Since the fidirmods of glo( 1) are one dimensional, the flag 
(2.5) defines a vector (m) in V( [m] n ), which, according to 
Proposition 1, is uniquely defined by the signatures 
[m]n, [m]n _ I , ... , [m]k, .. ·,[mhmll · Therefore, one can set 

, ... 
m1.n-1 ,m2.n_ 1 , ... ,m k •n_ 1 ,mn-l,n -1 

(m)= [mh , ... (2.9) 

The vectors (m) [see (2.9)], corresponding to all possible flags (2.5), constitute a basis in the glo(n) fidirmod V( [m] n)' This 
is the Gel'fand-Zetlin basis (GZ basis).9 For later use we summarize the results of Ref. 9 in a proposition (for derivation of the 
results, see Ref. 10). 
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Proposition 2: The n-tuple [m] n == [m ln ,m2n , ... ,mnn ] is a signature of a glo(n) fidirmod V([m] n) if and only if minEC 
and 

min - mjnEZ+, Vi <j = 1, ... ,n. (2.10) 

The GZ basis r( [m]n) in V( [m]n) is given with all patterns (2.9) consistent with the betweenness condition 

mi,j+ 1- mijEZ+, mij - m i + I,j+ ,EZ+. (2.11 ) 

The transformation of the GZ basis under glen) is completely defined from the relations 

k~'ln~=,(lik-lj'k_,)n~,:}(li'k_2-lj'k_,-I) 1112 
ek_I,k(m)=£". k-I (m)j,k_I' 

j=1 ni#j=l(li,k-1 -lj,k-,)(li,k-, -lj,k_, -1) 
(2.12) 

k-I I n~= I (lik -lj,k_, + l)n~,:}(li,k_2 -lj,k_,) 1112 (m) . 
e k,k - I (m) = L k _ I - },k - I , 

j=1 ni#j=l(li,k_1 -lj,k_,)(/i,k_, -lj,k_, + 1) 
(2.13 ) 

wherelij = mij - iand the pattern (m) ± i,j is obtained from 
the pattern (m) by the replacement m ij ..... m ij ± 1. 

All GZ basis vectors are weight vectors. The glo(k) 
highest weight vector x(k) in V([m] k) is given with the 
pattern 

x(k) == (m), such that m ii = mi,i+ I = ... = m ik , 

Vi= I, ... ,k. (2.15) 

In this case 

eiix(k) = mikx(k), i = 1, ... ,k. (2.16) 

B. Central basis (C basis) 

Consider as a basis in gl2N + I the Weyl matrices 

Eij, i,jE[ - N,N] . (2.17) 

For any e = 0,1 and kE [1 - e,N], define a subalgebra 

gl2k +8 = lin. env. {Eij li,jE[ - k,k + e - I]}. (2.18) 

As an ordered basis in gl2N + () take 

E _ k,- k,E _ k+ I,-k+ "E - k+2,- k+2,· .. ,Ek+ ()-I,k+()-I' 

(2.19) 

Then the generators E ij' i <jE [ - k,k + e - 1], are the posi
tive root vectors in gl2k + (). Let g: Z ..... N be a bijective map
ping, defined as 

g(z) = 21z1 + e(z)EN, VzEZ . (2.20) 

Proposition 3: The mapping ({l, which is a linear exten
sion of the relations 

((l(Eij) = eg(i),g(j)' i,jE[ - N,N] , (2.21 ) 

is an isomorphism of gl2N + I on glo (2N + 1). Its restriction 
on gl2k + () gives an isomorphism of gl2k + () on glo( 2k + e) 
for each e = 0,1 and kE [1 - e,N]. The chain of subalgebras 

g12N+ I ::) gl2N ::) ... ::) gI2k+ () ::) ... ::) gl2 ::) gIl (2.22) 

is transformed by ({l into the chain (2.4): 

glo(2N + 1) ::) glo(2N) ::) ... ::) glo(2k + e) ::) ... 

::) glo(2) ::) gloO) . (2.23) 
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(2.14) 

The proof is straightforward. The isomorphism (2.21) 
allows one to tum any glo (2k + e) fidirmod V( [m] 2k + () ) 
(for each e = 0,1 and kE [1 - e,N] ) into a gl2k -+- () fidirmod 
by simply setting ((l(Eij) = eg(i),g(j)' In particular, any 
glo (2N + 1) fidirmod V( [m ] 2N + I) is a g12N + I fidirmod. 
The transformation of the GZ basis (2.9) under the action of 
gl2N + I reads 

({l(Eij )(m) = eg(i),g(j) (m), V (m)Er( [mbN + I) . 

(2.24) 

Therefore ({l is a representation of gl2N + I in V( [m ] 2N + I ) 

and the flag 

V([mbN+ I) ::) V([m]2N) ::) ... ::) V([m]2k+8) ::) ... 

::) V( [mb) ::) V(m,,) , (2.25) 

can be considered as a flag offidirmods of the chain (2.22). 
Hence the GZ vector (2.9) (n = 2N + 1), defined 
by (2.25), can be labeled with the signatures 
of V( [mbN+ I ),V( [mbN)'''''V( [m]2k+ (), ... ,V( [mb), 
V(m,,) with respect to g12N + I ,gI2N, ... ,gI2k + (), ... ,g12,gl" cor-
respondingly. Let [M bk+ () be the gI2k'+ () signature of 
V( [m ]2k + (). By definition, [M ]2k + () consists of the eigen
value of the representatives of the Cartan generators (2.19), 
i.e., 

({l(E - k, - k ),({l(E - k+ I, - k + I)' 

({l(E _ k + 2, - k + 2) , ... ,({l(Ek + () - I,k + () - I ) 

= e2k,2k,· .. ,e44,e22,e",e33,e55" .. ,e2k+ ()-1.2k+ ()-I , 

(2.26) 

on the gl2k + () highest weight vector 
y(2k + e)EV( [m]2k+ (): 

({l(Eii )y(2k + e) = M i,2k +8 y(2k + e), 

i = - k, - k + 1, - k + 2, ... ,k + e - 1 . (2.27) 

Therefore we set 

[Mbk+ ()== [M -k,2k+ (),M -k+ 1.2k+()' 

M_ k+ 2,2k+(),· .. ,Mk+()_I,2k+()] , (2.28) 
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and write the vector (2.9) in terms of the signatures (2.28) as 

M -N,2N+ I ,M -N+ 1,2N+ I'''' ,M -I,2N+ I ,MO,2N+ I ,MI,2N+ I , ... ,MN- I,2N+ I ,MN,2N+ I 

,MN- I,2N M -N,2N ,M -N+ 1,2N'''' , M _ 1,2N , M O,2N , M I,2N' '" 
................................................... ,.. ................ . 

(M) = 

M_ I,3 

M -1,2 

Clearly in the case n = 2N + 1, {2.9) and (2.29) are two 
different labelings for one and the same vector (m) == (M). 
In order to determine the relations between its g10(2N + 1) 
coordinates m ik and its g12N+ I coordinates Mpq we observe 
that up to a permutation the right-hand side of (2.26) coin
cides with the basis (2.7) of the Cartan subalgebra of 
g10(2k + B), Therefore [M bk+ fJ is a signature of 
V( [m] 2k + fJ) with respect to the new ordering (2.26) of the 
basis in the Cartan subalgebra of glo(2k + B). The reorder
ing of the basis [which is an inner automorphism and can be 
achieved with an action of a proper element of the Weyl 
group ofglo(2k + B)] is changing the highest weight vector 
of V([mb+fJ) from x(2k + B) to y(2k + B). It does 
not change the signature, however. Therefore, [M bk + e 
= [m bk + e' This equality, written in terms of the coordi
nates, reads 

M j _ k- 1,2k+ fJ = mj,2k+ fJ' VB = 0,1, ke[ 1 - B,N], 

je[ 1,2k + B] . (2.30) 

We call the basis, written in the notation (2.29), a central 
basis (Cbasis) in V( [M ]2N + I) == V( [m]2N+ I) and denote 
it as r ( [M] 2N + I ). The problem of writing the transforma
tion of the C basis under the action of gl2N + I reduces to a 
change of the variables (2.30) in the right-hand sides of Eqs. 
(2.12)-(2.14) for n = 2N + 1 together with a replacement 
of the left-hand sides according to (2.24). We formulate the 
final result as a proposition. Let (M) be an arbitrary C-basis 
vector (2,30). Denote by 

E( _ k.k _ v)" (M) 

,M03 ,M\3 

,M02 

MOl 

(M)±[j,2k+fJ)' B=O,l, ke[l-B,N], 

je [ - k,k + B-1], 

the C vector obtained from (M) by the replacement 

~,2k+fJ-~,2k+fJ ± 1 . 

Proposition 4: The (2N + 1 )-tuple 

( .29) 

(2.31 ) 

(2.32) 

[MbN+ I = [M -N,2N+ I,M -N+ 1,2N+ l,oo.,MN,2N+ I] 
(2.33 ) 

is a signature of a gl2N + I fidirmod V( [M ] 2N + I ) if and only 
if 

Mk,2N+leC, ke[ -N,N]; M i,2N+I -~,2N+lel+, 

Vkje[ -N,N]. (2.34) 

The C basis r( [M bN+ I) in V( [M bN+ I) consists of all 
patterns (2.29) for which the (N + 1) (2N + 1) labels 

M i,2k+fJ' B=O,l, ke[l-B,N], ie[ -k,k+B-1], 

(2.35) 

take all possible values consistent with the conditions 

M i _ e,2k+ 1- fJ - M i,2k- eel+, 

M i,2k- e - Mi+ 1- fJ,2k+ I_eel+ , 

for all B = 0,1, ke[ 1,N], ie[B - k,k - 1] . 

(2.36) 

The transformation of the C basis under the action of gl2N + I 
is defined from the relations [we write Eij instead of q;(Eij)] 

= . k:f 1 n~,: :kk_[ ~i'2k+ 1- v - L~k_ v + j.t(l -~v)! n~,:r~k[ Li~k_1 -v - Lj'2~_ v : j.t~ - 2v)] 1112 

,-v-k ni""j=v_k[Li,2k_v L j,2k-v+( 1) v] [Li,2k-v L j,2k-v+( 1) (v 1)] 
X(M)(_\J"+"lj,2k_V) ' Vj.t,v=O,l, Vke[l,N] [see (1.16) and (1.17)], (2.37) 

[

Ikl + fJ(k)-1 
Ekk (M) = L M i,21k 1+ 8(k) 

i= -Ikl 

Ikl-I ] - L M i,21 k I + 8(k) - I (M), 
i= -lkl+I-8(k) 

(2.38) 

where ke[ - N,N] and Moo = M _ 1,0 = 0. 
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The vector y(2k + B)er( [M bN + I ), for which 

M i,2j+qJ =Mi,2k+I' Vq;=O,l, ie[ -j,j+q;-l], 

(2.39) 

is annihilated by all E ij' kje [ - k,k + B-1], i.e., it is a 
g12k+ 8 highest weight vector in V( [M bk + 8)' In particu
lar, the gl2N + I highest weight vector y A e V( [M ] 2N + I ) is 
the (only) one from (2.29), for which 
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M i,2k+() = M i,2N+ 1> VO=O,I, kE[I- O,N], 

iE [ - k,k + 0 - I]. 

III. IRREDUCIBLE REPRESENTATIONS OF gl(oo) 

A. Highest weight modules of glo( 00 ) 

(2.40) 

Proposition 5: To each sequence of complex numbers 

such that 

(3.2) 

there corresponds an irreducible highest weight glo( 00) 

module V( [m]) with a signature (3.1). The basis r([m]) 
in V( [m] ), which we call a GZ basis, can be chosen to con
sist of all patterns 

(3.9) 

and the identities 

ei + 2,i+3 ], ... ],ej _ 2,j_l ],ej_l,j] , (3.10) 

ei - 2,i-3 ], ... ],ej + 2.j + I ],ej + l,j] , (3.11) 

for i <j and i > j, respectively. 
The highest weigh t vector (m) 0 is the one from (3.3) for 

which 

mij = mj> VjEN, iE[ 1, ... ,j] . (3.12) 

The proof will be a consequence of a few separate steps. 
First we introduce some terminology and notation. Let 

[m] 

[m]n 
(m) = Er( [m]). (3.13 ) 

[mb 

Then 
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[m] 

(m)= 
, ... [m]j 

, (3.3) - .. 
m l2 , m22 [mb 
mll mll 

characterized by an infinite number of coordinates 

mij, VjEN, iE[ l,j], (3.4) 

which are consistent with the conditions ( 1 ) for each pattern 
(m) there exists a positive integer [depending on (m)] 
N[ (m) ]EN, such that 

mij =mj> Vj>N[(m)], i= I, ... ,j; (3.5) 

(2) mi,j+ I - mijE'l+, mij - mi+ I,j+ I E'/,+, Vi<.,jEN. 

(3,6) 

The transformation of the basis (3.3) is determined from the 
action of the generators [see (2.12)-(2.14)] 

k=2,3, ... , (3.7) 

k=2,3, ... , (3.8) 

(a) [m]n = [mln,mln, ... ,mnn]' n = 1,2, ... , (3.14) 

is said to be an n signature of (m); 

[m] [m]n 

[mL 

(3.15) 

are said to be an n-upper part and an n-Iower part of (m), 
respectively. 

Consider the subalgebra 

gl(n) = {eij li,j = 1, ... ,n} C glo( 00 ) • (3.16) 

Observation 1: Let 

eE{ejj,ek.k_l,ek_I,kli= 1, ... ,n, k=2, ... ,n}. (3.17) 

Then, for any (m)Er( [m]), e(m) is a linear combination of 
vectors from r( [m]) with one and the same n-upper part 
(m)Up(n). More generally, let U(n) be the set of all polyno
mials of the operators (3.17). Then, for every aEU(n), a( m) 
is a linear combination of vectors (3.13) with one and the 
same n-upper part (m)Up(n). In particular, this property 
holds if a is a gl(n) generator or any polynomial of gl(n) 
generators. 

Denote by 
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r([mLli>n) c r([m]) (3.18 ) 

the set of all vectors (3.13), that have one and the same [m] j 
signatures, for all t>n. Let 

V( [mLli>n) C V( [m]) (3.19) 

be the linear span of r( [mL li>n). From (3.7)-(3.9) one 
concludes that V( [mL li>n) is invariant with respect to the 
action of glen). To each (m)er([mLli>n) put in corre
spondence its n-Iower part: 

f(m) = (m)low(n), V(m)er([mLli>n). (3.20) 

Let 

r( [m]n) = {f(m) I (m)er( [mLli>n)}. (3.21) 

Then f maps bijectively r([mLli>n) on r([m]n)' Ob
serve that r([m]n) consists of all GZ patterns of a glen) 
fidirmod with a signature [m] n • Define an action of gl (n) on 
each (m)er( [m]n) with the relations (2.12)-(2.14). Then 
the linear envelope V( [m]n) of r( [m]n) is a gl(n) fidir
mod with a signature [m] n' From a comparison of the rela
tions (3.7)-(3.9) with (2.12)-(2.14) and observation lone 
easily concludes that for each e [see (3.17)] the diagram 

V( [mLli>n) V( [mLli>n) 

e 

f (3.22) 

e 

is commutative. 
Obseroation 2: The subspace V( [mL li>n) C V( [m]) 

is an irreducible finite-dimensional gl (n) module with a sig
nature [m]n and a GZ basis r( [mLli>n). 

Let eij' ekl be any two generators from glo( 00 ) and (m) 
be an arbitrary vector from r( [m]). Consider eij' ekl as 
elements from glen) C glo( 00), where n>max(i,j,k,l). 
Then (m ) is a vector from the gl (n ) fidirmod 
V([mLli>n) C V([m]) [see (3.18) and (3.19)] and 
therefore [observation 2] 

(eijekl - ek/eij )(m) = (lijkei/ - li/iekj )(m) . (3.23) 

This proves a part of Proposition 9, which we formulate as a 
separate statement. 

Conclusion 1: The operators eij' defined with the rela
tions (3.7)-(3.11), tum the linear space V([m]) into a 
glo( 00) module. 

Consider any two vectors x, )IE V( [m] ), 

p q 

x = L aj(mi), Y= L ai(mi), 
i=1 i=p+' 

(3.24) 

Let 

N = max{N [(mi)] Ii = 1, ... ,q} . (3.25) 

Then according to (3.5) all vectors (mi), i = 1, ... ,q, have 
one and the same k signatures, for every k>N: 
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for every i = 1, ... ,q and for any k>N. There
fore (mi)eV( [m]k Ik>N) C V([m]). Hence 
x,)lEV([m]klk>N). The space V([mhlk>N) is a gl(N) 
fidirmod (observation 2) and, therefore, there exists a poly
nomial Pofthe gleN) generators such that y = Px. 

Conclusion 2: The glo( 00 ) module V( [m]) is an irredu
cible glo( 00 ) module. 

Consider the vector (m)oer([m]) [see (3.12)]. By a 
straightforward computation one obtains, from Eqs. (3.9) 
and (3.7), that 

(3.27) 

and 

ek,k+' (m)o = 0, VkeN. (3.28) 

The last equality together with the identity (3.10) ,gives that 
eij(m)o = 0 ,Vi<jeN. Hence [see 0.7)] 

(3.29) 

Conclusion 3: The irreducible glo( 00) module V( [m]) 
is a highest weight module with a signature 

(3.30) 

and a highest weight vector (m)o' 
This completes the proof of Proposition 8. 
Denote by iJ the class of all highest weight irreducible 

glo( 00 ) modules, which we have obtained so far, i.e., those 
with signatures (3.1) and (3.2). There is no claim that iJ 
contains all highest weight irreducible glo( 00) modules. We 
now proceed to show that the class iJ is rich enough and it 
contains all unitary irreducible highest weight glo( 00 ) mod
ules. 

Define an antilinear anti-involutive mapping CtJ in 
glo( 00 ) in a standard way 

CtJ(a + b) = CtJ(a) + CtJ(b), Va,beglo( 00) , 

CtJ(Aa) = A *CtJ(a), Vaeglo( 00), Aee, 

(3.31 ) 

(3.32) 

(3.33) 

where A * is the complex conjugate of A. Introduce a scalar 
product ( , ) in every V( [m]) by declaring that the GZ 
basis be orthonormed. From (3.7)-(3.9) one derives that 

(ax,y) = (x,CtJ(a)y), Vaeglo(oo), x,)lEV([m]) ,(3.34) 

(i.e., that the scalar product is contravariant with respect to 
CtJ) if and only if the signature [m] = {m i lieN} consists of 
real numbers, mieR, VieN. Clearly, (3.34) holds if and only 
if ( 1.11) is fulfilled. By definition (see, for instance, Ref. 2) 
such representations are called unitary. Thus a module 
V([m]) C iJ carries a unitary representation of glo( 00) 

only if its signature is real, i.e., if its coordinates are real 
numbers. We denote all such modules by iJR, iJR C iJ. 

Let V( [m ] ) be an arbitrary unitary irreducible highest 
weight glo( 00 ) module with a signature 
[m] == [m"m 2 , ... ,mW .. ,mj , ... ]. Denote by (m)o its highest 
weight vector. Then 

(3.35) 
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Take any two positive integers i < jEN. Choose i<nEN and 
let gl (n) be the subalgebra (3.16) of glo ( 00 ). The represen
tation of gl (n) in V( [m] ) is unitary and, in general, reduc
ible. Let V( n) be the irreducible unitary gl (n) submodule in 
V( [m]), which contains (m)o' All such modules are finite 
dimensiona19 and with real signatures. The vector (m)o is 
the highest weight vector in V( n) and, therefore, the signa
ture of V(n) is [ml,. .. ,m;. ... ,mj, ... ,mn ]. Hence m;ER, 
i = 1, ... ,n, and, according to Proposition 2, 

Since the latter holds for any i<jEN, the signature [m] of 
V(n) is a real signature of the type (3.1) and (3.2) and, 
therefore, V(n) C ih. We have obtained the following re
sult. 

Proposition 6: The irreducible highest weight glo( 00) 

module V( [m ]) carries an unitary irreducible highest 
weight representation ofglo( 00) if and only if V( [m] )Eih. 

If one requires an addition that the real form of glo ( 00 ), 

which is a linear envelope of all generators i(epq + eqp ), 
epq - eqp,p,qEN, is integrable to a unitary representation of 
the group U( 00 ), then the coordinates of the signatures [m] 
should be integers, m;EZ [as it is for the unitary representa
tions of U(n)]. 

The unitary representations of the group Uo, which is a 
closure of U ( 00 ) in the group U of all unitary operators in an 
infinite-dimensional separable Hilbert space V, were studied 
by Kirillov. 11 He mentioned the possibility of introducing a 
GZ basis in Vwithout specifying explicitly the conditions for 
selecting the basis and, in particular, condition ( 1) in Propo
sition 5. 

Observe that (contrary to the finite-dimensional case) 
the algebra glo( 00 ) does not contain the "unit matrix," 

1= L eiiE glo( 00 ) • 
ieN 

It is possible to extend glo( 00) to a larger LA ao( 00), con
sisting of all infinite matrices (a y ), i,jEN, which have finite 
number of nonzero diagonals. In this caseIEao( 00 ). Ifwetry 
to apply the linear extension of Eqs. (3.7)-(3.9) in order to 
represent ao( 00) in V([m]), then [see (3.9) and (3.12)] 

(3.36) 

Therefore, I is defined as an operator only in the modules of 
finite signatures, i.e., those glo( 00) modules V( [m]), which 
signature [m] has a finite number of nonzero elements. 
Clearly, V( [m]) is a module of finite signature if and only if 
there exists NEN such that m; = 0, Vt~N. A more detailed 
analysis shows that any glo( 00) module of finite signature is 
also a highest weight irreducible unitary ao( 00 ) module. 

B. Highest weight modules of gl"" 

The propositions stated below are proved in a similar 
way as those from the previous section. Therefore, we skip 
all proofs. 

Definition: Let 

[M] = [ ... ,Mp, ... ,M _ I ,Mo,MI> ... ,Mq, ... ] 

= {M; IM;EC, iEZ} (3.37) 

be a sequence of complex numbers such that 

M; - MjEZ+, Vi <jEZ . (3.38) 

A pattern (M) consisting of all complex numbers 

M;.2k+8-1' VkEN, 8=0,1, iE[I-8-k,k-l], 

(3.39) 

which satisfy the conditions (a) there exists N( [M) ]EN 
such that 

M;.2k+8-1 = M;o Vk>N [(M)], 8 = 0,1, 

iE [1 - 8 - k,k - 1] ; 

(b) M;+ 8-1.2k+8 - M;.2k+8-1 EZ+ , 

M;.2k+8-1 - M;+8.2k+8 EZ+, 

V kEN, 8 = 0,1, iE [1 - 8 - k,k - 1] , 

will be called a C pattern (corresponding to [M]). 

(3.40) 

(3.41) 

The entries M;.2k + 8 _ 1 will be referred to as coordinates 
of the C pattern. It is convenient to order them as indicated 
in the pattern below, writing as a first row the sequence [M]: 

, ... ,Mk + 8 _ 1 ' .... •• 

. .. .. . . . . .. . . . .. . . .. . . .. . . . . .. .. . . .. .. . . . . . . .. . . . . . . . . . . . . . . . .. .. . . ........ .. 
, ... ,M-I.2k+8-1 ,MO.2k+8-1 , ... , Mk + 8 - I,2k + 8 - 1 

M= , (3.42) 

M_ 1•3 

M -1,2 ,M02 

MOl 

where kEN, 8 = 0,1. 
Proposition 7: To each sequence (3.37) there corresponds an irreducible highest weight gl"" module V( [M]) with a 

signature [M]. The basis r ( [M] ) in V( [M]) consists of all C patterns, corresponding to [M]. The transformation of the 
basis is determined from the relations [see (1.16) and (1.17)] 
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E( _ k.k _ vl" (M) 

= k:f I II~':~kk_[~i,2k+ I-v - L j •2k - v +,u(1 - 2v) ]II~,:t=-[[Li.2k_I-v - Lj •2k _ v + ,u(1- 2v)] 1112 

j= v- k " i7"j= v- k [Li.2k _ v - L j •2k - v + ( - 1 )I'v] [Li•2k _ v - L j •2k - v + ( - 1)1'(v - 1)] 

X (M)(_I),,+V[j.2k_vl' V,u,v=O,l, VkeN, (3.43) 

[

lkl+9(kl-1 Ikl-I ] 

Ekk (M) = I Mi.2lk 1+ 9(kl - ') Mi.2lk 1+ 9(kl - I (M), 
i= -Ikl i= -lkl+l-9(kl 

(3.44) 

I 

where kEZ and Moo = M _ 10 = O. The gloo highest weight 
vector (M)o is the one from r( [M]) for which 

Mi.2k+9-1 =Mj> VkeN, ()=O,l, 

ie [1 - () - k,k - 1] . (3.45 ) 

Proposition 8: Define an antilinear anti-involutive map
ping w in gloo with the Eqs. (3.32) and (3.33) for every 
a,begl"" and 

w(Eij) = Eji' Vi,jEZ . (3.46) 

Introduce a metric ( , ) in V( [M]), postulating that the C 
basis r ( [M] ) be orthonormed. Then V( [M] ) carries a uni
tary (irreducible highest weight) representation of gloo if 
and only if its signature [M] consists of real numbers. The 
real form of gl"", which is a linear span of all i(Epq + Eqp), 
(Epq - Eqp ),p,qEZ, is integrable to a unitary representation 
of the corresponding group U"" only if the coordinates of 
[M] are integers. 

From a point of view of physical applications it is more 
interesting to construct the unitary irreducible highest 
weight representations of the completion and central exten
sion a 00 of gl"" . In a forthcoming paperl2 we shall study all 
these representations, using essentially the results of the 
present investigation. 
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Infinit~i"!al unitari~y of representations of the simple real Lie algebras su (2), su ( 1,1), and 
so~ 4) IS discusse~ WIth respect to scalar products induced by sesquilinear forms on their 
umversal enveloptng algebras. Sesquilinear forms are explicitly calculated. The Verma 
modules, their irreducible quotients, their irreducible submodules, and their infinitesimal 
unitarizability are discussed. 

J. INTRODUCTION 

This article discusses the Verma modules for su(2), 
su(1,1), and so(4), and the unitarizability of irreducible 
Verma modules, their irreducible quotient modules, and 
their irreducible submodules. Infinitesimal unitarity is dis
cussed with respect to a scalar product that is induced by a 
sesquilinear form defined on the enveloping algebra of a giv
en Lie algebra. 1 It is shown that the scalar product leads to 
the unitarized representations of su (2), su (1,1 ), and so ( 4) 
that are familiar from physical applications. 

A Verma module dA of highest weight A, AeC, may be 
reducible, but not completely reducible. This happens when 
there exists a submodule d1.., invariant under the action of 
the Lie algebra with a complement that is not invariant. In 
other words, it is an indecomposable module. 

An invariant submodule d1.. exists in d A if in addition to 
the identity (coset) 1, there exists another extremal vector y 
in d A' For a given weight A the existence of the A, as well as 
t~eir explicit dependence on A, has been known for a long 
tIme. In Ref. 2 an algorithm is given to construct extremal 
vectors y that generate the submodules mentioned above for 
the case of simple Lie algebras. 

Thus, one can consider the submodules d1.. or the quo
tient modules d Aid 1.. • Both types of modules may turn out to 
be irreducible or indecomposable. An investigation of these 
~odules for the simplest possible case of a complex simple 
LIe algebra s1(2) [complex su(2) 1 and its real forms su(2) 
[isomorphic to so (3) 1 and su ( 1,1 ) was carried out in Refs. 3 
and 4. 

Given a semisimple Lie algebra g, we consider first the 
enveloping algebra of g, U(g). Then the quotient spaces of 
U(g) modulo certain left ideals are studied. Namely, the 
Verma modules dA of highest weight A, which are obtained 
from U~g) by mapping the left ideal generated by Ha - A a , 
Xa (a IS any positive root) onto zero. Thus, the modules 

a) Permanent address: Department of Mathematics. Technical University 
ofWroclaw. 50-370 Wroclaw. Poland. 

obtained give diagonal values of Ha (the operators which 
provide the physical quantum numbers) and they possess a 
state of highest weight. An analogous definition can be given 
for modules of lowest weight A. 

The infinitesimal unitarity of such (irreducible) mod
ules can be discussed once a sesquilinear form is introduced 
on U(g). Namely, it is possible to define a sesquilinear form 
S that induces a scalar product on either the irreducible quo
tient modules for the compact real form of g or on certain 
irreducible Verma modules and on irreducible submodules 
for a noncom pact real form of g. 

Such a sesquilinear form was introduced by Harish
Chandra,l Gel'fand and Kirillov,5 and Shapovalov.6 With 
the help of this sesquilinear form Jakobsen7

•
8 was able to 

construct infinitesimally unitary irreducible representations 
for the noncom pact real forms corresponding to Hermitian 
symmetric spaces of simple Lie algebras. His method, based 
on the Bernstein-Gel'fand-Gel'fand theorem, gives an algo
rithm to calculate all the highest weights which define infini
tesimally unitary representations. 

In Sec. II we introduce the sesquilinear form on the uni
versal enveloping algebra U(g) of a semisimple complex Lie 
algebra. 

In Sec. III we treat explicitly the case of sl (2) and its real 
form su (2). The angular momentum algebra su (2) is of fun
damental importance in physics and thus it is of exemplifica
tory nature. We first define the sesquilinear form So on the 
universal enveloping algebra of sl(2), then construct the 
Verma module d A' It is shown how the sesquilinear form 
induced on d A defines a scalar product on the finite-dimen
sional irreducible quotient modules, d[I1r[, 1= (1!2)k, 
keN, thus unitarizing them for su(2). 

In Sec. IV we follow with a similar discussion of 
su ( 1,1). In this case, since su ( 1,1) is noncompact, the ses
quilinear form defined on the Verma modules induces a sca
lar product on the Verma modules d[ with 1< 0, as well as on 
the infinite-dimensional irreducible submodules 1r[ of the 
Vermamodulesd[, I = !k, keN, thus unitarizing the su(1,1) 
representations on these spaces. As it is for the case of su (2), 
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these unitarized representations of su( 1,1) take on the form 
which is familiar from physical applications. 

In Sec. V we calculate the sesquilinear form for Verma 
modules of the complexification ofso(4) derived in Ref. 9. 
The explicit form ofthe sesquilinear form enables us to con
clude that the standard form of irreducible Verma modules 
of so (4) is obtained from the modules derived in Ref. 8 by 
renormalizing the basis elements by their norms. The same 
remark applies to Verma modules of su (2) and su ( 1,1) de
rived in Ref. 3. 

II. PRELIMINARIES 

Let R, C denote the fields of real and complex numbers, 
respectively. Let gibe a semisimple Lie algebra over Rand g 
itscomplexification. LetB(X,y) = tr(adXadY), X, YEg, be 
the Killing form. 

A real form go of g is called compact if B(X,x) < ° for 
each XEgo(X #0). There exists a compact real form go and 
an automorphism () of order 2 of g such that 

()goCgo, ()gl Cgl 

and 

gl =/1 + PI' go =/1 + iPI' 

where i = ..J=T,J; is the set of all XEgI such that ()X = X, 
andpi is the set of all YEgI such that ()Y = - y. 

Let / and P be the subspaces of g spanned by J; and PI' 
respectively, over C. It holds that 

Vf] Cj, [f,p] Cp, [p,p] Cj 

Let hi be a Cartan subalgebra ofgl, withgl a Hermitian 
symmetric space, and h the complexification of h I' Then h is 
a Cartan subalgebra of g and it holds that 

[hf] Cj, [h,p] Cpo 

For given g, h, let Il be the root system of g and Il + the 
system of positive roots. Then for each root aEIl one can 
choose XaEg, HaEh such that 

[Ha,xa] = (a,a)Xa, ifaEIl+, 

[Ha,x-a] = - (a,a)X_ a, if aEIl +, 

[Xa,X_ a ] =Ha, ifaEIl+, 

{
Na+pXa+ p, if a + {JEll, 

[Xa,xp] = 0, if a + {JEll, a + {J #0, 

where (a,a) = a(Ha ). 
It follows that for given gl,g,h, if a is any root of g with 

respect to h, then Xa is either in/or inp. We say that a is 
compact iff XaE/and noncompact iff Xa Ep. The set of com
pact roots will be denoted by Ilc' the set of noncompact roots 
by Iln • We have the direct decompositions 

/=h+ I~, p= IgP· 
aE~c ~~n 

Let n+ be the subalgebra of g generated by the positive 
root vectors Xa (aEIl +) and n_ the subalgebra of g genera
ted by the negative root vectors X _ a (aEIl + ) . 

Let U(g) be the (universal) enveloping algebra. Ac
cording to the Poincare-Birkhoff-Witt theorem, the ele
ments 
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where H;'s give a basis of h, form a basis of U(g), with 
a l,a2,'" ,an a fixed ordering of the set of positive roots. 

One can consider U(g) as ag-module corresponding to 
the adjoint representation. For each HEh we have 

[H,x«qj ),(m j ),(Pj »] 

= «PI-q)a)(H) + ... + (Pn -qn)an(H» 

XX«qj ),(mj ),(Pj ». 
Thus, A. = .1: (Pj - qj )ajEh * is a weight of this representa
tion and we can decompose U(g) as a direct sum of weight 
subspaces, 

U(g) = al U(g),l.' 

In particular, U(g)o is the commutant of h in U(g). It is a 
subalgebra of U(g) consisting of elements of U(g) with zero 
weight. Let 11': U(g) - U(g)o be the natural projection, i.e., 
the linear map 

11'(X«qj ),(mj ),(Pj ») 
= {X«qj),(mj),(pj», ifpj =qjO Vi, 

0, otherwise. 

For U(g)o holds U(g)o = U(h) alL whereL is the two-sid
ed ideal of U(g) defined as 

L = n_ U(g) n U(g)o = U(g)n+ n U(g)o, 

i.e., the elements of weight zero of U(g) which are not in 
U(h). Notice that U(h) C U(g)oC U(g). The natural pro
jection ifJ: U(g) 0 - U( h) has L as its kernel and is called the 
Harish-Chandra homomorphism. In the sequel we will use 
the composition of the two projections introduced above, 
namely r = ifJ·11'· 

Now, U(h) is a commutative algebra and every AEh * 
can be extended uniquely to a homomorphism from U(h) 
into C. This homomorphism will be also denoted by A. 
Again, we will use the composition A' r = A . ifJ·11' = SA . 

Given a real semisimple Lie algebra g) and its complexi
fication g, let q denote the conjugation of g with respect to g I: 

q:g-g, 

q(X + iy) = X - iY for X,YEgI' 

Then - q can be extended to an antilinear antiautomor
phism 1/ of U(g) as follows: 

1/(1) = 1, 

1/(X) = - q(X), 

1/(XY" 'Z) = 1/(Z)" '1/( Y)1/(X). 

We can define a sesquilinear form S on U(g) X U(g) for any 
AEh * as follows: 

S: U(g)XU(g)-C, 

S(X,y) = SA (1/(X) Y), X,YEU(g). 

In general, i.e., on U(g) and for arbitrary A, S is degen
erate and indefinite for a given gl' However, for some A it 
may induce a scalar product on irreducible quotients of 
Verma modules of highest weight A and unitarize the finite
dimensional irreducible representations if g I is compact (see 

Gruber, Lenczewski, and Lorente 588 



                                                                                                                                    

Ref. 1). On the other hand, if g I is noncompact, then for 
some A it may induce a scalar product on irreducible Verma 
modules or on irreducible submodules of Verma modules of 
highest weight A and unitarize infinite-dimensional irrredu
cible representations of g I' 

Let d A denote a Verma module, ir II. an invariant submo
dule, and 'lrll. -dA/irll. a quotient module. Ifp = dA,irll.' 'irA 
is irreducible, then we say that p is infinitesimally unitary if 
there exists a scalar product ( , ) on the carrier space V of p 
such that 

(u,p(X)w) = -(p(X)u,w), 

for all XEgI and u,weV. The above condition is called gl 
invariance. 

If V is the irreducible quotient of a Verma module, then 
'irA is infinitesimally unitary with respect to the scalar prod
uct induced by S iff SII. ('1/(z)z) is real and non-negative for 
every ZE V (see Ref. 1) 

If g I is simple, another useful result was given by Harish
Chandra in Ref. 1. If g has no totally positive roots, then 
sufficient (and necessary) conditions for the unitarizability 
of the irreducible quotient representation 'irA are that 
A(Ha) is a non-negative integer for every compact positive 
root a and A (H p) = 0 for every noncompact positive root 
{3. On the other hand, if every noncompact positive root is 
totally positive, then the necessary conditions are that 
A(Ha) is a non-negative integer for every compact positive 
root a and A(Hp) is real and ..;;0 for every noncompact 
positive root{3. To obtain the sufficient conditions one has to 
strengthen the requirement on the noncompact positive 
roots, namely that A(Hp) + p(Hp )is real and ..;;0 for every 
noncompact positive root {3. Here, p denotes half of the sum 
of all positive roots of g (see Ref. 1). 

III. su(2) 

As the simplest example we consider the real simple Lie 
algebra su (2). The calculation of the sesquilinear form in 
this case is very straightforward and is basically the calcula
tion given in Ref. 1. However, it is worth being presented 
here since it gives a nice illustration of the methods used. 

The real algebra su (2) can be defined as the linear span 
(over R) of X I2,x23,x13 with the following Lie brackets: 

[X12,x23] = X 13, [X23,x13] = XI~ [X13,x12] = X 23· 

Thus, sl (2) [complex su (2)] can be obtained by introduc
ing 

1+ = (lI.J2)(X13 - iX23 ), C = (l/.J2)( - X13 - iX23 ), 

13 = iXI2 

with brackets: 

[/+,C] = 13, [/3'C] = - C, [/3,1+] = 1+. 

Notice that we opted for the basis that is employed in physics 
and used in Ref. 3 at the expense of mathematical unifor
mity, but a change can be easily introduced. Now, the fol
lowing relation can be derived on U(g) by induction: 

[l+.P- ] = nP_- 1/3 - !n(n - l)P_- I, 

which in turn leads to the following relation: 

I" I" = 1"-1/"-1(1 I + nl - In(n - 1)1). + - + - -+ 3 2 

The conjugation (To of sl(2) with respect to su(2) gives the 
following: 

(To (1+ ) = - C, (To(C) = -1+, 

(TO(l3) = -13, '1/0 = - (To· 

A basis for the enveloping algebra is given by monomials 
1"_ I ~ I 1+ ' where n,s,t are non-negative integers. For a given 
linear function A on h the Verma module d A of highest 
weight A is the quotient space U(g)/IA where the left ideal 
III. is generated by 13 - A(l3) and 1+. In other words, 

III. = U(g)(/3 - A(l3» + U(g)/+. 

Thus, a basis for d II. is given by cosets 1"_ , where n is a non
negative integer. 

The sesquilinear form induced on such a Verma module 
by the sesquilinear form defined in Sec. II is given by 

So{1,I) = 1, 

and 

So (I "- ,p_ ) = SA ('1/0(1 k_ )/"_ ) = SA (I "+ 1"- ) = ~k" A .~(I "+ 1"- ) 
= ~k"A '~I "+- I <i "- 1+ + nl "-- 1(13 - !(n - 1 )I») 

= ~k"A '~(nl "+- II "-- 1(/3 - !(n - 1)1» 

= ~knA(X( ( (n - 1)(/3 - ~ (n - 1'- t)l) )) 
= ~k"nrfI: (/-.!. (t - 1 »), 

1=1 2 

where [= A(l3)' 
We used the factthatl "+- 1["_ I+EL (see Sec. I). It can 

be seen that So is a complex valued sesquilinear form. How
ever, when I is real then it becomes real valued. Furthermore, 
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when I is real but not a non-negative integer or half-integer 
then it is indefinite. When I is a non-negative integer or half
integer then So becomes degenerate and vanishes on the sub
module irl generated by the extremal vector y = 12':+ I and 
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spanned by U(n_)y. On the irreducible quotient module 1T/ 

= d/ITr/ spanned by {/~ 10,k,2/} So induces an su(2)
invariant scalar product, 

So(/ ~ ,1"- ) = Okn 2 - nn!(2/)!/(2/- n)! 

= Okn 111"- 112. 

Let us now look at the explicit form of the Verma mod-
ule d/ (ref. 3) : 

13X(n) = (l- n)X(n), 

I+X(n) = n(/- !(n - 1 »X(n - 1), 

eX(n) =X(n + 1), 

whereX(n) = 1"- . 
For the irreducible quotient module 1T/, a new basis, or

thonormal with respect to So, is given by 

I/,m) = IIX(/-m)II-IX(/-m), 

where n = 1- m, m = - 1, ... ,1, and 

IIX(/ _ m) II = (2m -/(/- m)!(2/)!)'12. 
(/ + m)! 

Thus, on 1T[ we obtain 

131/,m) = ml/,m), 

1+ I/,m) = (1/..j2)(/(l + 1) - m(m + 1 »1/21/,m + 1), 

e I/,m) = (1/..j2){l(/ + 1) - m(m - 1)1/21/,m - 1), 

i.e., the standard form for the matrix elements for the angu
lar momentum algebra as used in physics. 

IV. su(1,1) 

A similar approach will be presented for su(1, 1). The 
real algebra su ( 1, 1) can be defined as the real span of 
X 23'x13'XI2, with the following Lie brackets: 

A A A A A A 

[X23,x13'] = - X 12, [X13,x12] = X 23' 

Case A: I> 0, I :1= k 12, keN + . For these values of I the SI 
is nondegenerate, but indefinite. 

Case B: 1<0: SI is a scalar product. It holds 

The sue 1,1) invariance property follows from the definition 
of "I I' The basis for the infinitesimally unitary Verma module 
d[ is given by 

1/,1) = 1, m = I, 

I/,m) = 1I1[~mll-ti[~m 

{ / - m( 1 ) } - 112 
= (/ - m)!III -I + "2(s - 1) I[~m, 

1<0; m = 1- 1,/- 2,1- 3, .... 

Substitution of the new basis states I/,m) into the su (1,1) 
relations (Ref. 3) 

A A A 

I~(n) = (/ - n)X(n), 

I+X(n) = -n(/-!(n-l»X(n-l), 
A A A 

eX(n) =X(n + 1), 

X(n) =/"-, n=l-m, 

one obtains the familiar form for the su(1,I) representa
tions, 

[XI2'x23] = X 13. 131/,m) = mll,m), 

There exists an automorphism 1/1 of g = sl (2) given by 
A A. A A A A. 

1/1: 1/1(X23 ) = iX23, 1/1(XI3 ) = iX13, 1/1(XI2 ) = X 12' 

and 

1+ = il+, L = ie, 13 = 13, 

[tl ± ] = ± I ±, [/+,L] = -/3' 
The conjugation U I of g with respect to gl = sue 1,1) 

gives for the elements 13,t,L, 
U I (/+) = - L, u l (L) = -1+, U I (/3) = -/3' 

Thus "II (t) = L, "IlL) = t, "II (/3 ) = 13, and the 
sesquilinear form SI (x,y) = SA ("II (x),y) in the su(l,I) ba
sis can be calculated as 

SI(I,I) = 1, n=O, 

SI(/~ ,/,,-) =Okn( -1) nn!rr(/-.!.(s-1)), 
s= I 2 

k+ n>O. 

Again, SI is a complex-valued sesquilinear form that be
comes real if I is real. 

In the following we discuss three cases for real I. 
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tl/,m) = (1/..j2)~ -1(/ + 1) + m(m + 1) I I,m + 1), 

L Il,m) = (1/..j2)~ -/(/ + 1) + m(m - 1) I/,m - 1), 

1<0, m=I,I-l,I-2, .... 

Case C: I> 0, 1 = !k, keN: For these values of I the ses
quilinear form SI is degenerate and vanishes on the irreduci
ble submodule Tr[ of d[ generated by the extremal vector 
y = 12.!..+ I and spanned by U(n_ )y. However, SI induces a 
scalar product on the submodule Tr[, as will be shown below. 
Consider a Verma module d/ + iE' I a non-negative integer or 
halfinteger, and €> 0. The sesquilinear form SI can be fac
tored, 

SI(l k_ y,ln_ y ) =SI(y,y)ST(lk_y,/"-y), 

with 

SI(y,y) = (_1)2[+1(21+ I)! 

2[+ 1 

X II (I + i€ - !(s - 1):1=0. 
s= I 

It follows that 
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Sr(y,y) = 1, 

S*(l k In )=~ (_1)n(n+2/+1)! 
I -y, -y kn (2/+1)! 

n+21+I( 1 ) 
X II / + iE - -(s - 1) 

.=21+2 2 

_ £ (n + 2/ + I)! IIn 
( 2') - Ukn S - IE, 

2n(21 + 1)! .= I 

k+ n>O. 

Thus, for E-+O, the sesquilinear form Sr becomes a scalar 
product on iTJ, 

Sr(y,y) = 1, 

S * (I kin ) = ~ (n + 2/ + I)! n! 
I -y,-y kn 2n(2/+1)! 

=lI/n_ YI12, k+n>O. 

If new basis elements are defined on 1rJ, 

1-1- 1, -/- 1) = y, 

{ 
2-J-'-m(2/+1)' }1I2A 

I-/-l,m) = . I =J-I-my, 
(/-m)!( -I-l-m)! 

n = - /- 1 - m>O, 

m = - /- 1, - 1- 2, - /- 3, ... , 

then the infinitesimally unitary representation of su ( 1,1) on 
1rJ takes on the form 

/31 -/- I,m) = ml -/- I,m), 

tl-I- I,m) = (111i)~ -/(/ + 1) + m(m + 1) 

X I -1- I,m + 1), 

1- 1-/- I,m) = (111i)~ -/(/ + 1) + m(m - 1) 

X I -/- I,m - 1), 

/ = k 12, keN, m = - 1 - 1, - /- 2, - /- 3, ... 

These equations are, however, identical to the equations 
for the case / < 0 as discussed above. Thus, from an algebraic 
point of view, these representations on the invariant sub
SpaCe1rl of the VermamoduledJ, I = k12, keN, areisomor
phic to certain representations on the Verma modules dJ, 

/ < O. It is also seen that these infinitesimally unitary repre
sentations of su(1,1) on the invariant subspace 1rl of the 
Verma module dl , / = !k, keN, are in a one-to-one corre
spondence with the infinitesimally unitary representations 
ofsu(2) on the quotient spaced/ 1rl , 1 = !k, keN. The scalar 
product on 1rl is given by SI' while on d/1rl , it is given by So. 
Moreover, 

SI(/k_ ,in_ ) = (- 1) nSo(/k_ ,P_ ). 

V.50(4) 

In order to conform to the notation of Ref. 9 we will use 
in this section the complexified Lorentz algebra basis. Let 
XfLV denote the generators of (real) so(3,1) with the Lie 
products 
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[XfLv,xa,p] = gfLaXvP - gvaXfLP 

+ gJJ-PXav - gvPXafL , 

gfLv = gJl-Jl-~fLV' goo = 1, gji = - 1, i = 1,2,3. 

Here XOI , X02, X03 denote the boost generators and 
X I2,xl3,x23 are the generators of the rotation subalgebra 
so(3). The complexification ofso(3,1) is spanned by 

h + = Xl3 - iX23, h _ = - Xl3 - iX23, h3 = iX12, 

P + = - X02 - iXoI , P _ = X02 - iXo" P3 = iX03' 

with the following nonvanishing Lie products, in the form 
used in physical applications: 

[h3,h+ 1 = h+, [h3,h_ 1 = - h_, 

[h3,p+ 1 = P+, [h3,p_ 1 = - P-, 

[h+,h_1 = 2h3, [p+,p-1 = - 2h3, 

[h+,p_1 = [p+,h_1 = 2p3' 

[P3'P + 1 = - h +' [P3'P _ 1 = h -, 

[p3,h + 1 = P +, [P3,h - 1 = - P -' 

Ifwe replace in these relations the boost operators XOfL by the 
new elements X ~fL = iXOfL ' then the elements X ~fL' X ik ' i < k, 
i,k = 1,2,3, form a basis for the real compact Lie algebra 
so( 4). In the so( 4) basis 

gfLv = -~fLV 
and 

[pi,p'+ ] = h+, [pi,p'-] = - h_, [p'+ ,p'_ ] = 2h3· 

In what follows we will drop the prime in these rela
tions. This should not cause confusion, since in what follows 
we will use only the so ( 4) basis. 

Let us consider an angular momentum basis for the 
so ( 4) Verma modules of highest weight A in analogy to the 
so(3,1) Verma modules as discussed in Ref. 9:y;:' = h "-- YN' 
n,NeN, where the y N are h + -extremal vectors defined by 

N 

YN = L CkP~- kh k_, h+YN = O. 
k=O 

Keeping in mind that the elements P+,P-,P3 are actually 
primed elements in the so ( 4 ) basis (p -+ ip) one obtains from 
Eq. (4.18) of Ref. 9 for the action ofso( 4) on dAo 

h3 Y;:' = (AI - N - n)y;:', 

h + y;:' = n (2A I - 2N + 1 - n )y;:' - I, 

h_y;:' =y;:'+ I, 

P3 y;:' = - aN(2A I - 2N + 1- n)y;:'~\ 

+ PN(A I - N - n)y;:' - ny;:'~ II' 

p+y;:' = a N(2A1 - 2N + 1 - n) 

X(2A1 - 2N + 2 - n)y;:'_1 

+PNn(2AI -2N+ I-n)y;:.-I 

- n(n -1)y;:'~~, 

p_y;:' = - aNy;:'~21 +PNY;:'+ 1+ y;:'+ I' 
where 
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aN = (1/D)(A~ + (AI + 1 - N)2)N(2AI + 2 - N), 

/3N = ( - i/D *)A2 (A I + 1), 

and 

D= (AI + I_N)2(2AI - 2N + 3)(2AI - 2N + 1), 

D * = (AI - N) (AI + 1 - N), 

Al = A(h3), A2 = A(p3)eC. 

Now we consider a conjugation 0'0 of the complex alge
bra D2 with respect to the compact real algebra so (4). We 
obtain 

O'o(h+) = - h_, O'o(h_) = - h+, 0'0(h3) = - h3' 

O'o(P+) = -P-, O'o(p-) = -P+, 0'0(P3) = -P3' 

since, for example, 

O'o(P+) = O'o(i( -X02 - iXol » = O'o( - (iX02 ) - i(iXol» 
= - (iX02 ) + i(iXol ) = - p-. 

Later we will use 710 = - 0'0' 
We now calculate the sesquilinear form So correspond

ing to so(4) on the Verma module d A given above in an 
angular momentum basis. The calculation will be presented 
in a series of steps. Thus, 

So(Yo,Yo) =So(1,I) = 1, 

So (YN'YN ) = SA (710 ( kto Ckh k_ P~ - k ) YN) 

=SA (kt/rp~-kh~YN ) 
= SA (p~ YN), since h+YN = 0, 

and with c~ = 1. 

Now 

P+YN = a N(2A I - 2N + I)(2AI - 2N + 2)YN_I' 

Hence 
N 

So (YN'YN ) = II a T(2A I + 1 - 2n (2AI + 2 - 2n. 
T=I 

Moreover, for M>N, 

So (YM'YN ) = ~MNSO(YN,yN)' since a o = 0, 

SO(YN'YM) =0, since SA (YN-M) =0, 

due to the properties of the projection 1T (see Sec. II). Next, 

So (Y::',y::' ) = So(h "- YN,h "- YN) = SA (7Jo(h "- YN ),h "- YN) 

= SA (7Jo(YN)h ~ h n_ YN) 

n 

= SA (7JO(YN) II (2k(A I - N) 
k=1 

n 

= II k(2AI - 2N + 1 - k)SO(YN'YN) 
k=1 

n 

= II k(2AI - 2N + 1 - k) 
k=1 

N 
X II a T (2A I + 1 - 2n(2AI + 2 - 2n. 

T=I 
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Finally, 

So (YM'Y::' ) = ~NM~mnSo(Y::',Y::'), 

with h+YN = 0. 
Now we define new parameters: I = Al - N, 

m = Al - N - n, 10 = - iA2' II = Al + 1. Then a N,/3N go 
over into 

al = {(/ + 1)2(4(/ + 1)2 _ I)}-I 

x«(/+ I)2-n)(li - (/+ 1)2), 

/31 = 10/1/1(/ + 1), 

and we obtain, with N = II - 1 -I, n = 1- m, N,neN 
(yg =Yo = 1), 

SO(YI, _ I 'YI, _ I ) = 1, N = 0, 
1,-2 

SO(YM'YN) =~MN II a s (2s+2)(2s+ 1), M+N>O, 
s= I 

m+1 

SO(Y~'Y~)=~kn II (/+t)(/-t+I), k+n>O, 
t=1 

m+1 

So(Y~,Y::') = ~MN~kn II (/ + t) (/- t + 1) 
t=1 

1,-2 
>( II as (2s + 1 )(2s + 2), 

s=1 

k + n > 0, M + N> 0. 

The values for the parameters I,m are 

I = II - I,ll - 2,/1 - 3, ... , for N = 0,1,2, ... , 

m = 1,1- 1,1- 2, ... , for n = 0,1,2, ... , 

and thus 

yj++y::'. 

It follows for so(4) on dl,~) = d A , where Al = II - 1, 
A2 = i/o, 

h3yj=myj, h+yj= (/-m)(/+m+ I)yj+l, 

h_yj=yj-I, 

P3yj = - a l (/ + m + I)y7'+ I + /3l myj - (/- m)Yi'-I' 

p+yj = al(/ + m + 1)(/ + m + 2)yj/jl 

+/31(/- m)(/ + m + I)yj+ I 

- (/- m)(/- m - I)yj_V, 

P -Yl = - aIY~-11 + /3lyj - I + Yi'--II, 

I = II - 1 - N, m = 1- n, n,NeN, 11,/oee, 

with alPI given above. This representation on dl,/" becomes 
indecomposable for values 11= !k, lo::::!k I, II = 10 + s, 
k,k'eN+, seN, since a~)_1 = ° and h+YI- I - I = 0. These 
two properties define an infinite-dimensional invariant sub
space irl,~) of the Verma module dl,/". The quotient space tTl, I" 
-dl,~/irl,/" is finite dimensional and its basis states yj are 
labelled by the parameter values 

I = II - I,ll - 2'''''/0' II = 10 + s, 10 = !k, 

k,seN, 

m = 1,1- 1, ... , - I. 

On the quotient space tTl, I" the sesquilinear form So induces a 
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scalar product, since it is nondegenerate and positive defi
nite. Defining an orthonormal basis 

1/1,/o;l,m) == I/,m) = {So(Yi,Yi)}-1/2Yi, 

So (Yi,Yi) 
(2/)' 1,-2 

= . (I-m)! II a s (2s+I)(2s+2) 
(I+m)! s=1 

(2/)!(I- m)! (II - (/ + 1)!(/!)2r(l + ~) 

(I + m)! (II + I)!(I-/o)!(/ + lo)!r(/ + 1) 
X r(/I)(/I - 1 -/0)1(/1 - 1 + 10)!(2/1 - I)! 

«(/I-l)!)2r(lI+!) , 

where r denotes the gamma function, one obtains the famil
iar form for the (infinitesimally) unitary representations of 
so(4) on the finite-dimensional quotient module 'lTI"Io' 

10 = !k, II = 10 + s, k,seN, 

h31/,m) = ml/,m), 

h + I I,m ) = ~ (/ - m) (I + m + 1) I I,m + 1), 

h -I I,m ) = ~ (I + m) (I - m + 1) I/,m - 1), 

P31/,m) = - ~(I + 1)2 - m\f~11 + I,m) + Plml/,m) 

_~/2_m2~I/_I,m), 

p+l/,m) = ~(I + m + 1)(/ + m + 2)fo;ll + I,m + 1) 

+ ~(I- m)(I + m + 1)P/I/,m + 1) 

- ~(I- m)(I- m - I)~I/- I,m + 1), 

p_l/,m) = - ~(I- m + 1)(/ - m + 2)fo;ll + I,m - 1) 

+ ~(I + m)(/- m + 1)P/I/,m-1) 

+ ~(/ + m)(1 + m - 1)~I/- I,m -1). 

It is thus seen that the Harish-Chandra sesquilinear 
form So on U[so( 4)] induces an inner product on the (fi
nite-dimensional) quotient module 'lTI,/" -dl,4/frl,4> of the 
Verma module dl,/" with respect to the invariant submodule 
fr l ,4>' This inner product unitarizes the finite-dimensional 
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representation of so ( 4 ), that is, brings these representations 
into the familiar form as needed for physical applications. 
Moreover, all irreducible unitarizable representations of 
soC 4) are obtained in this manner. 

Via analytic continuation in the parameters one could 
now proceed to obtain the unitary (infinite-dimensional) 
representations of the noncompact real (Lorentz) algebra 
soC 3, 1). This, however, corresponds to negative integer val
ues of n,N, and thus cannot be carried out on the Verma 
modules that were chosen for the present analysis. That is, 
our goal of relating the physically relevant representations of 
the Lorentz algebra so ( 3, 1) to an inner product ( , ) I in
duced by a Harish-Chandra sesquilinear form SI on 
U(so (3,1» cannot be achieved on the modules chosen in this 
article. We will discuss this situation, and related matters, in 
another article. 

Note added in proof: Scalar products and unitarization 
for the algebras SU (2), SU ( 1,1) and the Heisenberg-Wehl 
algebra H are also discussed in Ref. 10. 
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An upper bound is proved for the £P norm of Woodward's ambiguity function in radar signal 
analysis and of the Wigner distribution in quantum mechanics when p > 2. A lower bound is 
proved for 1 <p < 2. In addition, a lower bound is proved for the entropy. These bounds set 
limits to the sharpness of the peaking of the ambiguity function or Wigner distribution. The 
bounds are best possible and equality is achieved in the LP bounds if and only if the functions f 
and g that enter the definition are both Gaussians. 

I. INTRODUCTION 

The ambiguity function introduced by Woodward l is 
important in radar signal analysis. It is a function of two real 
variables, 7 (the time) and W (with 21TW being the frequen
cy), and is defined as follows in terms of two given functions 
f and g of one variable: 

Af,g (7,W) = I f(t - ~ 7 )g* (t + ~ 7)e - 21Tiwt dt. 

(1.1 ) 

(Our conventions will be that * as a superscript denotes 
complex conjugate and all integrals are from - 00 to 
+ 00.) Strictly speaking, A f,g is called the cross-ambiguity 

function off and g while A fJ is the proper ambiguity function 
off Usually, one assumes thatfand g are square integrable, 
which guarantees that the integrand of ( 1.1) is a summable 
function of t for every 7. The summability can also be guar
anteed by Holder's inequality and the alternative assump
tion that fELa and gELb (with 1/a + 1/b = 1 and 
l<a,b< (0), as in Definition 2 below, and this generalized 
hypothesis will often be made in this paper. 

There is a simple relation between A f,g and Wf,g, the 
(cross) Wigner distribution off and g used in quantum me
chanics and defined by 

Wf,g ( 7,W) = I f( 7 + ~ s) g*( 7 - ~ s)e - 21Tiws ds. 

The relation is 

Wf,g ( 7,W) = 2A f,g- ( - 27,2w ) , 

where f- denotes the function given by 

( 1.2) 

(1.3 ) 

(1.4 ) 

WfJ is called the Wigner distribution (or density) off Be
cause of (1.3) the bounds obtained here for Af,g apply muta
tis mutandis to Wf,g. 

Ideally, one would like to choosefand g so that Af,g is 
sharply peaked around some point (7o,Wo) but, as is well 
known, there are severe limitations to the peaking that can 
be achieved. These limitations are inherent in the definition 
( 1.1 ). Let us define, for p > 0, 

( 1.5) 

If A f,g were highly peaked then If,g ( p) would be very large 
for large p and very small for small p. The dividing line is 
p = 2 since, by the Parseval's inversion formula, we have the 
identity 

( 1.6) 

In this paper, limitations on the sharpness of Af,g will be 
established by proving that If,g (p) is universally bounded 
above whenp > 2 (Theorem 1) and universally bounded be
low when l<p < 2 (Theorem 2). For 1 <p <2 and 2 <p < 00 

the bounds will be shown to be saturated if and onlyiffandg 
are Gaussians. It is remarkable that Gaussians both maxi
mize and minimize If,g ( p), depending on the value of p. 

When p = 2 the identity (1.6) holds for any f and g, so 
the obvious quantity to consider is the derivative with re
spect to p of If,g ( p) at p = 2 under the normalization as
sumption that the right side of (1.6) is unity. This derivative, 
multiplied by - 2, is the entropy given by 

with 0 In 0=0. It will be proved that when the right side of 
( 1.6) is unity the integral in (1.7) is well defined and 
(Theorem 3) 

(1.8 ) 

This constant is sharp since it is achieved by Gaussians. 
To state the theorems precisely it is first necessary to 

make some definitions. 
Definition l:f(t) is said to be a Gaussian if 

f(t) =exp [-at 2 +Pt+r], (1.9) 

with a, P, and r being complex numbers and with 
Re(a) > 0; f(t) is a real Gaussian if a, p, and r are real 
numbers with a> O. Two functions f and g are said to be a 
matched Gaussian pair if they are both Gaussians with the 
same a but with possibly different p 's and y's. 

Definition 2: For 0 <p < 00 

Ilfllp = {I If(t) IPdt } lip ( 1.10) 

and forp = 00 

Ilflloo =ess suplf(t) I· ( 1.11) 
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We say thatjELP if and only if the right side of (1.10) or 
( 1.11) is finite. 

Definition 3: Let 0 <p<. 00 and define q by 1/q + 1/ 
p= 1, i.e., q=p/(p-1). Note that oo>q>l if 1<.0<00, 
and 0> q > - 00 if 0 <p < 1. Then Cp is defined to be 

Cp = p1/2Plql- l/2q, (1.12) 

for p 1= 1 or 00 while 

C I =Cao =1. (1.13) 

Note that C2 = 1. 
Definition 4: Let p and q be as in Definition 3 with 

1 <p < 00 and let a and b satisfy 1/a + 1/b = 1 with 
l<.a<. 00, l<.b<. 00. We define H(p,a,b) >0 by 

H(p,a,b)2 = abp- 2lp _ 21 2 - p 

X Ip - ai-I +Plalp - b I-I +FIb, (1.14) 

with the convention that 0° == 1. When a or b = p 

H(p,a,b)2 =- -p-1 ( )P-I 
p p-1 

and 

H(1,l,oo) =H(1,oo,l) = 1. 

We also define K ( p,a,b) >0 by 

K(p,a,b)2 = p-222 - Paplab plb 

and 

K(1, 1, 00) =../2, 

(1.15) 

( 1.16) 

The following relations (with 1/p + 1/q = 1) are 
noteworthy for p > 1: 

H( p,a,b) = C:{CalqCblq/Cplq}plq, 

H( p,a,b) IIPH(q,a,b) IIq 

0 .. 17) 

= K(p,a,b) IIPK(q,a,b) IIq = allab IIbp - IIPq - IIq. 
(1.18) 

Theorem 1: Let p > 2 and assume that f and g EL ~ Then 
(a) If,g (p) <. (2/p ){llflbllglb}P. (1.19) 
(b) Equality is achieved in (1.19) if and only iff and g are a 
matched Gaussian pair. 
(c) More generally, iffELa,gELb with 1!a+1!b=l and with 
p/(p -1 ka<p and p/(p- J)<b<p then 

( 1;20) 

When both a and b>p/(p-1) equality is achieved in 
(1.20) if and only iff and g are Gaussians that satisfy 

f(t) = exp[ - (am' + iA)t 2 +.8t + r] , 

g(t) = exp[ - (an' + iA)t 2 +,8t + y] , 
( 1.21 ) 

with a, A rea/, a> 0, and .8j3,r,Y complex and with 
m'=a(p-1)/(ap-a-p) and n'=b(p-1)/(bp-b-p). 
[Note that (p -1 )/(p - 2) < m', n' < 00 under the stated condi
tions.] When a or b=p/(p-1), (1.20) is best possible, but 
equality is never achieved. 

(d) If the additional condition that g=f is imposed 
(which means that the proper ambiguity function A fJ is being 
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considered) or else that g = f - (which means that the proper 
Wigner distribution WfJ is being considered) then (1.20) can 
be improved. In these cases (and with a and b restricted as 
before) 

Ilr (p) and IfJ( p) <.K( p,a,b){llflia Ilfllb}P' (1.22) 

Equality is achieved in (1.22) if and only iff is any Gaussian. 
Note that a or b=p/(p-1) is allowed here. 

Remarks: (1) Even iff and g are Gaussians, it is not 
possible to have equality in (1.20) for all a and b simulta
neously, as ( 1.21) shows. 

(2) In view of the symm~try of A j,g between the pair j,g 
and the Fourier transforms j,g expressed by (2.4) below, 
Theorem 1 remains true iff and g are replaced by}and g on 
the right side of (1.19) et seq. 

In the case that p is an even integer, Theorem 1 (a) and 
(b) [under the additional assumption for (b) thatfandg are 
twice continuously differentiable and never vanish] was 
proved by Price and Hofstetter by an ingenious application 
of the Cauchy-Schwarz inequality. They conjectured 
Theorem 1 (a) and (b) for all p > 2 in their footnote 10. The 
Price-Hofstetter bounds have found application in the work 
of Janssen3 for example. 

The next theorem gives reversed inequalities for p < 2. 
Theorem 2: Assume that t ~.f(t-~T)g*(t+}T)is inL lfor 

every T, so that the definition (1.1) of Af,iT,(J)) makes sense. 
(This L 1 condition can be satisfied, for example, by assuming 
thatjELa andgELP for some 1 <a,.8< 00 with 1!a+1!.8=l.) 
Let 1<p<2 and assume that o < If,ip) < 00. Thenfand 
gEL' for every p<r< q p(p -1). Moreover, for every pair a, b 
withp<a,b<q and with 1!a+1!b=l we have that 

If,g (p) >H(p,a,b){llflla IIgllb}P. (1.23 ) 

In particular, 

If,g ( p) > (2/p ){llfI121Iglb}P. (1.24 ) 

Ifg=forg=f- {as in Theorem J(d)jthen (1.23) can be 
improved to 

( 1.25) 

If 1 < p < 2 equality is achieved in (1.23) if and only iff 
and g satisfy (1.21) et seq., but with m' and n' replaced by 1m' I 
and In'l, respectively. Equality in (1.25) occurs if and only if 
f is any Gaussian. If p=l and a,b> 1 equality occurs in 
(1.23) iffand gare.given by (1.21), butalm'l and alnil have 
to be interpreted as aa and ab, respectively (since 1m' 1/ 
In'I--+a/b but m',n'-+Oas p-+1). 

Remarks: (3) When p = 1 and a,b> 1 the Gaussians 
referred to in the last part of Theorem 2 are, in fact, the only 
functions for which equality holds in (1.21). A proof can be 
constructed by using ideas in Ref. 4, but it will not be given 
here. The uniqueness of Gaussian minimizers for p = 1 and 
a = b = 2 is closely related to and can be inferred from a 
theorem of Hudson5 (see also Ref. 6) which says that the 
only way in which the function Af,g (T,(J) can be a non.nega
tive function of Tand (J) is when f = Ag for some A > 0 andfis 
a Gaussian. (Actually, Hudson does this in the context of 
the Wigner distribution, but that is immaterial; also he 
proves the theorem only for WfJ but his method, extends to 
the general case.) The connection is established by first not-
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ing the relation for surnmable A fog (which is easy to derive
at least formally) 

J Af,g(r,m)dtdm=2 J f(t)g*(t)dt. (1.26) 

On the other hand, by Theorem 2 (a) with p = 1, 

J IAf,g(r,m) Idr dm;;;'2IlfI12I1gllz· (1.27) 

If Af,g ;;;.0, the left sides of (1.26) and (1.27) are identical, 
which then requires that f = Ag and that equality holds in 
(1.27). Thus Af,g;;;'O is equivalent to equality in (1.24) for 
p=1. 

(4) Theorem 2(c) is striking when p = a = 1 and 
b = 00. Then 

( 1.28) 

This says that if fis fixed and g--+O in all LP norms except 
p = 00, then flA I does not go to zero. [For example, 
g(t) =exp[ _At2] with A--+oo.] The Fourier transform 
also has this property [cf. (2.9)] and it is inherited by A f,g' 

A tempting conjecture is that inequality (1.24), at least, 
should hold if 0 <p < 1. Our proof fails in this case because 
Lemma 1 below requires P;;;.l. 

It is instructive to compare Theorems 1 (a) and (1.24) 
by considering Gaussians f(t) = exp ( - at 2) and 
g(t) = exp( - {3t 2) with Re a and Re {3 > O. Then one finds 

If,g (p) Ilf112- PlIg112- P 

= (2/p) [Re a Re {3 )P/4 - 1121 (a + {3 *)/21 1 
- p/2. 

( 1.29) 

Since Re aRe {3< !Ia + {3 * 12 one sees, for Gaussians, that 
(1.19) holds for p;;;.2 and that the reverse inequality holds 
for all 0 <p < 2; and that equality requires a = {3 in both 
cases. 

Theorem 3: Assume that f and gEL 2 with llt1b IIglb = 1. 
Then 

Sf,g ;;;.1. 
Equality is achieved iff and g are a matched Gaussian pair. 

Remarks: (5) It is possible to show that equality is 
achieved in Theorem 3 only whenf and g are matched Gaus
sians. The proof is complicated and ,,'ill not be given; the 
reader is invited to find a simple proof. 

The method of proof of these three theorems follows 
closely the methods used in Ref. 7 to prove LP bounds of 
coherent state transforms. The coherent state transform off 
is A fog ( - r, - m) exp (i1Tmr) with g being the fixed Gaus
sian g(t) =r- I

/
4 exp( -t 2/2). From the mathematical 

point of view there is, however, a genuinely new develop
ment in the present paper, namely the proof that Gaussians 
uniquely saturate the bounds. This uses Ref. 4. 

II. PRELIMINARY LEMMAS 

The following convention for the Fourier transform/of 
a functionfwill be employed: 

/(m) = J f(t)e-2Triwtdt, (2.1) 
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so that 

f(t) = J /( m ) e2Triwt dm 

and Parseval's relation is 

(2.2) 

(2.3 ) 

The equality (1.6) follows from (2.3). Some other im
portant facts aboutAf,g which follow easily from (2.3), the 
Cauchy-Schwarz inequality and a change of integration 
variables are 

Af,g(r,m) = A);g ( -m,r), 

A j,g (r,m) = AgJ( - r, - m), 

IA fog ( r,m) I < Ilfllzllgl12' 

(2.4 ) 

(2.5) 

(2.6) 

More generally, if fEL a, gEL b with 1/ a + 1/ b = 1 and 
a;;;' l,b;;;. 1, as in Theorems 1 and 2, Holder's inequality yields 
the pointwise bound 

(2.7) 

Inequality (2.6) is important because it implies that 
InlAf,g (r,m) 12<Owhen Ilfl1211g112 = 1 andhenceSf,g is always 
well defined by the right side of ( 1.7) (although it might be 
+ (0). 

Three inequalities in Fourier analysis will be needed. 
The first fact is the sharp constant in the Hausdorff-Young 
inequality (2.8) proved by Beckner.8 The criterion for equa
lity is due to Lieb.4 

Lemma 1: Let 2<p<00 and l/q=1-l/p 
=(p-1)/p.lffELq thenfELP and 

Ilfllp<Cqllfllq' (2.8) 

Conversely, let 1 <p< 2 and assume fEL' for some 1 <r< 2, in 
which case / exists by (2.8) (with q r there.) If/ELP then 
fELq with q=(p-1)/p and 

Ilfllp;;;'Cqllfllq. (2.9) 

Equality is achieved in (2.8) when 2 < p < 00 and in (2.9) when 
1 < p < 2 if and only if f is any Gaussian with a real and {3. r 
complex in (1.9). 

Proof: Inequality (2.8) is Beckner's result, and the con
dition for equality when 2 <p < 00 is proved in Ref. 4. For 
(2.9), let g=! Since fELr, gELs [with s = r/(r - 1);;;.2]. 
Therefore,gELP nLS and hence, by convexity, gEL 2. Thusg 
exists and, by the L 2 Fourier inversion formula, g = f-. By 
(2.8), f-ELq an'! (using CqCp = 1) Cqllfllq 
= Cqllf-lIq<llglip = Ilfllp. Obviously, the condition for 

equality when 1 <p < 2 follows from the 2 <p < 00 result. 
Q.E.D. 

Remark: (6) The classical Hausdorff-Young inequality 
is (2.8) but with Cg replaced by the larger value 1. 

The next inequality is the sharp constant in Young's 
inequality, which was found simultaneously by Beckner8 

and by Brascamp and Lieb.9 The uniqueness part (b) is due 
to Brascamp and Lieb.9 In the following a midline asterisk 
denotes convolution 

(f*g)(t) = J f(t-s)g(s)ds. (2.10) 

Elliott H. Ueb 596 



                                                                                                                                    

Lemma 2: Let l/m+1/n=I+1/r with l..;m";oo, 
l..;n..;oo, l..;r..;oo. Then, whenjELm andgELn,f*gELr and 
(a) 

(2.11) 

(b) When m> 1 and n > 1, equality holds in (2. II} if and only 
if 

fU) = exp[ - am't 2 + pt + y], 

get) = exp[ - an't 2 + j3t + f], (2.12 ) 

with a> 0 real, 13, y, j3, f complex but with 
Im(fJ) = Im(j3). Here, m'=m/(m-l} and n'=n/(n-l}. 
If m = 1 or n = 1 and r> 1, (2. II} is at best possible but equa
lity is never achieved. If m=n=r= 1, equality is achieved 
when f and g are any pair of non-negative, real valued func
tions. 
(c) Ifg*=for g*=f-

(2.13 ) 

For all m;> 1 and n;> 1 and r> 1 equality is achieved in 
(2.13) if and only iff is a Gaussian given by (J. 9) with a real 
and with 13 real (if g* = f) or 13 complex (if g* = f -). 

Remarks: (7) The classical inequality of Young is 
(2.11) but with Cm Cn/Cr replaced by the larger value 1. 

(8) Lemma 2(c) was not given in Ref. 9 because it did 
not occur to us at the time that it might be useful. It is how
ever, a simple consequence of the analysis in Ref. 9. 

The third inequality is the converse of Young's inequali
ty. It was first proved by Leindler lO with 1 in place of 
Cm Cn/Cr' The sharp form below is due to Brascamp and 
Lieb.9 

Lemma 3: Let f(t} and g(t) be non-negative, real-valued 
functions that are not identically zero and assume that 
f*gELr. Let l/m+1/n=I+1/r with O<m..;I, o <n..;l. 
Note that 0 < r..; 1. Then fEL m and gEL nand 
(a) 

if 

(2.14 ) 

Equality holds in (2.14) when m < 1 and n < II/and only 

fU) = exp[am't 2 + pt + y], 

g(t) = exp[an't 2 + j3t + f] , (2.15 ) 

with a> 0 real and 13, y, j3, f real. Here, m' = 
m/(m-J)<Oand n' =n/(n-J)<O. 

(b)If g* = for g* = f- (2.14) can be improved to 

(2.16 ) 

with equality (for all m and n) if and only if f is a real 
Gaussian. 

Remark: (9) Lemma 3 (b) was not given in Ref. 9 but it 
is a simple consequence of the analysis given there. 

The next lemma is an extension of the Cauchy func
tional equation to quadratics. [One form of Cauchy's equa
tion is tCt - IT)1]Ct + IT) = p( r) with t and 1] being Lebes
que measurable functions; the only solution is 
t(t) = be - At,1]Ct) = c~t, and p( r) = bc~T for some con
stants A, b, c.] 
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Lemma 4: Let t and 1] be complex valued, Lebesgue mea
surable functions on R that satisfy g(t)/ = /1](t)j = 1 for all t. 
Suppose there are real valued functions, J.L and v, on R (which 
are not a priori measurable) such that for almost every r the 
following holds for almost every t: 

tCt - !r)1]Ct + !r) = exp [iJ.L(r)t + iv(i)]. (2.17) 

Then there are real constants, A, a, 13, y and l> such that 

t(t) =exp [iAt 2 +iat+iy], 

1]Ct) = exp[ - iAt 2 
- iPt - il>] . (2.18 ) 

Proof Let f7J denote the set of r such that (2.17) holds 
for almost all t. Let X(t) = t(t) exp( - t 2

) and Y(t) = 
[1/1](t)] exp( - t 2). Using the definition (2.1) of the Four
ier transform, it is a simple matter to use the Gaussian bound 
on X(t) to deduce that X is an entire analytic function of 
order at most 2, i.e., IX(liJ) I <exp[ C + D IliJ12] for suitable 
C,D > 0 and all liJEC. ( In fact, 

IX(liJ) I <.J1T exp[ rOm liJ )2].) The same is true of Y(liJ). 
From (2.17), for every rEf7J the following holds for almost 
every t: 

X(t-!r) = Y(t+!r) exp{t [iJ.L(r) +2r] +iv(r)}. 
(2.19) 

Taking Fourier transforms of (2.19) with respect to t we find 
that 
A 

X(liJ) exp( - 1TiliJr) 

= Y(liJ _ J.L( r) + ir) 
21T 1T 

X exp [1TiliJr - ~ iJ.L( r)r + iv( r) - r] . (2.20) 

We claim that X (liJ) has no zeros, for otherwise suppose that 
A A 

X(liJo) = O. Then Y(liJ) = 0 whenever liJ satisfies 

liJ = liJo - (l/21T)J.L( r) + (i/1T)r, (2.21) 

for some rEf7J . As r ranges over the uncountable set f7J, the 
right side of (2.21) ranges over an uncountable set in the 
complex plane. [Note that J.L ( r) is real and ir is imaginary so 
there can be no cancellation in (2.21).] The only entire func
!ion with uncountably many zeros is the zero function, so 
Y(liJ) =0. This implies that Y(t) = 0, which is a contradic
tion. By reversing the roles of X and Y we find that Y( liJ) has 
no zeros. Because X and Yare entire analytic and zero free 

A 

they have analytic logarithms, e.g., X~liJ) = exp[¢(liJ)] for 
some entire analytic function 1,6. Since X has order at most 2, 
1¢(liJ) I <C IliJI2 + D forsuit~ble C,D> O. But then 1,6 must be 
a polynomial of order 2, i.e., X is a Gaussian. The same is true 
of Y. By taking the inverse Fourier transform, we have that X 
and Yare Gaussians, which, by inspection, proves 
(2.18). Q.E.D. 

III. PROOF OF THEOREM 1 

Step 1: Fix rER. Since fEL a and gEL b with 1/ a + 1/ 
b = 1, the function t-fCt - !r)gCt + !r) is in L '. Since Af,g 
is the Fourier transform of this L ' function, we can use 
Lemma 1 with q = p/ (p - 1) < 2 in place of p there and 
obtain 
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f IA J,g ( r,m)jP dm 

<C~ {f I(t- ~ r)lqg(t+ ~ r)lq dt r1q
. (3.1) 

Note that the right-hand integral may be finite or infinite
depending on r. If it is infinite then (3.1) is trivially true; if it 
is finite then the use of Lemma 1 is justified. We shall see in 
step 2 that this integral is finite for almost every r. 

Step 2: The integral on the right side of (3.1) is just the 
convolution 

(3.2) 

Integrating (3.1) over rand applying Lemma 2 toJ( r) with 
r= plq> 1 and m = alq>l,n = blq>l, we have 

IJ,g (p)<C~IIJII~ 

<C~ (CmCnIC,)'{lllf-lqllm IIlglqlln}' 
= C~(CmCnIC,)'{llfliallgllb}P, (3.3) 

The inequalities (1.19) and (1.20) are obtained by using 
(1.17). 

Step 3: It is an elementary exercise to show that Gaus
siansoftheform (1.21) give equality in (3.1) and (3.3),and 
hence that B(p,a,b) is the sharp constant in (1.19) and 
( 1.20). We want to prove that these Gaussians uniquely sat
urate the bounds. Assume that m > 1 and n > 1. If there is 
equality in (1.19) or (1.20) then (3.1) must be an equality 
for almost every rand (3.3) must be an equality. By Lemma 
1, the following must be true for almost every r: 

I (t - ~r) g* (t + !r) = D( r)exp[ - 0'( r)t 2 + 8( r)t ] 
(3.4) 

for almost every t, with O'(r)ER and D(r),8(r)EC. By 
Lemma 2, equality in (3.3) requires 

If(t)1 =exp[ -am't 2+pt+y], 

Ig(t) I =exp[ -an't2+Pt+r] , (3.5) 

with m' = ml(m -1), n' = nl(n - 1), a>O, and 
13, y, jiER. 

Let us define $(t) = l(t)I If(t) I and 1J(t) =g*(t)1 
Ig(t) I, which makes sense sincel(t) and g(t) never vanish 
by (3.5). Then, comparing (3.4) and (3.5), we find that $ 
and 1J satisfy the hypotheses of Lemma 4. The conclusion of 
Lemma 4, together with (3.5), gives (1.21). 

Step 4: When a-pi (p - 1) then m' - 00 and n - r. By 
taking limits of Gaussians in (1.21) with m' -+ 00 we see that 
(1.20) is best possible in this case. Equality is never 
achieved, however. An informal way to see this is to note tht 
m' must be infinity. A formal proof is to note that (2.11) or 
(3.3) cannot be an equality when m = 1 and n = r [as is 
stated in Lemma 2(b)] because of the strict convexity ofihe 
L' norm. 

Step 5: When g = lor g = 1- we proceed as in steps 1 to 
3, making the appropriate changes and using lemma 2 (c). 
From this we infer (1.22) and conclude that I must be a 
Gaussian in order to have equality. Upon inserting a Gaus
sian (1.9) for I and g (or g-) in (1.1), one finds by inspec
tion that equality in (1.22) does not impose any restriction 
on the Gaussian. Q.E.D. 
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IV. PROOF OF THEOREM 2 

Before proving this theorem, it is perhaps worth noting 
a proof strategy that works when a = p or b = p, but other
wise yields a weaker result. This strategy does not require 
Lemma 3. From Parseval's relation one has the identity 

RJ,g,hJ= f AJ,g(r,m)A ~J(r,m)drdm 

= f l(t)h * (t)dt f g*(t)j(t)dt, (4.1) 

for any four functions j,g,h, and j. Let 1= lfleiiP and 
g= IgleitP and choose h(t) = If(t)la-leiiP(t) and 
j(t) = Ig(tW- leitP(t). Then 

RJ,g,hJ = Ilfll~ IIgllt· (4.2) 

On the other hand, by Holder's inequality, 

IRJ,g,hJ I <IJ,g (p) IIPl hJ (q) Ilq. (4.3) 

1ft <p < 2, then q = pi (p - 1) > 2 and we can use Theorem 
1 (c) for the right-most factor in (4.3): 

{IhJ (q) }lIq<B(q,b,a) Ilqllfa - Ilib IIgb- Ilia. (4.4) 

Since Ilfa-Illb = Ilfll~-I and 11gb-Ilia = Ilgllt- l
, we can 

combine (4.1)-( 4.4) with (1.18) to obtain 

IJ,g (p) >B(p,a,b)L(p,a,b)P{llflia IIgllb}P, (4.5) 

where 

(4.6) 

If a or b = p then L (p,a,b) = 1 and (4.5) is the desired in
equality. Unfortunately, ifp <a then b <q, L(p,a,b) < 1 and 
(4.5) is too weak. 

We now turn to a proof of Theorem 2 which makes use 
of Lemma 3. When p > 1, which is the case we consider first, 
the proof is virtually the same, mutatis mutandis, as for 
Theorem 1. 

Step 1: Using inequality (2.9) (with r = 1) we have that 
(3.1) holds, but with the reversed inequality. Note that the 
left side of (3.1) is finite for almost every r since 
S{SIAJ,gldm}dr< 00 by assumption. 

Step 2: By (3.2) and Lemma 3, (3.3) holds with the 
reversed inequality. In particular, lEU and gEL b. This 
proves ( 1.23). Similarly, Lemma 3 (b) leads to (1.25). The 
cases of equality for 1 <p < 2 are handled in the same way as 
in step 1 of the proof of Theorem 1. 

Finally we turn to the case p = 1. 
Step 3: Supposep = 1 < a<b < 00. Then (1.23) holds for 

every p<a. Aspdecreasesfromato I,B(p,a,b) converges to 
B(1,a,b). On the other hand, B(r,m) 
= IAJ,g(r,m) I/llflia Iiglib< 1 by (2.7) so B(r,m)P increases 
monotonically as p decreases. Therefore, by Lebesgue's 
monotone convergence theorem, S B( r,m)p dr dm converges 
to S B( r,m )dr dm as pll and this, together with (1.23) for 
p> 1, establishes ( 1.23) for p = 1. A similar proof holds for 
(1.25). 

Step 4: Suppose p = a = b = 1. For each a,b> 1 such 
that 1/ a + 1/ b = 1 inequality ( 1.23) holds by step 3. As aU 
and b i 00 we have that B(1,a,b) -B(1,I,oo). Also, it is a 
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standard fact that IVlIa -IVIiI and liglib -ligll '" . A similar 
proof works for Eq. (1.25). Q.E.D. 

V. PROOF OF THEOREM 3 

It is assumed that f and g EL 2 and IVlbllgl12 = 1. By 
(1.6), If,g (2) = 1 and, by (2.6), IAf,g ('T,w) 1<1 for all 'T and 
w. Let p > 2 whence, by Theorem 1, If,g (p) <Up. If we de
fine, for € > 0, 

K(€) =€-I{If,g(2) - If,g(2 + 2€)}, (5.1) 

we have that 

(5.2) 

Assume now that Sf,g defined by (1.7), is finite; other
wise the inequality (1.8) is trivial. (Note that IAf,g I < 1 im
plies that O<Sf,g < 00 .) We claim that 

limK(€) =Sf,g, (5.3) 
EtO 

which, in view of (5.2), proves the inequality. Since IA J,g I < 1 
we have, for each 'T and w, that 

0<c I IAf,gI2(1-IAf,gI2E)< -IAf,g I21nIAf,g I2. (5.4) 

(The last inequality is simply 1 + € In X <XE for all X> 0.) 
Now K(€) is just the integral of the middle function in (5.4) 
(which is non-negative), and we see that this function is 
uniformly dominated by an integrable function. Further
more, as €tO the middle function in (5.4) converges 
pointwise to the right-hand function. Equation (5.3) then 
follows by Lebesgue's dominated convergence theor
em. Q.E.D. 
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A search is made for autonomous Hamiltonian systems in two degrees of freedom which admit 
a second invariant quartic in the momenta with leading term pip~ /2. A sufficient condition for 
the resUlting functional equation to possess solutions is deduced and a family of integrable 
systems is identified, which under the equivalence class oflinear transformations reduce to a 
simpler integrable system found originally by Bozis. The method of Lax pairs is used to find 
further solutions to the functional equation and give new classes of integrable but nonseparable 
Hamiltonians. 

I. INTRODUCTION 

The subject of this paper is autonomous Hamiltonian 
systems in two degrees of freedom in fiat space. Taking 
(ql,q2) and (PI,P2) as canonical position and momenta co
ordinates, the Hamiltonian is 

(1) 

A problem of great interest in physics is to find what forms of 
potential V possess an additional invariant besides the ener
gy. The first systematic investigation was made by Darboux l 

and reproduced in Whittaker's2 well-known book. All Ham
iltonians of form (1) admitting second invariants linear or 
quadratic in the momenta were deduced. Such integrable 
systems necessarily possess separable solutions to the Hamil
ton-Jacobi equation.3 By contrast, Hamiltonians with a sec
ond constant that is a polynomial in the momenta of degree 
greater than two correspond to integrable but possibly non
separable systems. The most famous example is the Toda 
lattice,4 with a constant of the motion that is cubic in the 
momenta. Recently, HoltS extended the methods of Dar
boux and Whittaker to find new Hamiltonians possessing 
invariants cubic in the momenta, while some n-dimensional 
integrable systems identified by the methods of Lax pairs 
have two-dimensional versions with cubic or quartic second 
invariants.6 All these results are summarized in the excellent 
review of Hietarinta. 7 

Here, we look for second invariants quartic in the mo
menta of form 

(2) 

where t:.., go, gl' g2' and g3 are functions of position. This 
ansatz was first introduced by Bozis,8 who found a number 
of examples of Hamiltonians with such an invariant. The 
vanishing of the Poisson bracket of H and I leads to the 
equation 

2 ( at:.. au au au au ) .L pj pip~ - + pi _b_'O + PIP2 _b_1 +p~ _b_2 + _b_3 
I = I aqj aqj aqj aqj aqj 

av 
= -(2t:..Pi~ + 2grPi + gIP2) 

aql 

+ aV(2t:..pip~ + 2g1P2 +gIPI)' (3) 
aq2 

Equating coefficients of terms of the same degree in (3), we 
obtain the following system: 

at:.. = 0 at:.. = 0 ( 4 ) 
aql 'aq2 ' 

ago = 0, ag2 = 0, (5) 
aql aq2 

ag2 + agl -2t:.. av =0, (6) 
aql aq2 aql 

agl + ago _ 2t:.. av = 0, (7) 
aql aq2 aq2 

ag3 av av 
--2go--gl -=0, (8) 
aql aql aq2 

ag3 av av 
--2g2--gl -=0. (9) 
aq2 aq2 aql 

From (4), t:.. is found to be a constant, which without loss of 
generality is taken as !. Equations (5) integrate to give 
gO=V2(q2) and g2=VI (ql)' Differentiating (6) with re
spect to q2 and (7) with respect to ql' then eliminating the 
term in a 2 v / aq I aq2' we have 

a2g1 a2g 1 _ 0 
a~ - aqi - . ( 10) 

This is the two-dimensional wave equation, the general solu
tion of which is well known to be gl = V4(ql + q2) 
- V3(ql - q2)' Substituting this into (6) and (7) and inte-

grating gives 

V = VI (ql) + V2(q2) + V3(ql - q2) + V4 (ql + q2)' (11) 

Finally, the integrability condition for g3 yields the equation 

gl ----- +2(g2-g0)---3--(
a 2V a28 a 2v ago av 

aqi a~ aql aq2 aq2 aql 

+ 3ag2 av = O. (12) 
aql aq2 

Using the derived forms for g I' g2' and g3' this equation can 
be recast as 

[V4(ql + q2) - V3(ql - q2)] [V;(q2) - vi'(ql)] 

+ 2 [vZ(ql + q2) - V3(ql - q2) ][V2(q2) - VI (ql)] 
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+ 3v~ (qI + q2) [vi (q2) - v; (qI)] + 3vj (qI - q2) 

x [vi (q2) + v; (qI>] = 0, (13) 

where primes indicate differentiation with respect to the ar
gument. This functional equation is stated in Hietarinta. 7 

II. THE METHOD OF DIRECT SEARCH 

The general solution to the functional equation (13) is 
not known. It is possible to deduce a sufficient condition for 
solutions to exist by casting (13) into the form 

- - ([V4(qI + q2) a ( 1 a 
aqI V4(qI + q2) - V3(qI - q2) aqI 

- V3(qI - q2) ]2VI (qI») 

a ( 1 
= aq2 V4(qI + q2) - V3(qI - q2) 

x a~2 ([V4(qI + q2) - V3(qI - q2) ]2V2 (q2»} 

(14) 

This demonstrates that solutions with the structure VI 

= vl(ql) and V2 = V2(q2) can exist if 

V4(ql + q2) - V3(ql - q2) = II (ql )h(q2)' (15) 

as the equation is then separable. It must be stressed that this 
is a sufficient but not necessary condition, as can be seen 
from the solutions given in Sec. III found by the method of 
Lax pairs. 

Supposing ( 15) to be satisfied, (14) can be separated to 
give 

.!.~(.!.~(j~VI») = .!.~(.!.~(j~V2») = k, 
II dql It dql h dq2 h dq2 

(16) 

where k is the separation constant. Solving for VI and V2' we 
obtain 

V2(q2) = k~ Jqh(U)dU + --;-[fh(U)dU r + k:, 
12 2/2 12 

(18) 

where kl' k2' k3' and k4 are all constants. Finally, substitut
ing (17) and (18) into (8) and (9) givesg3 as 

g3 = Hv4(ql + q2) - V3(ql - q2)]2 + 2vI (ql )V2(q2) 

+ k ff;(U)dU fh(U)dU + k3f/I(U)dU 

J
q, 

+ kl h(u)du. (19) 

It remains to deduce the solutions to (1-5) for/l andh. 
Applying the two-dimensional wave operator annihilates 
the left-hand side to give 

h(q2)/i' (ql) -II (ql)f; (q2) = O. (20) 

This is easily solved; there are only two possibilities, namely, 
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or 

II =Aql +B, h= Cq2+ D , 

II =A exp(lql) -Bexp(lql)' 

h = C exp(lq2) - D exp(lq2), 

(21) 

(22) 

where A, B, C, D, and I are arbitrary (possibly complex) 
constants. In fact, (21) leads to the super-integrable poten
tial9 

V= a(~ + ~) + b/q~ + e/q~. (23) 

This is obviously separable in Cartesian, elliptic, and plane 
polar coordinates. The system has three functionally inde
pendent isolating quadratic integrals, from which the quar
tic invariant is constructed. 

From the standpoint of this paper, (22) is more interest
ing as it leads to a family of integrable systems that do not 
separate in any coordinate system. The general solution has 
the form 

V = VI (ql) + V2(q2) + V3(QI - q2) + V4(ql + Q2)' (24) 

where 

VI (z) = [k; (A exp(lz) + B exp( -lz» + k'(A exp(1z) 

+ B exp( _lz»2 + k 2]/[A exp(1z) 

- B exp(1z) j2, 

v2(z) = [k 3 (C exp(lz) + D exp( - lz» + k '(C exp(1z) 

+ D exp( -lz»2 + k4]/[ C exp(1z) 

-Dexp( -lz)j2, 

V3 (z) = AD exp(1z) + BC exp( -lz), 

v4(z) = AC exp(1z) + BD exp( -lz) . 
(25) 

Integrability is preserved under scaling, rotational, and 
translational transformations and this can be exploited to 
simplify (25). The constant k' may be eliminated by sub
tracting 2k ' from the potential and redefining k2 and k4. A 
real translation in ql and q2 can be used to obtain IA I = IB I 
and IC I = ID I. Finally, a complex translation can be per
formed to reduce (25) to 

VI (z) = [a + b sin(1z) ]/cos2(lz), 

v2 (z) = [e + d sin(1z) ]/cos2(1z), 

V3(z) = - Icos (/z), 

v4 (z) =/cos(/z), 

(26) 

where a, b, e, d,/, and I are arbitrary complex constants. The 
second invariant is given by 

/_ 1 22+ [e+dsin(1q2)] 2 + [a+bsin(/ql)] 2 
- -21'IP2 2(t) PI 2(t) 1'2 cos q2 cos ql 

+ 2 [a + b sin(/ql) He + d sin (/q2) ] + 21 cos(/ql) 
COS2(/QI )COS2(/Q2) 

XCOS(lq2)PJP2 + 2/d sin(/ql) + 2jb sin(/Q2) 

(27) 

In the form (26), the potential was shown to be integrable by 
Bozis.8 

There are four coordinate systems in which the two
dimensiona1 Hamilton-Jacobi equation separates, namely 
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Cartesian, plane polar, parabolic, or elliptic coordinates. To 
show (26) does not separate in any coordinate system in any 
Euclidean frame, it is necessary and sufficient to show that 
there does not exist an integral quadratic in the canonical 
momenta.3 Let us assume then an integral J exists of the 
form 

(28) 

where the hi are all functions of position. Equating coeffi
cients in the vanishing Poisson bracket of Hand J leads to 
the system of coupled partial differential equations: 

ah l = 0, ah2 = 0, ah2 + ah3 = 0, ah l + ah3 = 0, 
aql aq2 aql aq2 aq2 aql 

(29) 

ah4 _ 2hl [vi (ql) + v; (ql - q2) + v~ (ql + q2)] 
aql 

-h3[vi(q2) -V;(ql-q2) +v~(ql +q2)] =0, 
(30) 

~h4 _ 2hd V2 (q2) - v; (ql - q2) + v~ (ql + q2>] 
uq2 

-h3[vi(ql) +Vi(ql-q2) +v~(ql +q2>] =0. 
(31) 

It is easy to integrate the set of equations (29) to obtain 
solutions taken without loss of generality as 

hi = q~ + k lq2 + k2' h2 = qi + k3ql + k4' 

h3 = - (2qlq2 + klql + k3q2 + k s ), 
(32) 

where the k i are all constants. The integrability condition for 
h4 yields the equation 

2«~ -qi) +klq2- k3ql +k2-k4}[V~(ql +q2) -V3(ql-q2>] -2(qlq2+klql + k3q2 + k s )[V2'(q2) -vi'(ql)] 

= 3 (2q I + k3>[ vi (q2) - vi (q I - q2) + v~ (q I + q2)] - 3 (2q2 + k I) [ vi (q I) + vi (q I - q2) + v~ (q I + q2) ] , (33 ) 

which must hold everywhere. Now VI' v2, v3, and V4 given by 
(26) may be expanded as Taylor polynomials in the neigh
borhood of the origin. By equating coefficients of powers of 
q I and q2' it is straightforward to show that the k i must all 
vanish, excepting the trivial cases V3 = V4 = 0 or VI = V2 = o. 
So, there is no invariant quadratic in the canonical momenta 
and no separable solution to the Hamilton-Jacobi equation. 

III. THE METHOD OF LAX PAIRS 

In this section, further solutions to (13) that do not 
satisfy the sufficient condition (15) are constructed by the 
method of Lax pairs. This was originally devised as a means 
of representing the Kortweg--de Vries equation. 10 It was first 

R(ql - q2) 

P2 

- is(ql + q2) 

- iQ(ql) 

- P(ql) 

is(ql + q2) 

-PI 

iR(ql - q2) 

R '(ql - q2) 

° is'(ql + q2) 

- P'(ql )/2 

is'(ql + q2) 

° iQ' (q2)/2 iR '(ql - q2) 

where the functions P, Q, R, and S are connected with the 
potentials VI' v2, v3, and V4 by 
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vl(z) = W2(z), v2(z) = !Q2(Z), 

v3(z) = R 2(Z), v4(z) = S2(Z). 
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(37) 

applied to a finite-dimensional Hamiltonian system by 
Flachskall for the Toda lattice. Shortly afterwards, Moserl 2 

used the method to demonstrate the integrability of the Ca
logero system. A Lax pair comprises two m X m matrices L 
and M that define the equations of motion through 

dL 
-= [L,MJ. 
dt 

(34) 

Although L is t dependent, the spectrum of L is not. The 
invariants of the dynamical system can be taken as Tr(L k), 
for k = 0,1, .... 

Inozemtsev l3 constructed a number of integrable sys
tems with invariants ofform (2) by choosing the p-depen
dency of the Lax matrix L to be of form diag(p, - p). Let us 
modify his ansatz and use the 4 X 4 matrices 

(35) 

(36) 

The matrices LI and MI are a Lax pair if P, Q, R, and S 
satisfy the functional equations 

R '(ql - q2) = Q'(q2) - P'(ql) , (38) 

R(ql - q2) 2(P(ql) + Q(q2» 
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S'(ql + q2) _ Q'(q2) - P'(ql) 

S(ql + q2) 2(P(ql) - Q(q2» 
(39) 

By applying the operator J 1 Jq I + J 1 Jq2 to (38) and 
J IJql - J IJq2 to (39), we find that 

(40) 

From this, it follows that there are only two distinct solu
tions to (38) and (39), namely, 

P(z) =Az+B, Q(z) = -Az+D, 

R(z) =EI(Az+B+D), S(z) =FI(Az+B-D), 
(41) 

or 

P(z) = A cosh(Bz + C), Q(z) = A cosh(Bz + D), 

E 
R(z) = , 

coshq[Bz + C - D]) 

F 
S(z) = -------

sinh(HBz + C + D]) 

(42) 

Here, A, B, C, D, E, and F are arbitrary complex constants. 
The solutions may be extended by defining the 8 X 8 Lax 
matrices 

(43) 

(44) 

where 

L2 = diag(P(ql),Q(q2),P(ql),Q(q2»' (45) 

M2 =! diag(P'(ql),Q'(q2)' - P'(ql)' - Q'(q2»' (46) 

The functions P and Q are given in terms of the potentials v I 
and V2 by 

VI (z) = HP 2(z) + P 2(z», v2(z) = !(Q2(Z) + Q2(Z». 
(47) 

The matrices Land M satisfy the Lax equation (34) if 

R '(ql - q2) P'(ql) + Q'(q2) 
= - - , 

R(ql - q2) 2(Q(q2) - P(ql» 
(48) 

S'(ql + q2) Q'(q2) - P'(ql) 

S(ql + q2) = 2(P(ql) - Q(q2» 
(49) 

The distinct solutions of (48) and (49) are 

and 

P(z) = (Az + B)2 + G, Q(z) = (Az - D)2 + G, 
(50) 

P(z) = G sinh(Bz + C) + H, 

Q(z) = - G sinh(Bz + D) + H. 
(51) 

The Hamiltonian is Tr(L 2)/8 while the quartic invariant is 
conveniently taken as 

1= A[Tr(L 2)]2 - ft, Tr(L 4), (52) 

which is calculated to be 

I = !pip~ + v2(q2)pi + VI (ql)p~ + (V4 (ql + q2) 
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- V3 (ql - q2»P1P2 + 2vI (ql )V2(q2) + V4 (ql + q2) 

X [P(ql )Q(q2) + P(ql) Q(q2)] + V3 (ql - q2) 
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X [P(QI)Q(Q2) - P(ql)Q(Q2)] + !(V4 (ql + q2) 

- V3 (ql - q2»2. (53) 

Simplifying by use of linear transformations, the inte
grable systems may be taken without loss of generality to be 

V = VI (ql) + V2(q2) + V3 (ql - q2) + V4 (ql + q2)' (54) 

where 

or 

VI (z) = v2 (z) = Z4 + ar, 
v3 (z) = b Ir, 

VI (z) = a cosh ( 41z) + b sinh(21z), 

v2(z) = a cosh ( 41z) - b sinh (21z) , 

v3 (z) = clcosh2(lz), 

v4 (z) = d Isinh2(lz). 

(55) 

(56) 

Here, a, b, c, d, and I are arbitrary complex constants. It is 
straightforward to show that (55) and (56) cannot satisfy 
(33) and do not separate in any coordinate system. They are 
related (but are inequivalent) to the systems identified by 
Inozemtsev 13 and furnish us with further examples of inte
grable but nonseparable potentials. 

A systematic and complete search for finite-dimension
al integrable Hamiltonians with invariants quartic in the 
momenta is important for two reasons. First, as integrability 
is rare, it is useful to construct lists of all known cases (under 
the equivalence class of linear transformations). Second, the 
theory of invariants quadratic in the momenta is very com
plete; all such invariants arise from separability of the Ham
ilton-Jacobi equation in the elliptic coordinates and their 
degenerations. It would be valuable to generalize this classi
fication theory to higher degree polynomial invariants. So, a 
point of significance is to find every solution to the func
tional equation (13). To extend the work of this paper, the 
necessary and sufficient conditions for ( 13) to possess solu
tions must be discovered. The method of Lax pairs seems to 
offer the most promising way of constructing further solu
tions and perhaps classifying them. 
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The classification of partial differential equations from the point of view of the singular point 
analysis is suggested. The general form of the equation for the Painleve resonances is derived. 
The Painleve-type classification of semilinear second-order polynomial partial differential 
equations in two independent variables is performed. 

I. INTRODUCTION 

The interest in the Painleve equations was revived a few 
years ago due to the ARS conjecture t that relates the integra
bility of partial differential equations (POEs) to the Painle
ve property of the similarity reductions of the equations. 

The singular point analysis2
,3 was developed for testing 

the Painleve property and many equations were tested by 
this procedure. The physically relevant equations that are 
usually autonomous, i.e., without explicit dependence on the 
independent variables, were investigated first. Recently their 
nonautonomous counterparts became the focus of atten
tion,4-6 but in a rather nonsystematic way, namely introduc
ing coefficients dependent on the independent variables into 
the integrable equations. 

In my previous paper7 I have considered the possibility 
of using the singular point analysis for the classification of 
Painleve-type OOEs. Extension of this method to the PDEs 
provides us with a tool for the systematic search for the 
(nonautonomous) POEs with the Painleve property. In this 
paper the extension is presented and applied to the Painleve
type classification of the (first degree) second-order polyno
mial POEs in two independent variables. 

The definition as well as the investigation of the Painleve 
property for POEs is rather complicated.8 Nevertheless, we 
can investigate which equations pass the Painleve test de
fined in Ref. 3 and thus are good candidates on integrable 
POEs. 

The test checks whether a general solution of the consid
ered POE in the d-dependent variables Zt,Z2"",Zd has the 
expansion 

U(Zt,Z2"",Zd) 

00 

= I Un (Zt,Z2"",Zd)F(Zl,z2,···,zd)n+
p (1.1) 

m=O 

in a neighborhood of a movable noncharacteristic singular 
manifold given by the equation F(Zt,z2"",Zd) = O. Both F 

and Un are assumed to be analytic functions of Zt,z2, ... ,zd' 

Inserting the expansion (1.1) into the investigated 
equation yields a recurrent formula that determines 
Un (Zl,Z2, ... ,zd) for all n;;;.O except for a finite number of 
rt, ... ,rK;;;'O called resonances. One must check that the num
ber of resonances is sufficient, i.e., K = M - 1 for an equa
tion of the M th order, and that the recurrent formula for the 
resonances does not impose supplementary conditions on 
the arbitrary functions F and uri' These two conditions are 
required in order that (1.1) gives the expansion of the gen-

eral solution. The equations that pass this test will be called 
Painleve admissible. 

The classification scheme suggested in Ref. 7 follows the 
basic steps of this test. In the first step the types of equations 
that admit the expansion (1.1) with negative integer pare 
determined. Afterwards, the resonance analysis and the 
compatibility conditions of the recursion formula for Un' the 
coefficients of the expansion (1.1), are used to specify the 
coefficients of these equations. The general scheme is de
scribed in Sec. II and in the next sections it is applied to 
polynomial second-order POEs in two independent vari
ables. 

It would be useful to extend the classification to the ra
tional equations. The number of types of equations is much 
bigger in this case (cf. Ref. 9) and there are some special 
problems connected with the finite point analysis, neverthe
less I hope to publish results on the rational equations in the 
future. 

II. THE DOMINANT TRUNCATIONS AND THE 
RESONANCE FORMULAE 

The generalization of concepts and formulae used in 
Ref. 7 to the POEs is rather straightforward. In this paper 
we restrict ourselves to POEs in two independent variables 
Zl = X, Z2 = y. We consider the POEs that are real for real 
x,y even though the variables are considered complex during 
the analysis. The extension to more independent variables is 
self-evident. Similarly, the formulas can be extended to more 
dependent variables U1,U2,''''UN , However, in this paper we 
shall deal only with N = 1. 

Every polynomial or even rational POE of order N can 
be written in the form 

E(g:' ,g): = I gK(X,y)[U]K(X,y) = 0, (2.1) 
, Kefff 

where U = u(x,y)eC denotes the dependent variable, g:' is a 
set of multiindices 

K: = (koo; klO,ko1 ; k20,kwko2;"'; kNO,kN-l.l> ... ,koN)' 
(2.2) 

[U]K: = IT 
O<;ij 

i+j<;N 

(2.3) 

Unm : = Unx,my: = a~a;,u(x,y), n,meNo (2.4) 
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(No denotes the natural numbers including zero), and gK are 
analytic functions. 

Example: The set ff for the Burgers equation 

uy + Uxx + uxu = 0 

is 

ff = {(0;0,1;0,0,0), (0;0,0;1,0,0), (1;l,O;O,O,O)}, 

gK = 1 for all K. 
For investigation of the leading order terms of Eqs. 

(2.1) it is useful to introduce the concept of the so-called p 
dominance7 (p integer) ofthe term [uV. For PDEs in two 
variables it is defined as 

D(p,K): = &0 (p - i -j)kij' (2.5) 

i+j<.N(K) 

whereN(K) is the order of the term [U]K. Actually, D(p,k) 
is the power of F occurring in [u] K when the leading order 
behavior FP is assumed for u. 

For a given p, the dominant truncation of the equation 
(2.1) is 

T(p,ff ,g): = L gK(X,y) [U]K(X,y), (2.6) 
Keif, 

D(p,K) = I'(p,if) 

where I-l (p, ff) is the p dominance of Eq. (2.1) defined as 

I-l (p, ff ): = min D(p,K). 
Keif 

(2.7) 

The just defined dominant truncation is that part of the 
equation that for a given p contributes to the leading terms in 
FasF-O. 

The general form of the dominant truncations with the 
p-dominance equal to m is 

T(p,m,g): = L gK(X,Y)[U]K(X,y), (2.8) 
KeM(p,m) 

where M(p,m) denotes the set of all K (of a priori unspeci
fied order) with the p dominance equal to m. The dominant 
truncations with p < 0 containing terms of different orders 
are the most important for the singular point analysis. Sever
al simplest ones are displayed in Table I. 

Next we are going to derive the formulas necessary for 
the resonance analysis of T(p,m,g). It consists2

,3 in the sub
stitution of 

TABLE I. Dominant truncations with p dominances equal to m. The coeffi
cients gK denoted here as A,B,C, ... are functions of x and y. 

p m T(p,m,g) 

-1 -2 Au. + Bu, + Cu2
, 

-1 -3 Au .. + Bu., + Cu,. + Du.u + Eu,u + Gu3
, 

-1 -4 Au.xx + Bu.x, + Cu.,. + Duyy, + Euxxu 
+ Gu.,u + Huyyu + Lu; + Mu.u, + Nu; 
+ Pu.u2 + Qu,u2 + Ru4

, 

-2 -4 Au •• + Bu., + CUyy + »u2
, 

-2 -5 Auxx• + Buxx, + Cu.yy + Duyy, + Euxu + Gu,u, 
-3 -6 Au ... + Buxx, + Cu.yy + Duyy, + Eu2

• 
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u(x,y) = a(x,y)F(x,y)p[ 1 + b(x,y)F(x,y),] (2.9) 

into (2.8) and collecting terms up to the first order in b. By 
this way we get 

T(p,m,g) -::::,A (p,m,g,a)F m + bR (p,m,g,a,r)F m + " 

(2.10) 
where 

A( ) ~ gK [p]Kad(K)F~(K)FyJ(K), p,m,g,a : = k _ 
KeM(p,m) 

(2.11 ) 

R (p,m,g,a,r): = L gK [p] Kad(K) F!(K) F;(K) Y(p,K,r) , 
KeM(p,m) 

and 

d(K): = L kij 
iJ 

(2.12) 

(2.13) 

represents the degree of [u] K, 

I(K): = L ikiJ' 
ij 

J(K): = Ljkij' 
ij 

[P) K. - II [p] kij . - i+] , 
ij 

(2.14 ) 

(2.15 ) 

(2.16) 

[P]o:= 1, [p]j:=p(p-l)"'(p-j+ 1), jEll, 
(2.17) 

Y(p,K,r): = L kij [r + pL+/[pL+ j . 
ij 

(2.18 ) 

The indices in the sums and the product (2.13)-(2.18) run 
over iJ>O, i + j<;.N(K) , the order of the term [U)K. 

The equation for the leading order term uo(x,y) ofthe 
solution expansion (1.1) is then 

A(p,m,g(x,y),uo(x,y» = 0, (2.19) 

and the equation for the values of the resonances r is 

R(p,m,g(x,y),uo(x,y),r) = 0, (2.20) 

where Uo is a solution of (2.19). 
Similarly as in the case of ODEs, one can prove that 7 

R(p,m,g,a,r = - 1) = mA(p,m,g,a)lp, (2.21 ) 

so that r = - 1 is always one of the resonances. 

III. THE CLASSIFICATION OF THE DOMINANT PARTS 
OF THE SECOND-ORDER PDEs 

In this section we shall apply the formalism described in 
the preceding section to the investigation of the semilinear 
second-order polynomial PDEs. 

Namely, we are going to deal with equations of the form 

Auxx + Buxy + CUyy + P(ux,uy'u,x,y) = 0, (3.1) 

where P is polynomial in u",uy'u and the functions P, A, B, 
C, are analytic in x,y. Let us explore which equations of the 
form (3.1) are Painleve admissible. 

The dominant truncations of (3.1) must contain the 
terms with second derivatives in order that the expansion 
( 1.1) may contain two arbitrary functions necessary for rep
resentation of a general solution of the POE in the vicinity of 
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the singularity. From Table I it is obvious thatthe only possi
ble dominant truncations are T( - 1, - 3) and 
T( - 2, - 4). Thus the Painleve admissible Eqs. (3.1) must 
be of the form 

Auxx + Buxy + CUyy + Duxu + Euyu 

+ Luy + Mux + Gu3 + Qu2 + Pu +S= 0, (3.2) 

where A,B, ... ,S are analytic functions of x and y (some of 
them can be zero). 

As the next step we must perform the resonance analysis 
of the dominant truncations T( - 1, - 3) and 
T( - 2, - 4). Applying the formulas (2.11 )-(2.20) from 
the preceding section to T( - 1, - 3) we get the equations 
for the leading order coefficient uo(x,y) and resonances 

2Z - Wuo + Gu~ = 0, (3.3) 

Z(r - l)(r - 2) + W(r - 2)uo + 3Gu~ = 0, (3.4) 

where 

Z = Z(x,y): = AF!, + BFxFy + CF;, (3.5) 

W= W(x,y):=DFx +EFy. (3.6) 

Equations (3.3) and (3.4) are nearly identical with 
those for the second order ODEs so we can use the results of 
Ref. 7 that imply 

(2 - r) W 2 (x,y) = (4 - r)2Z(x,y)G(x,y), r = 1,2,3,4. 
(3.7) 

Indeed, as explained in Ref. 7 [Eqs. (4.1 )-( 4.10)] the only 
admissible resonances are - 2, 1, 2, 3, 4, 6 and the pairs 
( - 2,1) and (3,6) yield the same relations. 

It follows from (3.7) that there are just four types of 
Painleve admissible equations with the dominant truncation 
T( - 1, - 3) having the following leading order coefficients 
and resonances. 
Type b: G = 0, E =to, or D =to. 

uo(x,y) =2ZIW, r= -1,2. (3.8) 

Type c: G=tO, A=D 2/(9G), B=2DEI(9G), 
C=E 2/(9G). 

uo(x,y) = W 1(3G), r = - 1,1, (3.9) 

uo(x,y)=2WI(3G), r= -1,-2. (3.10) 

Type d: G =to, A = -D2IG, B= - 2DEIG, 
C= -E2IG. 

uo(x,y) = - WIG, r = - 1,3, 

uo(x,y) = 2W IG, r= - 1,6. 

Type e: G =to, D = E = 0, 

uO(X,y)2 = - 2Z IG, r = - 1,4. 

(3.11) 

(3.12) 

(3.13 ) 

These types are PDE analogs of the Painleve subcases i(b)
i( e) in Ref. 10. 

Investigating similarly the dominant truncation 
T( - 2, - 4) we get the analog of i (a) 

Type a: G = D = E = 0, Q =to, 

uo(x,y) = - 6ZIQ, r= - 1,6. (3.14) 

IV. THE CLASSIFICATION OF REMAINING 
NON DOMINANT PARTS OFTHE SECOND-ORDER PDEs 

The terms of an investigated equation that do not belong 
to its dominant part form the so-called r~cessive part of the 
equation. They are the terms with higher p dominance (i.e., 
lower in absolute value because the p dominance is negative 
for p < 0). In the previous section we have determined the 
Painleve admissible dominant truncations of (3.1 ). The goal 
of this section is to specify the corresponding recessive parts. 
The tool for that will be the compatibility conditions that 
follow from the recursion formula for the coefficients of the 
expansion (1.1). 

By the transformation of independent variables 

x = ,p(x,y), y = "p(x,y) (4.1 ) 

Eq. (3.2) can always be (locally) transformed to either 
parabolic or hyperbolic form (as x,yeC there is no difference 
between hyperbolic and elliptic equations) 

Uxx = P(ux,uy,u,x,y) or uxy = P(ux,uy,u,x,y). 
(4.2) 

Besides we can use the transformation of the function u 

U(x,y) = A(X,y)U(x,y) + p(x,y) (4.3) 

for further simplification of the investigated equations. 
Below we will assume that A = ° or - 1, B = - 1 or 0, 

and G is a constant. [For the type a G = 0 and Q(x,y) 
= const.] 

We are going to use the compatibility condition for anal
ysis of the various types of equations obtained in the preced
ing section. We shall use the Kruskal ansatz 

F(x,y) = x + /(y). (4.4) 

This simplifies the calculations substantially because then 
we can consider the coefficients Un in (1.1) as functions only 
of y. On the other hand, we must be aware that the coeffi
cients of Eq. (3.2) may depend on x and y so that they must 
also be expanded in the vicinity of F(x,y) = 0. For example, 

00 

D(x,y) = L Dn (y)(x + /(y)y. (4.5) 
n=O 

This way we get the recursion formula for n = 1,2, ... : 

-un(n+l)(n-R)(A+B/y)=Bun_ I,y(n+p-l)+G L UiUjUk+ L QiUjUk 
i+j+k=n i+j+k=n-p-2 

+ L L,uj,y+ L (L,/y+M,)ujU+p)+ L P,uj +Sn_ 2+p, 
,+j=n-2 ,+j=n-I ,+j=n-2 

(4.6) 
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wherep = - 2 for the typea,p = -lforthetypesb,c,d,e, 
and R is the corresponding resonance value different from 
- 1. The summation indices satisfy O<;'iJ,k<;.n - 1, O<;.r<;.n 

and the conditions under the summation signs. The coeffi
cients U/, Qi' Do E i, L/. Mi' Pi> Si are functions of y. 

For n = R this formula becomes a compatibility condi
tion that must be satisfied for arbitrary F in order that (3.2) 
may be Painleve admissible. This condition puts further re
strictions on the coefficients ofEq. (3.2). 

A. Type a equations 

They are the equations with the dominant truncation 
T( - 2, - 4). The transformations (4.1) and (4.3) can be 
transformedto the form 

Uxz = 6u1 + Luy + Mux + S, wherez = x or y. (4.7) 

Let us analyze the parabolic case z = x first. From the 
recurrence formula one gets 

Un (n + l)(n - 6) = kJ;L n + terms with smaller 

powers of/y. n = 1,2, ... , (4.8) 

where kl = - 2. kl = 1/25 •...• k6 = 72/75000 •.... Asf(y) 
is assumed to be arbitrary the compatibility condition for 
n = 6 requires that L = O. Thus any Painleve admissible 
equation of this type can be transformed to an ODE (with 
the Painleve,property). 

Similarly. for the hyperbolic case the recurrence formu-
la yields 

U 1 = (_/yy/y-I +Lo/Y + Mo)/5. (4.9) 

u1 =/yyy/(60f:,) + terms independent of /yyy, (4.10) 

u3 = /yyy [/yy/ y- 4 + 4Lof; 2 - Mof y- 3] /300 

+ terms independent of/yyy. 

and for n;;.>4 

(4.11 ) 

un (n+l)(n-6) 

-k dY[J.' I'-n-I_L ft-n_Mf-n] 
- n dyn yyJ y 0 y 0 y 

dY + terms independent of -, (4.12) 
dyn 

k4 = -1/300. ks = -1/150, k6 = - 1/300 so that the 
compatibility condition cannot be satisfied for arbitrary f It 
means that there is no Painleve admissible hyperbolic equa
tion of type a. 

B. Type b equations 

These equations, as well as types c, d. e, have the domi
nant truncation T( - 1, - 3). The type b equations are re
ducible by (4.1) to 

Uxz = Duxu + EUyu + Luy + Mu" + Qu2 + Pu + S. 
(4.13 ) 

where z = x or y. The recurrence formula yields 

U 1 = [uo(Eouo,y - Lo/Y - Mo + Qouo - DI - E1/y) 

-Buo,y](2A+2B/y)-I, (4.14) 

where due to (3.8) 
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Uo = 2(A + B/y )/(Do + Eo/Y). (4.15 ) 

Let us investigate the terms proportional to /yyy for 
n = R = 2. We get 

0= Eofyyy(BDo - EoA)(2AEo - BDo + EoB/Y) (4.16) 

for arbitrary fey), hence the equations of type b (both para
bolic and hyperbolic) are Painleve admissible only if 
E(x,y) = 0 or D(x,y) = O. By the transformations (4.1), 
(4.3) and if necessary by the interchange x_y they can be 
reduced to 

Uxz = - 2uxu + Luy + Qu2 + Pu + S, z = x or y. 
( 4.17) 

The compatibility condition for the hyperbolic form 
then reads 

/yy (Qo - Lo) + f~ [Qo(Qo - Lo) + LI - Qd - /YPo = 0, 
( 4.18) 

that implies Q = Land P = 0, so that the Painleve admissi
ble hyperbolic equation of type b is 

U"y = - 2u"u + Q(x,y) [uy + u2
] + S(x,y) , (4.19) 

where Q and S are analytic functions. 

The compatibility condition for the parabolic case of 
(4.17) reads 

(4.20) 

where from we get Q = LJ Land P = Q" - Q 2 due to the 
arbitrariness off, so that the most general Painleve admissi
ble parabolic POE of type b is 

u"x = - 2uxu + Luy + (Lx/L)uZ 

(4.21) 

C. Types c and d 

The relations between A, B, C and D, E imply 

Bl = 4AC. (4.22) 

which means that these types are always transformable to 
the parabolic equation 

uxx + (r- 4)u"u + (2 - r)u3 + Luy + Mu" 

+Qu2 +Pu+S=0, r= 1,3. (4.23) 

The compatibility conditions corresponding to R = 1 or 
R = 3, namely, 

(f;,LO)R + terms with smaller power of /y = 0, 
(4.24) 

require that L = 0 so that the Painleve admissible equations 
of types c and d are always transformable to the ODEs classi
fied by Painleve. 

D. Type e equations 

The last equations that must be investigated are reduc
ible to 

uxz =2u3 +Luy +Mu" +PU+S. z=x or y. 
(4.25) 

The analysis of these equations is similar to type a. 
There is no Painleve admissible hyperbolic equation of type e 
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because the compatibility condition requires 

o = /yyyy/yy./' y- 9/2 + terms independent of /yyyy. (4.26) 

The recurrence formula for the parabolic form gives 

(n + l)(n - 4 )un = kn (/yLo)n + terms with 

smaller powers of/y, (4.27) 

where kJ = - 1, k2 = 1/6, k3 = - 2/27, k4 = 1/12, .... 
The compatibility condition for r = 4 requires L(x,y) = 0 
hence all Painleve admissible parabolic equations of the type 
e are reducible to OOEs. 

v. CONCLUSIONS 

We have extended the formulas for the Painleve-type 
classification procedure suggested in Ref. 7 to POEs in two 
variables. Their further extension to more variables is easily 
deducible. 

The method was used for the classification of the first 
degree second-order polynomial POEs. They belong to the 
dominance classes T( - 1, - 3) or T( - 2, - 4) defined in 
the Sec. II. The resonance analysis and the compatibility 
conditions imply that most of the Painleve admissible POEs 
from the investigated class are transformable to the OOEs 
classified by Painleve. The only genuine Painleve admissible 
POEs are those reducible by (4.2), (4.4) to the form 

or 

609 

u"Y = -2u"u+Q[uy +u2
] +S, (5.1) 

u,," = - 2u"u + Luy + (L"IL)u2 

+ (2L"IL 2 - L""IL)u + S, 

J. Math. Phys., Vol. 31, No.3, March 1990 

(5.2) 

where L, Q, S are analytic functions of x and y. 
The former equation is immediately integrable. Its first 

integral is of the Riccati type 

uy = u2 
- V, 

where 

(5.3 ) 

(5.4) 

The latter one, Le., Eq. (5.2) is the most general Painle
ve admissible extension of the Burgers equation (cf. Refs. 4 
and 6) and should be, therefore, integrable. 

The procedure presented in this paper can be adapted 
for classification of other classes of equations, e.g., POEs in 
many variables, rational POEs (where the zero point analy
sis must be included), systems of equations, etc. The calcula
tions obviously become much more elaborate and extensive 
(cf. Refs. 9 and 11) even though it seems that the essence of 
the method remains unchanged. 
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A new generalization of the Plateau problem that includes the constraint of enclosing a given 
region is introduced. Physically, the problem is important insofar as it bears on sintering 
processes and the structure of wetted porous media. Some primal and dual characterizations of 
the solutions are offered and aspects of the problem are illustrated in one and two dimensions 
in order to clarify the combinatorial elements and demonstrate the importance of numerous 
local minima. 

I. THE PROBLEM AND ITS PHYSICAL REALIZATIONS 

We present a physically interesting and largely unex
plored generalization of the problem of Plateau. Plateau's 
original problem concerns the surface of least area with a 
given boundary curve. l

--4 Its solutions, known as minimal 
surfaces, have zero mean curvature and are usually associat
ed with soap bubbles and wire frames. A well-known gener
alization is the problem of minimum area with a given 
boundary and enclosing a given volume. 1,4 The solutions are 
again surfaces with constant mean curvature and are usually 
associated with the shape of a liquid-gas interface. 

In the present work we introduce still another extension 
of this classic problem. The extension arises in the analysis of 
sintering processes and again incorporates a volume con
straint while adding the constraint of enclosing a given re
gion. 

Problem: Given a region n and a positive real number 
Vr , find a region r with a smooth boundary ar having the 
minimum area such that r contains n and has volume Vr . 

Physically, this extension represents the problem of the 
shape r of the wetted solid n. Figure I illustrates the point. 
Some problems of this sort have been posed and solved,5,6 
but the general importance of the problem does not seem to 
have been previously appreciated and the purely geometric 
formulation given above is new. 

The primary raison d'etre of this paper rests on the 
mathematicians' traditional criterion of shedding new light 
on a classical problem. In addition, we introduce an example 
which forms the basis offurther calculations 7-10 on sintering 
processes. 

We begin by arguing that this problem indeed represents 
the ideal wetted solid. There are two physical interpreta
tions. In the first, we force the liquid to cover the solid, al
though perhaps only with an infinitesimal layer. Since the 
area of the liquid-solid interface is then fixed and the area of 
the gas-solid interface is zero, the total surface free energy 

attributable to the shape of the wetted solid is proportional 
to the total surface area of the liquid, which leads to the 
conclusion that the shape of r minimizes such an area. In 
this idealization we neglect the effect of layer thickness on 
the energies. II 

The second interpretation lies closer to our presently 
intended applications. We imagine the liquid and the solid to 
be very similar in their physical properties: In fact, we take 
them to be identical except for their ability to support a shear 
stress. Our motivation comes from surface melting models of 
sintering processes. 12 In such processes the "liquid" merely 
represents a more mobile form of the solid. Specifically, we 
assume that the liquid and solid are so similar that the energy 
per unit area for the gas-solid and gas-liquid interfaces are 
equal, while the liquid-solid surface tension is negligible, i.e., 

(1) 

where ugI , U ls ' and ugs are the respective surface tensions 
and the subscripts refer to gas, liquid, and solid. Correspond
ing to a variation in the shape of the total region ofliquid and 
solid r, the variation dG in total surface free energy is now 
the sum' 

dG = u g) dA g) + U ls dAis + u gs dA gs ' (2) 

where the dA 's are variations in the areas of the respective 
surfaces. Using conditions (I) on the surface tensions, Eq. 
(2) becomes 

(3) 

where A r is the area of the outer surface of the condensed 
phase (solid or liquid) in contact with the gas. Condition 

FIG. 1. The shaded solid n is wetted with white 
"liquid" to form the total object r, within the 
heavy outline, which has the given volume Vr . 
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(3), along with (7 gl > 0, implies that the minimum surface 
free energy coincides with the minimum area for ar, the 
boundary separating r from the gas. 

Our problem is related to classical capillarity prob
lems.4.I3 The usual condition for the contact angle 0 is 
known as the Young equation: 

(7gs = (7ls + (7gl cos O. (4) 

When our assumptions on the surface tensions, Eq. (1), are 
substituted into Eq. (4), we find that o should vanish. This is 
not surprising in light of the fact that Eq. (4) follows from 
the minimization of the total surface free energy given the 
relative worths of the areas at the interfaces. Since our for
mulation counts liquid and solid surfaces equally, the opti
mal contact angle is zero. 

II. STRUCTURE OF THE SOLUTIONS 

While existence and regularity are relatively easy to es
tablish for our problem,14 in the present development we 
entirely ignore such issues. We assume existence and regu
larity and focus on other, equally interesting aspects. After 
deducing some necessary conditions arising from global op
timality, we turn to combinatorial aspects which follow from 
the fact that in general the solutions are far from unique. We 
show this to be the case by considering the problem first in 
one and two dimensions. 

A. One dimension 

In one dimension we are looking for a set r which covers 
(contains) a given set n, has given length L (r), and such 
that it has the minimum number of endpoints, i.e., such that 
the cardinality C = larj is minimum. While this problem is 
very easy, it already exhibits highly degenerate solutions 
with numerous local minima for even moderately complicat
ed n. These features introduce the combinatorial consider
ations which stay with the problem in two and three dimen
sions. As a concrete one-dimensional example take the 
following union of intervals [see Fig. 2 (a) ] : 

n = [ - 3, - 2] U [ - 1,0] U [O.S,I] U [1.S,2]. (S) 

The minimal cardinality C * as a function of length is 

undefined, if L < 3, 

8, 3<,L<3.S, 

C*(L) = minlarj = 6, 3.S<,L <4, (6) 

4, 4<,L<S, 

2, S<,L, 

while the number of different ways of achieving C * is 

{

l, if Le{3,4,S} 

N(C*(L» = 2, if L = 3.S (7) 

00, if LEt{3,3.S,4,}. 

The two possible coverings with length L = 3.S are shown in 
Fig.2(b). 

One could further resolve the infinite solution set ob
tained for other values of L by deriving an expression for its 
volume V( C * (L». For example, for L = 4.8 all solutions are 
of the form 

r = [ - 3 - XI' - 2 + x 2 ] U [ - 1 - X 3, 2 + x 4 ], (8) 
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with Xj >0 for i = 1,2, 3,4 and l:jXj = 0.8, as illustrated in 
Fig. 2(c). Generalizing, we see that with the parametriza
tion (8), the solution set for the given L is always a simplex 
Xj >0 for i = 1, ... ,C*(L) and l:jXj = L - L *, where 
L * = min L with the given C *. This simplex has the volume 

V(C*(L» = (L - L *)c* JC*/(C* - 1). (9) 

Fixing C at some value above C *, the solution sets become 
more complicated, at least in part due to the appearance of 
local minima. As an example, consider L = 4 and C = 6; one 
"locally optimal" solution is given by r = [ - 3,0] 
U [O.S,I] U [1.5,2], as shown in Fig. 2(d). 

B. Two dimensions 

The problem in two dimensions is richer. Since a global
ly optimal solution is also locally optimal, we examine a por
tion of an optimal configuration for which we may choose a 
Cartesian coordinate system in which a suitable portion of 
the boundary ar is given by a smooth curve f(x) on an 
interval [X 1,X2 ], with r locally defined by Yq(x). We 
further divide the interval [X I ,X2 ] into subintervals accord
ing to whether f can have one- or two-sided variations, i.e., 
according to whether f(x) does or does not coincide with the 
boundary of n.15 On intervals where two-sided variations 
are available, the local problem is just the classic isoperime
tric problem I .4,16--18 of minimizing the length 

L(j) = IX, ~1 + 1'2 dx 
L, 

subject to a given area 

V = IX/(x) dx 
Jx, 

(10) 

(11) 

and given endpoints. The classical results assure us that the 
solutions must be pieces of circles with radius R = 1/,.1" 
where A is the Lagrange multiplier from the Lagrangian 

L = ~ 1 + 1'2 + Af Since A is the Lagrange multiplier corre
sponding to the area constraint, it must also equal the rate at 
which perimeter increases per unit change in area. 16--18 From 
this we can see that a necessary condition for global optima
lity is that all such circular arcs have the same radius! Note 
that this follows from the sign of the first variation, which 
transfers some area from one interval to another. While our 

(a) 

-3 -2 -1 o 1 2 

(b) 

I (e) 

(d) 

FIG. 2. (a) The one-dimensional region fl. given in Eq. (5). (b) Two possi
ble coverings with length L = 3.5. (c) A generic element from the simplex 
of coverings with L = 4.8. (d) A covering with L = 4, which represents 
only a local minimum. 
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arguments are local, they may be applied to any portion of 
ar; thus we conclude that this boundary is the union of 
pieces of an and pieces of circles. We see that such circles 
must be tangent to an by another local argument. Again 
consider a Cartesian coordinate system and an interval 
[X I,X2 ], where the boundary an is given by a function 
Yo (x) and ar makes contact with the an in the interval. 
The inclusion of n in r is then expressed by the inequality 

/(x);;'Yo (x). (12) 

Classical arguments on corner conditions with one-sided 
variations l9 assure us that/is tangent to Yo (x) since Lrr 
cannot vanish. 

As a final global condition, we find that the curvature of 
the circular arcs on the "wet" portion of ar (i.e., on the 
portion where it is distinct from an) must be less than the 
curvature of the dry portion where ar and an coincide. This 
follows from the same first variation argument we used to 
conclude that the circular arcs all had to have the same radii. 
This tempts us to attempt the construction of an optimal 
family of solutions for a given n and progressively larger 
areas Vr by "growing" the solutions along the segments of 
minimum curvature. While this construction gives locally 
optimal shapes, it can fail to take advantage of topological 
changes which could improve the objective, i.e., decrease 
total perimeter (see Fig. 3). 

In fact, the physically realized state for a wetted porous 
medium depends in detail on the fill-drain history of the 
sample. Accordingly, it is of as much interest to give the 
density of states at a certain energy and volume as to give the 
shape which realizes the absolute minimum of the energy at 
the volume. 

c. Three dimensions 

The situation in three dimensions is very similar. We 
again turn first to the local problem, which has been well 
studied and for which standard arguments guarantee exis
tence and regularity. 1.4 Using a coordinate system, we focus 
on a portion of ar such that this boundary is defined by a 
function z = /(x,y) and r is locally defined by z<J(x,y) for 
(x,y) in an interval 1= [X I,X2] X [YI'Y2]' On this interval 
the problem becomes the well-known obstacle problem with 
a constraint. We again divide into subregions according to 
whether or not/coincides with an. On subregions where/is 
distinct from an, we are allowed two-sided variations. The 
problem is then one of minimizing 

A(j) = i ~1 +/~ +/; dxdy (13) 

subject to the constraint of the given volume 

Vr = i/(X,y) dx dy, (14) 

where/x andJ;, are partial derivatives of/with respect to x 
and y. This gives the Lagrangian 

L = ~1 + /~ + /; + Af, (15) 

whose extremals are surfaces with constant mean curvature: 

(16) 

where R I and R2 are the radii of curvature in two conjugate 
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(b) 

FIG. 3. The shaded solid is wetted by black "liquid" of the same mean cur
vature in both panels. but the difference in liquid volume is due to the past 
history of the system: dry in panel (a) and wet in panel (b). 

directions and A is again the Lagrange multiplier corre
sponding to the volume constraint. As before, A represents 
the rate at which surface area must increase per unit increase 
in volume; thus the global solution must consist of pieces of 
an and pieces that are surfaces of constant mean curvature 
tangent to an. By the same first-order variational argument 
employed above, we find that the mean curvature of all these 
pieces must be the same and it must be greater than the mean 
curvature anywhere on the portion of ar which coincides 
with an. The tangency of/where it again meets an follows 
by standard results on one-sided variations. 

Physically, we can understand the solutions as puddles 
forming on the solid skeleton provided by n. The fact that all 
the puddles have the same mean curvature results from the 
familiar equation20,21 

PI - P2 = 2(J'K, (17) 

which relates the pressure drop PI - P2 across an elastic sur
face to the surface tension (J' and mean curvature K of the 
surface. The constancy ofK then follows from the equilibri
um condition that the liquid pressure be the same in all the 
pUddles. 

To gain further physical insight, we introduce a dual 
realization of our problem. We again consider n to be the 
solid skeleton, but rather than covering n with a given vol
ume Vr - Vo ofliquid which wets the surface, we cover it 
with an elastic skin with constant surface energy density (J' 

and envision pumping a gas at a given pressure P2 into the 
compartment between n and the skin while fixing the exter-
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nal pressure at a level PI which is sufficiently large to guaran
tee that the elastic skin is everywhere pressed firmly against 
the solid when P2 = O. We will refer to this problem as the 
bean-in-a-bag or "Christo" problem. It is clear from this 
model, which involves pockets of gas, that the separation of 
the elastic skin will occur first from points of large mean 
curvature K, thereby reducing the surface area the most. In 
fact, the Christo problem helps by providing a physical real
ization of a dual in which the givens are 0 and Kmin' In this 
dual formulation, the problem is to find the region r with the 
minimum volume which contains 0 and whose mean curva
ture is everywhere greater than or equal to Kmin • Achieving a 
given Kmin requires pumping the gas under the elastic skin 
with a given pressure P2 = PI - 2UKmin' We could also char
acterize the problem by asking for the smooth surface con
taining 0 and volume Vr which has the largest value of the 
minimum mean curvature. 

D. Two properties 

We conclude this section with two general and yet pow
erful properties of the class of solutions. We will refer to the 
first of these as the layering property: Let r be a solution to 
the problem given 0 0 and Vand let 0 0 COl C r; then r is 
also a solution to the problem given 0) and V. 

The proof is immediate. The layering property derives 
from the fact that when some of the liquid covering a wetted 
solid freezes, its freezing does not affect the shape of the 
liquid above it, i.e., of the new wetted solid (assuming that 
the liquid does not change its volume upon freezing). 

The layering property hints at a universality of structure 
among solutions to the problem which we pursue a little 
further here. To see this we define an equivalence relation on 
the family of solid skeletons. Formally, we say that 0 1 is 
equivalent to O2 at volume Vand write 

(18) 

provided that there exists a region r which solves the wetted 
solid problem with 0 If Vas data and, also, the problem with 
O2, Vas data. That is to say that by the time we have covered 
up 0 I or O2 to a level V, their distinctive jagged features have 
been covered over by the pUddles. This leads to something 
resembling ultrametricity among the set of states containing 
a skeleton 0 0 and having a given volume. The associated 
"distance" can be thought of as the total fill-drain volume 
needed to reach 0 I from O2, 

As the final property, we mention scale in variance. Spe
cifically, let r be a solution of the problem for 0 and Vand 
let IL be a scale factor for the map sending (x,y,z) to 
(lLx,ILY,lLz) in some coordinate frame. Then the region ILr 
solves the problem for given ILO and 1L3 V. 

III. APPLICATIONS 

Because of its relation to porous media and sintered ma
terials, the case where 0 is a lattice of packed spheres is of 
great interest.5

-
1O For values of Vr near Vn , solving the 

problem is equivalent to locating the puddles in the necks 
surrounding the points of tangency between spheres. Pud
dling grows until the liquid or mobile "phase" attains a vol
ume VI = Vr - Vn at which these puddles first come into 
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contact. For a lattice of identical spheres, the "liquid" layer 
becomes connected at this stage, while patches of solid ao 
still show through. In the next stage, r has a surface of con
stant mean curvature with the topology of a three-dimen
sionallattice: We may suppose for the present that it belongs 
to the recently announced class of periodic complete sur
fac~s of constant mean curvature.22 Once the given volume 
Vr increases considerably beyond this value, the solution r 
begins to include filled pockets delineated by four spheres in 
mutual contact. Note that the Christo representation no 
longer works in the regime where pockets become filled. 
While there are many equivalent ways of filling such pockets 
for identical spheres, the order in which the pores are filled in 
a real porous material can make small differences and create 
many local optima. Finding the global optimum is then a 
problem of the modem "programming" sort and probably 
best attacked by methods such as simulated annealing. 23 

Since the state of the real physical system is to a large extent 
dependent on its fill-drain history rather than on the true 
minimum of the free energy, the global optimum is again of 
secondary interest to counting the number of states at a cer
tain level of suboptimality. 

While we have referred to our problem as the problem of 
the wetted solid, it is important to note that our "liquid" 
merely represents mobile pools of material which can be re
distributed along the surface of the solid. Realizations of 
interest include sintered materials, wetted porous media, 
and precipitates from saturated solutions. Nonetheless, in 
pursuing the example of the structure of a wetted collection 
of packed spheres, it is convenient to make intuitive argu
ments which treat the material that has been transported to 
the "necks" as though it were a liquid. That is not to say that 
this pool of material is a liquid; it is only to say that it is able 
to respond to surface tension forces (surface free energy dif
ferences) faster than the rate at which new material is sup
plied or transported to the mobile pool. This is certainly 
valid for sufficiently small neck sizes. It is also an excellent 
approximation even for large neck sizes for materials that 
respond quickly to local surface tension. One case in which 
this is likely is precisely that of a liquid surface.24 Searching 
for conditions that give rise to surface melting was in fact the 
original motivation for investigating this class of problems. 
The possibility of a solid skeleton coated by a liquid that is 
identical to the solid in all ways except for its ability to sup
port a shear stress was instrumental in the isolation of the 
zero-contact-angle case ofthe classical theory for the distri
bution of liquids on a solid. 

Applications typically involve a one-parameter family 
of such problems. For the case of sintering, 0 evolves as 
sintering progresses. For another class of problems, the fam
ily of solutions is indeed well parametrized with 0 as the 
solid matrix which does not change as Vr increases and de
creases. This could represent the growing together of precip
itated particles immersed in a saturated solution which fills 
the pore spaces or the equilibrium structure of a liquid which 
wets a porous medium. 
IV. TWO IDENTICAL SPHERES-AN EXAMPLE 

We illustrate the above discussions with an example in
volving two identical spheres in point contact. This example 
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FIG. 4. Notation used for the example of two touching unit spheres, with a 
small amount of "liquid" filling the neck between them. 

is the building block for treating a lattice of spheres in the 
regime before the puddles in the different necks touch each 
other. The rotational symmetry of the example allows the 
problem to be characterized using surfaces of revolution, 
thus reducing the associated partial differential equations to 
ordinary differential equations. Rotationally symmetric sur
faces of constant mean curvature are known as Delaunay 
surfaces and have been extensively studied.25.I ,2,4 The prob
lem of fitting them to enclose a given volume around an 
evolving skeleton n represents a new twist appropriate to 
applications of sintering processes. The one-parameter fam
ily of n's we consider is where the spheres gradually get 
smaller, releasing progressively more volume into the mobile 
pool. 

By the scaling property, it is sufficient to solve the prob
lem of two unit spheres in point contact and then scale the 
results. By symmetry, we may limit our view to the first 
quadrant. We use the notation of Fig. 4 for the curve 
Y = I(x), which is the generator for the surface in the region 
of the neck, and let 

Y=Yn(x)=~I- (x-l)2 (19) 

for yon the circle which defines an. 
To find the shape of the fluid, we set up the calculus of 

variations problem to minimize the surface area subject to a 
fixed volume constraint. Formally, we ask for J, which mini
mizes the surface area 

ix, {2 
A=21T 1~1+1'2dx+21T Yn~l+y~dx 

o x, 
(20) 

subject to constrained total volume 

ix, {2 
V = 1T 12 dx + 1T y~ dx 

o x, 
(21 ) 

withj'(O) = O. The conditions for the point XI' where the 
boundaries ar and an join, are I(x I) = Yn (x I) and 
I' (x I) = Yo (x I ). This yields the Lagrangian 

L=/~1 +l2 + Af2. (22) 

Letting 

H = L - I' aL = const, 
ai' 

(23) 

we have the Euler-Lagrange equation l 6-18 
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I' - dl - I 12 I 
- dx - ±\j (H+A,j2)2- , (24) 

where Hand A. are constants which must be determined from 
the boundary conditions. While Eq. (24) can be integrated 
to give I in terms of elliptic functions,26 the evaluation of I 
corresponding to a situation of interest is more easily 
achieved numerically. Useful methods for calculation are 
discussed in Ref. 8. Here we mention only that the family of 
solutions is obtained most conveniently in terms of XI and 
that it necessitates some shooting method27 for most ways of 
specifying the data for the problem. A solution with unit 
radius can be scaled to radius R to givelR (x) = Rj(xIR), 
which satisfies Eq. (24) with H R = RH and A. R = A. I Rand 
leads naturally to X IR = RXI and volume VrR = R 3Vr . 

Note that the Euler-Lagrange equation (24) is com
pletely independent of Yo' The solution depends on n only 
through the boundary conditions and in fact, it is satisfied 
for any solid of revolution with constant mean curvature, 
i.e., any Delaunay surface. The fact that the Lagrange multi
plier A. coincides with the mean curvature K can be seen by 
applying the formula for the mean curvature of a surface of 
revolution generated by Y = I(x) revolved about the x axis28: 

K= 2~ L~>2- ~]. (25) 

By inserting Eq. (24), Eq. (25) becomes K = A.. 
It is interesting to note that the importance of Delauney 

surfaces have not been previously recognized in sintering 
studies, although an instance of them can be found in a pre
vious study of porous media.5 

The building block of two hard spheres in the small neck 
regime can be used to treat random or close packed arrays of 
spheres with known distributions of radii. The new aspects 
are again combinatorial. 

v. CONCLUSIONS 

In this paper we have introduced a new modification of 
the problem of Plateau. Assuming existence and regularity, 
we used standard results concerning the local version of the 
problem to deduce new global conditions. While these con
ditions become obvious after some reflection, they are suffi
cient to assemble global solutions for many physically inter
esting examples. We also sketched a method for obtaining 
the solution in a radially symmetric example important for 
sintering processes. 

Our approach provides a realistic model of wetted po
rous media and is of particular importance for the under
standing of sintered materials. To invoke the present solu
tions for a wetted solid, we have to ignore the nonideality in 
the form of a thickness-dependent free energy responsible for 
the disjoining pressure of Deryaguin. 29,30 Ours is a particu
larly appropriate model for the sintering processes in which 
some sort of enhanced surface mobility or surface melting 
occurs, but the formation of the melted layer is the slow 
variable. The present model should work very well under 
such conditions. In particular, it is a much better approxima
tion to reality than the traditional models such as the circle 
approximation for I(x) advanced by Kuczynske l in the 
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1950's and used widely since. Our model differs by as much 
as 200% relative error (for small neck sizes!) and agrees 
better with experiment. 7.10 

The present approach stresses the importance of com
binatorial methods, local minima, and density of solutions, 
rather than the absolute minimum. Work in this area has 
drifted away from an interest in the detailed shape of the 
surface to models for the value of the thermodynamic poten
tial of the liquid covering n.5

•
6

•
30 There remains important 

information to be gained from microscopic details which can 
supplement macroscopic phenomenology, including models 
of thermodynamic potentials. 
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An exposition is given of various geometrical properties of flag manifolds and of the 
Duistermaat-Heckman integration formula as applied to flag manifolds. 

I. INTRODUCTION 

We start with an informal discussion of the content of 
this paper and the motivation that led to this work. First of 
all, what is the Duistermaat-Heckman (DH) I integration 
formula? Put in the simplest possible terms, it is-a generaliza
tion of the following elementary integral formula on the two
sphere S 2 coordinatized in the usual way by «(),qy): 

L~o S::o exp(cos ()sin () d() dqy = 21T(e - e- I
). (1.1) 

One observes that the right-hand side is a sum of contribu
tions from the two critical points of the function cos () at 
() = 0,1T. The generalization is as follows. First, one needs a 
compact manifold M, of dimension 2n, with a symplectic 
form (u. (A symplectic form is a two-form (U such that its n
fold wedge product (U /\ ••• /\ (U = (Un vanishes nowhere on 
the manifold and such that d(U = 0, where d is the exterior 
derivative.) In the example above, M = S 2 and 
(U = sin () d() /\ dqy (the singularity at () = 0 can be made to 
disappear by changing to better coordinates). From (U one 
can then form the symplectic volume (Un In!. In the example, 
the symplectic volume is (U itself. The second ingredient is a 
function H on M called the Hamiltonian function because of 
links with the geometric formulation of Hamiltonian me
chanics (see, for instance, Ref. 2) . In the example, 
H = cos ().Assuming for simplicity that H has only isolated 
critical points {m I}' the DH formula states 

i (H) 
(Un _ ~ exp(H(mI » 

exp -- £.. ' 
M n! ml D(mI ) 

( 1.2) 

i.e., the right-hand side is again a sum over the critical points 
of H. The factors D(m I ) are, in fact, precisely the factors 
one would get from evaluating the integral using a "semi
classical" or Gaussian approximation at each critical point, 
so that, loosely speaking, one may paraphrase the DH state
ment by saying that the semiclassical approximation is exact 
for these. integrals. (In fact, as m I need not be a local maxi
mum of H, it is incorrect to talk of the semiclassical approxi
mation. However, if one evaluates the fluctuation determi
nant as if m I were a maximum, the answer obtained is 
exact.) As was pointed out by Kirwan,3 semiclassical exact
ness in a related class of oscillatory integrals is a very special 
feature that only holds if H is a perfect Morse function. 

A better way of viewing the result (1.2) is as an example 
of "localization": one can show that the integrand on the 
left-hand side is an exact form everywhere except at the criti-

a) Present address. 

cal points mI' Thus one may cut out solid spheres of arbi
trarily small radius around each critical point and, usi~ 
Stokes' theorem,. the integral reduces to a collection of sur
face integrals around each critical point. As the radii can be 
sent to zero this explains why the right-hand side ofthe DH 
formula is given solely in terms of local data at the critical 
points. 

The notion of localization lies at the heart of some ex
tremely fertile ideas developed by Witten.4 Roughly speak
ing, similar localization arguments are applied to infinite
dimensional manifolds, the configuration spaces of various 
quantum field theoretical and string models. The relation
ship of these ideas of Witten with the DH formula was eluci
dated in Atiyah5 and Atiyah and Bott.6 From the physical 
point of view, supersymmetry plays a key role in localiza
tion, and in this context there is a close connection with the 
"physicist's proofs" of various cases of the Atiyah-Singer 
index theorem via supersymmetric sigma models.7 It should 
be borne in mind, however, that the idea of applying the DH 
formula to infinite-dimensional manifolds is as yet mainly 
intuitive and lacks a sound mathematical footing. 

The second part of our title also requires some explana
tion. What are flag manifolds? They are best thought of for 
the moment as certain types of homogeneous spaces G I H, 
where G is a Lie group and H is a subgroup of G. These 
special homogeneous spaces have a number of remarkable 
geometric properties, one of which is that they are Kihler 
manifolds. Thus, in particular, they possess a symplectic 
form (U, a necessary requirement for discussing the PH for
mula (1.2). Flag manifolds have appeared in the physics 
literature in a variety of contexts, e.g., as target manifolds for 
sigma models8 or in a geometric formulation of harmonic 
superspace.9 

Why, in our study of the DH formula, are we restricting 
ourselves to flag manifolds? After all, the DH formula is 
applicable in a far larger class of situations, whereas in this 
particular case it reduces to a well-known and old result, the 
Harish-Chandra formula. to (Although the results coincide, 
we shall continue to speak of the DH formula on flag mani
folds instead of the Harish-Chandra formula, as our whole 
outlook and methods are based on the more modem ap
proach.) We have, in fact, briefly described a more general 
setting for the DH formula at the start of Sec. V and the 
reader mainly interested in getting a flavor of the general 
result may skip to Sec. V straight away. One reason fOf 
choosing the special case of flag manifolds is that they pro
vide a rich class of examples with interesting geometrical 
features, which are worth studying in their own right. How-
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ever, our main motivation for concentrating on the DH for
mula on flag manifolds comes from the following chain of 
arguments. In order to be able to apply the DH formula in 
the generalized sense mentioned above with greater confi
dence, one needs a better understanding of the infinite-di
mensional manifolds involved. One such class of manifolds 
has been the subject of much mathematical interest recently, 
namely, so-called loop groups, spaces ofloops on Lie groups, 
i.e., of maps from the circle to a Lie group (see the authorita
tive book by Pressley and Segall I ). The point is that there are 
far-reaching analogies between flag manifolds, on the one 
hand, and loop groups, on the other, so much so that one can 
state that flag manifolds are the finite-dimensional analogs of 
loop groups. In short, then, our reason for studying the DH 
formula on flag manifolds is that this is the next best thing to 
studying the DH formula on loop groups, and is indispensi
ble for a thorough understanding of the infinite-dimensional 
case. 

Loop groups are not just of mathematical interest but 
are also relevant to physics for a variety of reasons. Both the 
Hilbert space for the quantum mechanical model of a point 
particle on a group manifold and the configuration space for 
strings on a group manifold 12 are loop groups. Generally a 
theory of maps from the circle to a Lie group is the prototype 
of a sigma model, from the analysis of which one may be led 
to more general conclusions about sigma models. Our own 
interest in the whole subject was originally awakened by the 
first topic, quantum mechanics on a group, the aim being to 
link a DH-type localization on the loop group to a different 
kind of "semiclassical exactness" in this model known from 
older treatments. For more details, see Ref. 13. 

At the risk of stating the obvious it should be pointed out 
that much of our material is, of course, not new, but drawn 
from various areas of the mathematical literature. To our 
knowledge, however, a study of this nature, which puts to
gether the different parts of the mathematical theory in a 
manner accessible to physicists, has not previously been per
formed, and thus we hope that the paper fulfills a certain 
need. We would also like to mention that, en route, we have, 
in fact, added a m~mber of new results (such as the construc
tion of the symplectic volume via line bundles in Sec. III, the 
expression for the Hamiltonian in Bruhat coordinates in Sec. 
IV, and the recursion formula for Duistermaat-Heckman 
problems in Sec. V). 

The outline of our material is as follows. In Sec. II we 
concentrate on the description of flag manifolds as complex 
manifolds and discuss their decomposition into complex 
cells, which also gives rise to a coordinatization in terms of 
complex coordinates. In Sec. III it is shown how to construct 
suitable symplectic forms on flag manifolds, using two dif
ferent methods, one algebraic and one via complex line bun
dles. A method for obtaining the symplectic volume in the 
line bundle approach is also described. In Sec. IV a special 
class of Hamiltonian functions on flag manifolds is intro
duced, particularly appropriate to the complex coordinates 
from Sec. II and the symplectic forms of Sec. III. In Sec. V 
the DH formula is discussed and applied in a number of 
examples using the formalism developed in the previous sec
tions. Finally various relevant results from Lie algebra struc-
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ture theory and representation theory are collected in the 
Appendix. 

II. CELL DECOMPOSITION AND COMPLEX 
COORDINATES FOR FLAG MANIFOLDS 

Let us start by saying what we mean by flag manifolds. 
Let G be a compact connected Lie group, T its torus, and 
C( To) the centralizer in G of some subtorus To of T, i.e., 
C(To) = {geG Ig-ITog= Tol Generically, C(To) = T, 
but, for some special choices of subtorus To, C( To) is a larger 
subgroup of G, containing T. Then the coset space G IT 
[resp. G IC( To)] is called a flag manifold. When we do not 
wish to distinguish between the generic and nongeneric case 
we will denote the flag manifold by M. The term flag mani
fold derives from the action of M on "flags," which are nest
ed sequences of linear spaces 

{CI, ... ,CrIC; CC;+ I' dim(C;) <dim(C;+ I)}' 

The reason for this nomenclature is made clear in Fig. 1. A 
simple example of a flag manifold is SU (2) IV (1 ). SU (2) 
acts transitively on Cp I (the space of complex lines in C2

, i.e., 
a manifold of flags) by left matrix multiplication. The U ( 1 ) 
torus, being the subgroup of diagonal matrices, fixes the flag 

Thus SU (2) IV (1) acts effectively and transitively on 
this flag manifold and we may identify each element of 
SU (2) IV ( I) with its image under the action on Sf o' 

There exist two further ways of viewing flag manifolds, 
which highlight several oftheir special features. First, there 
is a natural isomorphism of M with the adjoint orbit 
{gAg- llgeG}, where A is an element of the torus Lie algebra 
t. Under this isomorphism the coset [g] T = {gt I tE T} corre
sponds to gAg - I in the adjoint orbit [in the nongeneric case 
A must be chosen such that C( To) is the centralizer of A in 
G]. Adjoint orbits come equipped with a natural symplectic 
structure (KirillovI4 ) and thus flag manifolds inherit this 
structure also. Symplectic structures on flag manifolds will 
be studied in detail in the next section. 

Second, let Gc be the complexification of G, B be a Borel 
subgroup of Gc ' and P be a parabolic subgroup of Gc such 
that pn G = C( To). [We refer to the Appendix for defini
tions, but to fix ideas we take as an example 
Gc = SU(3)c = SL(3,C). Then the subgroup of upper 
triangular matrices is a Borel subgroup of Gc and, in a 
(2 + 1) X (2 + 1) block decomposition of the elements of 
Gc ' the subgroup of block upper triangular matrices pro
vides an example of a parabolic subgroup.] Then there exist 
isomorphismsG ITr;;;r,GcIBandG IC( To) r;;;r,GJP.lnonedi-

: C.=R!: 
I I 

r--~------' 

=? ~_, _______ J 
C,=IR : 

FIG. 1. The origin of the name "flag manifold." 
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rection [g] T is mapped to [g] B' In the other direction one 
uses the so-called Iwasawa decomposition: any element 
gcEGc may be factorized as 

gc = gb, geG, bEB, (2.1) 

in a unique fashion, up to torus elements, which are common 
to G and B. Thus, in the other direction, [gc 1B = [gb 1B is 
mapped to [gh. As an example, consider SU(n)1 
T~SL(n,C)IB, where B is the Borel subgroup of upper 
triangular matrices. The I wasawa decomposition in this case 
may be proved by means of the Gramm-Schmidt orthonor
malization process: regard gcESL(n,C) as the juxtaposition 
of n column vectors of length n (el,. .. ,en , say). Then one 
obtains orthogonal vectors {e;}, i = 1, ... ,n, in the usual way: 

e; = el> 

- «en,e; )/(e; ,e; »e;. (2.2) 

Here (e;,e j) denotes the Hermitian product eTej • After nor
malization of {e;} the juxtaposition of the normalized {e;} 
constitutes a unitary matrix g related to gc by g = gcb', 
where b ' is upper triangular. As the upper triangular matri
ces form a group, this implies gc = gb, where b = (b') -I is 
upper triangular. 

Through this second isomorphism flag manifolds not 
only become complex manifolds but, as will now be de
scribed, they also admit a decomposition into complex cells 
arising from the Bruhat decomposition of Gc • Let W denote 
the Weyl group of G (a discrete group of permutations act
ing on the Weyl chambers of r -see the Appendix). Let the 
action of an element WE Wbe represented by a matrix liJw EG 
acting via thecoadjointaction: w(Z) = liJwZliJ;; I, for ZEro 
The Bruhat decomposition of G c is a disjoint decomposition 
of Gc into double cosets: 

Gc = U BliJwB = U {blliJwbzlbl,bzEB}. (2.3) 
WEW WEW 

Thus one also has a disjoint decomposition of GJ B, namely, 

GjB= U [BliJw1a= U Mw' 
WEW WEW 

(2.4) 

This is a cell decomposition as the B on the left-hand side 
factorizes into the complex torus and a nilpotent factor (i.e., 
the corresponding Lie algebra is nilpotent under the Lie 
bracket). The torus factor may be permuted through liJw and 
dumped in the right-hand B whilst the remaining nilpotent 
part is affine and may be given a cell structure. In fact, de
pending on w, it may be possible to dump some of the nilpo
tent part into the right-'hand B as well. More precisely, 
Atiyah 15 has shown that the partial ordering of the Weyl 
group elements coming from group theory 
[w'>wiff(ZI,w'(Zz»,,;;(ZI'w(Zz», for any ZI'ZZ in the 
same Weyl chamber, where ( , ) is the Cartan-Killing form] 
coincides with a geometric partial ordering 

w'>w {::}Mw' CMw' (2.5) 

AsMw' nMw = 0, forw'#w, andallMw are complex cells, 
the (real) dimension of M

w
' is at least 2 less than the dimen-
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sionofMw ifw'>w. (The ordering in the Weylgroup W has 
also been described in terms of "simple reflections in W" in 
Borel-Tits. 16) The whole of the above discussion can be car
ried through in a similar fashion for nongeneric flag mani
folds. In this case, one obtains, from the Bruhat decomposi
tion of G c' the cell decomposition 

GcIP= U [BliJw)P, (2.6) 
WEW/W;, 

where Wo is the Weyl group ofC(To)' 
In order to illustrate the above remarks we proceed to 

discuss some examples. First, consider the previous example 
SU(2)1U(1) ~SL(2,C)IB, where B is the subgroup of up
per triangular matrices. The Weyl group may be regarded as 
acting on r, the real traceless diagonal matrices, by permut
ing the diagonal elements. Thus the Weyl group consists of 
two elements 1 and (12) acting as follows: 

I(~ ~J=(~ ~J, (12)(~ ~J=(~a ~). 
(2.7) 

These two elements are represented by SU(2) matrices liJ1 

and liJ(I2)' where 

(2.8) 

acting via the coadjoint action. Then the Bruhat decomposi
tion is 

SL(2,C)IB= [BI1BU[B(~ 1 ~)L =M1 UM(l2)' 

(2.9) 

The first cell Ml is just the point [11B, whereas the second 
cell is isomorphic to C, as may be seen by factorizing bEB as 

(2.10) 

The right-hand factor lies in the complex torus and may be 
absorbed in the right B coset after commuting with liJ( 12) . 
This leaves the left-hand factor, so that M( 12) is identified 
with the complex plane C. Thus one regains the familiar cell 
decomposition of CPI~SL(2,C)IB into CU{point}. For 
later purposes one would like the identity to lie in the largest 
cell. This is achieved by an overall multiplication on the left 
by liJ(li) giving 

SL(2,C)IB= [(~ ~ I)L U{[(~z ~)L IZEC}. 
(2.11 ) 

Let CC r be the Weyl chamber {diag(a, - a) laER+}. 
Then using the Cartan-Killing bracket 
(ZI,Z2) = 4 tr(ZIZ2)' for ZI,Z2Er, one obtains the group 
theoretical ordering (12)..;; I. Equivalently one may verify 
the geometric ordering Ml CM(l2) :::::} (12)..;;1 by writing 

[ ( ~ z ~) L = [ ( ~ z ~) (-~-I = !) L 
=[(-:-1 ~1)L, (2.12) 

thereby displaying Ml as the "point at infinity" of the com
plex one-cell M( 12) . 
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The case SU(3)IT~SL(3,C)/B, with B the subgroup 
of upper triangular matrices, may be treated along parallel 
lines. The Weyl group acts on r as the group of permuta
tions of the entries of diag(a,b, - (a + b». In Table I the 
Weyl group elements are listed together witl;t their SU(3) 
representatives. After "dumping" as much as possible into 
the right-hand B and multiplying on the left by will), the 
corresponding Bruhat cells are found to be 

M(\3) 

DJJ 
DJJ (2.13 ) 

All Zj range over the complex plane. The pattern of partial 
orderings is given in this case by 

13 (123) (12) 
( )«132)«23)<1. (2.14 ) 

As a third example we discuss a nongeneric case, name
ly, SU(3 )/C( To), where To is the one-dimensional subtorus 
{diag(eja ,eja ,e - 2ia ) laER}. Let M(2,1) denote the complex 
(2 + 1) X (2 + 1) block matrices. Then C( To) is the group 

TABLE I. The Weyl group elements with their SU (3) representatives. 

1 WI = G :~) (132) w(132) 

(12)w(t2) =( -! ~ D (123) W(123) 

=(-~ -~ D 

=( -! -~ ~) 
=( ~ 0 ~) 

-1 0 0 
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of unitary block-diagonal matrices in M(2, 1) with unit de
terminant, i.e., C(To) = S(U(2) xU(1». SU(3)/C(To) is 
isomorphic to SL(3,C)IP, where Pis the parabolic subgroup 
of block upper triangular matrices in M (2,1) with unit de
terminant. In this case one has to deal with the relative Weyl 
group, i.e., the Weyl group ofSU(3) factored by the Weyl 
group of C(To), which contains just two elements 1 and 
(12). Using the factorizations (123) = (13)( 12) and 
(132) = (23) (12), the relative Weyl group is seen to consist 
of three elements: [1], [(23)], and [( 13)]. In the Bruhat 
decomposition (2.6) one may use the same matrix represen
tatives for Ww as before, but because P is a larger subgroup 
than B it is possible to "dump" more of the left-hand B into 
the right-hand P. After multiplying on the left by wili) , one 
obtains the Bruhat cells M 1w ] = W(13\ BWI'" ]P: 

M",,, , ~ {[ L~, 
0 

D]J 1 

Zl 

M,,,,, , ~ {[G -Z3 DlJ. (2.15) 
0 

M, .. ,,~{[G 
0 

~:)]J 
0 

Again, the Zj range over C. The ordering in this case is 
[( 13)] < [(23)] < [1]. SL(3,C)IP is isomorphic to cp 2, as 
may be seen by the following argument. The group P, acting 
from the left on C3 as a group of 3 X 3 matrices, is the stability 
subgroup of a C2 in C3 (namely, the C2 with bottom compo
nent equal to zero). Thus SL(3,C)IPis the Grassmannian 
G(2,3) of complex two-planes in C3

• Each C2 in C3 uniquely 
defines a C1 in C3 by orthogonality and thus 
G(2,3) ~G(1,3) ~cp2. The Bruhat cell decomposition into 
COUC1 UC2 obtained in (2.15) corresponds to the well
known cell decomposition of Cp 2 using homogeneous co
ordinates (tl,t2,t3)' namely, 

cp 2 = {tl #0, t2 = t3 = 0}U{t2#0, t3 = 0}U{t3#0} 

=COUC1 UC2. 

For the general case, the "dumping" procedure may be 
described as follows. Prior to multiplying on the left by W~,"l 
(where Wm is the minimal Weyl group element under the 
partial ordering) the Bruhat cells are described by 

Mw = [Bwwh ={[b'W(z)ww]s}, (2.16) 

where 

b' W(z) = 1 + L 1!'Ea (2.17) 
aER~ 

and 

R ~ = {aER+lw-1(a)ER_}. (2.18) 

This follows from the fact that any b(z') of the form 

b(z') = 1 + L Z' aEa (2.19) 
aeR+ 

may be factorized: 
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b(z') = b' w(z) (1 + L z" aEa) , 
aeR+ ,R ~ 

(2.20) 

for some choice of ~ , Z" a. The second factor may be per
muted through (i)w and dumped in the B on the right using 
the fact that Ea(i)w is proportional to (i)wEw-'(al' and 
w-1(a)eR+, for aeR+ \R ~ . This last statement follows 
from the calculation 

[ H,w; lEa(i)w] = (i); 1 [w(H) ,Ea ] (i)w 

= a(w(H»)w; lEa(i)w 

= w-1(a)(H)(i); lEa(i)w (2.21 ) 

and the fact that the root spaces ga spanned by Ea are one 
dimensional so that w;; lEaww must be proportional to 
Ew-' (a) • After multiplying on the left by W;; lone has instead 

Mw = [w;mlB Ww ] B = {[ b W(z)ww h}, (2.22) 

where 

(2.23) 

and 

(2.24) 
aeR~ 

where 

R ~ = {w,; l(a) laeR ~ }. (2.25) 

Notice that wm = 1 and R ~m = R _. Hence in particular the 
identity element [1] B is contained in the largest Bruhat cell 
Mw

m
, as required. 
Finally we tum to a discussion of coordinates on flag 

manifolds. It is a general feature of the Bruhat cell decompo
sition that the closure of the largest cell is the flag manifold 
itself. Thus the cell coordinates of the largest Bruhat cell 
provide a coordinatization of nearly all of the flag manifold 
missing only a lower-dimensional subspace. A complete at
las of coordinate charts is obtained by moving this coordi
nate patch around by means of left multiplication with the 
Weyl group representatives Ww' WEW. It is easily checked 
that the transition functions are holomorphic on the over
laps and hence flag manifolds are complex manifolds. 

There are, of course, other approaches to coordinatizing 
flag manifolds, e.g., one could start with a coordinatization 
of G and restrict to an appropriate subset of coordinates to 
describe M, or one could use global coordinates, i.e., 
Pluecker coordinates, which are the generalization to flag 
manifolds of homogeneous as opposed to local coordinates 
for CP". However, "Bruhat coordinates" are the ideal 
choice to display the complex structure and thus for the de
scription of holomorphic line bundles over M, which will 
enter in Sec. III. Furthermore, as will be seen -in Sec. IV, 
Bruhat coordinates are particularly appropriate for describ
ing the flows associated with the special "projection" Hamil
tonians, which are studied there. Finally Bruhat coordinates 
are very convenient for integration purposes as the integra
tion region is simply a complex cell. This is because the result 
is the same if one integrates over a maximal Bruhat cell or 
over its closure, the manifold itself. 
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III. KAHLER STRUCTURES ON FLAG MANIFOLDS 

In the previous section it has already been mentioned 
that flag manifolds possess symplectic and complex struc
tures, arising from the isomorphisms with the adjoint orbit 
description and with the complexified description. In fact, a 
stronger statement may be proved, namely, that flag mani
folds are Kahler manifolds, admitting G-invariant Kahler 
metrics. This means that they possess complex local coordi
nates Za (with holomorphic transition functions between 
coordinate patches), a Hermitian Riemannian metric 
dr = gall dZa dzp (the Kahler metric), and a correspond
ing two-form, the Kahler form w = igap dZa 1\ d zP' which is 
closed. Thus w is simultaneously a symplectic form. The G 
invariance of these structures means invariance under the 
transformations induced by left G multiplication: 
g' [g'h = [gg'] Tt 't/geG, [g'heM = G IT. 

The objective in studying these structures is to obtain 
expressions for w and especially for the symplectic volume, 
wn In!, where dim M = 2n, in terms of the complex Bruhat 
coordinates from the previous section. The symplectic vol
ume is one of the two pieces of information required for the 
DH integration formula, which is to be discussed in Sec. V. 
The other piece of information is the Hamiltonian function, 
which will be the subject of the next section. 

We will follow two different and complementary paths 
to achieve the above goal. The first path makes use of a de
tailed analysis of G-invariant geometric structures on flag 
manifolds by Bordemann, Forger, and Roemer (BFR).8 By 
exploiting the G invariance fully, they obtain simple algebra
ic formulas for the components of various tensors, including 
w, at a preferred point of the manifold (the identity). The 
only task then remaining is to compute expressions for a 
suitable basis of G-invariant one-forms in terms of the Bru
hat coordinates, as the components of w with respect to this 
basis will be constant due to G invariance. The second path 
uses the fact that it is possible to construct in a natural fash
ion certain holomorphic line bundles over the flag manifold. 
These "homogeneous vector bundles" were the subject of a 
deep study by Bott.17 The main result of interest for our 
purpose is that, in suitable circumstances, the two-form rep
resenting the first Chern class of such a bundle may be identi
fied with a G-invariant Kahler form w. In addition, Bott's 
paper gives an expression for the Kahler potential of this 
Kahler form (the Kahler potential is a function F defined on 
each coordinate patch such that w = i aaF, where 

in terms of a local holomorphic section s of the bundle, 
namely, F = In Is12. The main ~k to be performed in this 
approach is the construction of an Hermitian structure /Jr 
on the bundle, as this is needed to define the norm squared of 
a section [lsl2 = /Jr(s,s)]. Finally, putting several results 
together, we show that the symplectic volume is given local
ly by a function det g, which is most easily obtained in the 
line bundle language as the norm squared of a section of a 
special "volume bundle." 

We now start with the algebraic method ofBFR.8 Con
sider first the generic case M = G IT. Let 9 = t + n be the 
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decomposition of the Lie algebra of G into torus and non
torus parts. Then there is a correspondence between the non
zero elements of nand nonvanishing G-invariant vector 
fields on M given by Xen-Xm = (d Idt) (exp tX'm) 11=0' 

VmeM (notice that, for Xet, the corresponding vector field 
would vanish at the identity [1] T = e). Thus there is also a 
correspondence between nonzero elements of the complexi
fication of n, nc = :IaeRg

a
, and nonvanishing complexified 

vector fields on M. In particular, we may identify the tangent 
space at e, Te (M) [resp. the complexified tangent space, 
T~ (M)] with n [resp. nc]' BFR's analysis then leads to the 
following formula for the components of the Kiihler form W 

at e: let Z'" lie in the interior of the positive Weyl chamber Co 
and let {Ea laeR} be the preferred basis of generators of nc 
(see the Appendix). Then, regarding We as a skew bilinear 
map T~ (M) X T~ (M) -+ C, we have 

we(Ea,E_ a ) =ia(ZW), 

We (Ea,Ep) = 0, a + /3 #0. 
(3.1 ) 

[The evaluation of won the real vectors corresponding to the 
set {i(Ea + E_a ), Ea - E_ a} follows from bilinearity.] 
Thus the space of Kahler structures on M is of dimension I, 
where 1 = rank G, and is parametrized by the element ZW, 
which may be chosen freely in the interior of the positive 
Weyl chamber. 

One way to understand the formula (3.1) is to regard 
the flag manifold as an adjoint orbit {g iZ g-llgeG}, iZet. 
Each nondegenerate orbit intersects the interior of iCo, 
where Co is the positive Weyl chamber, at a single point 
which one may take to be iZ itself (the adjoint orbit inter
sects t at a discrete set of points, the Weyl group orbit of any 
of them). Thus iZ corresponds to the identity e of M. At a 
general point m of the adjoint orbit, the Kirillov symplectic 
form is given by the following construction: to each vector X 
at m one associates a Lie algebra element a(X) with the 
property 

X =!!...- (exp(ta(X»m exp( - ta(X») I . (3.2) 
dt 1=0 

This correspondence between 9 and vector fields is analo
gous to the previous one, except that G now acts on M via the 
adjoint action. Let X, Ybe two vectors at m. Then the Kiril
lov formw is given bywm (X,y) = (m,[a(X),a( Y)]). [The 
Kirillov symplectic form is usually associated with the coad
joint orbit {g-I iZ glgeG}, which is, of course, also an ad
joint orbit. The expression given is unaffected by a simulta
neous sign change in a (X) and a( Y).] AtiZ one can identify 
the complexified tangent space with nc via the above corre
spondence and one obtains 

wjz(Ea,E_ a ) = (iZ,[Ea,E_ a ]) = (UZ,Ea],E_ a ) 

= aUZ) (Ea,E _ a) = ia(Z). (3.3) 

Thus the Kahler form (3.1) is displayed as the Kirillov sym
plectic form of M, regarded as an adjoint orbit intersecting 
iCoct at iZW. 

Before proceeding we briefly discuss the generalization 
to the nongeneric case. Let C( To) be the centralizer of a 
torus element iZo; then the roots in the formula (3.1) range 
over the subset R = {aeR la(Zo) = O}. Assuming R is 
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smaller than R, this means that Zo lies on at least one of the 
hyperplanes r a that divide r = it into Weyl chambers. 

A A 

One then has a reduced space r = it, where 

t = {Xetla(X) = 0, VaeR \R}. 
A 

Thus r may be split into chambers as before, and ZW in 
A 

(3.!) must then be chosen in the positive Weyl chamber Co 
of r. Taking G = SU (3) as an example, one could choose 

A 

Zo = diag( 1,1;;:- 2), which lies on r 12• ThenR \R consists 
of {12,21} and r is simply r 12' which is separated into two 
chambers by removing the origin. 

Returning to the generic case, the task remaining is to 
construct G-invariant one-forms ea dual to the G-invariant 
vector fields Ea defined above. Furthermore, the ea are to be 
expressed in terms of the complex Bruhat coordinates from 
the previous section. Let U be a Bruhat coordinate patch of 
M; then, through the "dumping" method described in Sec. 
II, one has a preferred element gc (z) representing the coset 
[gc h· Next one performs an Iwasawa decomposition 
gc (z) = g(z)b(z) and in this way one has described a mapg: 
U -+ G. With this map one can pull back the canonical left
invariant one-forms on G to U, and then one takes e~ to be 
the form multiplying Ea in this expression, i.e., 

I 

g-I(z)dg(z) = L h jHj + L eaEa (3.4 ) 
;= 1 aeR 

(where {Hj } is a basis of f). Because G is compact, the Ea 
only appear on the left-hand side in the compact combina
tions i(Ea + E _ a), Ea - E -a and hence the complex one

forms ea satisfy the constraint ea = - e - a. With respect 
to the left-invariant basis {ea

}, W has constant components 
and thus, from (3.1), W is given by 

W= L we(Ea,E_a)eaAe-a 
aeR+ 

= - i L a(ZW)ea A ea. 
aeR+ 

(3.5) 

We now proceed to calculate some examples to demon
strate how the above method works in practice. For SU (2) I 
T~SL(2,C)IB, the Bruhat coordinatization is 

(3.6) 

Perform the Iwasawa decomposition, 

( ~ z ~) = (1 + zz) -1/2 ( ~ Z ~) b(z) = g(z)b(z), 

(3.7) 

and obtain 

g-I(z)dg(z) = (1 +ZZ)-I 

Thus 

X (! (z dz - z d z) 
-dz 

dz ) 
- ! (z dz - z d z) . 

(3.8) 

(:;.9)· 

(as EI2 = !(~~). It is convenient to choose 
ZW =p, diag(!, - V,p,>O, i.e., Z., = p,H;.., where H;.. cor-
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responds to the basic weight A of SU(2) via 
(HA.>Z) =A(Z), 'fIZer. Then from (3.1) and (3.2) one 
has 

Ct)=ijl(1 + IzI2)-2dz/\dz. (3.10) 

Second, we consider SU(3)IT~SL(3,C)/B. The Bruhat 
coordinatization (2.7) is 

(z • .z,.z,) ~ [( ::;: : D 1. ~ [g,(z) IB" (311) 

By a Gramm-Schmidt orthonormalization one obtains the 
SU (3) factor g(z) of the I wasawa decomposition as the jux
taposition of column vectors (e; ,e~ ,e;) with 

e; = (K
I
\ 1/2 ( _1 Z3) , 

-Z2 

( 

Z3 +ZIZ2 ) 
e~ = (K

I
L)1/2 1 + IZ212~ZI~3 , 

. Z I + Z IIZ31 - Z3Z2 

( 3.12) 

.; ~ (K>' cz:tz'). 
where 

KI = 1 + IZ212 + IZ312, 

K2 = 1 + IZ112+ IZ2 -ZIZ31
2

• (3.13 ) 

Next calculate the coefficients ea of Ea in g-I dg, giving 

e12 = [~/KI(K2)1/2] [(1 + IZ212_ZIZ2Z3)dz3 

+ (ZI +zllz312_Z3Z2)dz2]' 

e13 = [~/(KIK2)1/2] [( -zl dz3+dz2), (3.14) 

e23 = [~/(KI)1I2K2] [-Kldil 

+ (Z3 + ZIZ2) (dz2 - ZI dz3)] , 

[Eij = 6- 1/2 (matrix with 1 in ij position and 0 else
where) ] . To obtain Ct), one still needs to select an element ZOJ 
in the positive Weyl chamber Co. It is convenient to express 
ZOJ as 

ZOJ = (jl/18)diag(2, - I, - 1) + (v/18)diag(1,I, - 2) 

=jlHA , +vHA" (3.15) 

where jl,v> 0, to ensure that ZOJ is in the positive Weyl 
chamber. Here H A , and H A, correspond to the basic weights 
AI.A2 ofSU(3). Then, after some calculation, one obtains 

Ct) = {ijlIKi)[ (1 + IZ312)dz2/\ di2 - Z~3 dz2/\dz3 

- Z~3 dz3/\ d Z2 + (1 + IZ212)dz3/\ d Z3] 

+ (ivIK~) [KI dzl/\dzl - (Z3 + zlz2)dzl 

/\ (dz2 - ZI dz3) 

- (Z3 + ZIZ2)(dz2 - ZI dz3) /\dz i 

+ (1 + IZ112)(dz2 - ZI dz3) /\ (di2 - ZI di3)]· 
(3.16) 

For the purpose of integration one is especially interested in 
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the symplectic volume Ct)n In!. The calculation is made easier 
by noticing that el2 and el3 do not have any dZI or dZ I de
pendence, thus forcing the contribution from ~3 /\ ~2 to be 
the dzl/\dzl part only. The expressions simplify consider
ably, and one obtains 

~ 1 3 
-=wv'(jl+V) 2;JIIdz j /\dzj' (3.17) 

31 (K IK2 ) j= I 

As we will see shortly, the line bundle approach leads to a 
much quicker derivation of this result. 

We now turn to the second method of obtaining the 
geometric quantities we are interested in, namely, via holo
morphic line bundles. Let M be G IT~GJB or G I 
C( To) ~GeIP and let X be a character of T [resp. C( To)], 
i.e., a group homomorphism from T [resp. C( To)] to the 
circle group U ( 1 ). This character extends uniquely to a 
group homomorphism X: B ..... C* (resp. X: P ..... C*), where 
the multiplicative group C* is the complexification of U ( 1 ), 
i.e., C* = GL( 1, C) = C\ {O}. For example, when 
G = SU(2) any element teT may be written as 
t = diag(e;a, e - ;a). The characters of T are in 1-1 corre
spondence with the integers: (AI)m(t) = e;ma, for meZ. If B 

isa Borelsubgroup ofSL(2, C), then for beB the characters 
(AI)m extend to (AI)m(b) = (bll )meC*. 

Given a character X, and thus its extension to B or P, one 

obtains a complex line bundle Lx .: M, where 

Lx = (Ge XxC)IB 

= {[ (ge'c)] IgeeGe, ceC, 

(ge,c) -(geb,X(b -I)C)}, (3.18) 

and 1T ([ (ge, c)]) = [ge] B' This bundle may be viewed as 
the line bundle associated to the canonical principal B bun-

1T 

dIe G e ..... M, where 1T(ge) = [ge] B, via the one-dimension-

al representation of B given by X. For the nongeneric case, 
replace B by P. 

We remark that the bundles Lx exhaust the topological 
possibilities for complex line bundles over M = G IT, assum
ing G is simply connected. These bundles are classified topo
logically by H2(M,Z). From the cohomology exact se-
quence for the exact sequence 0 ..... T ..... G ..... M ..... 0, 

... ..... HP( T,Z) ..... HP(G,Z) ..... HP(M,Z) 

..... HP-I(T,Z) ..... "·, (3.19) 

and, using the assumption H I (G, Z) = 0 [H2( G, Z) is al
ways zero], one derives H2(m, Z) ~H I(T,Z) = ZI and ZI 
corresponds precisely to the lattice of characters of T. 

Next we turn to a brief discussion of holomorphic line 
bundles and holomorphic sections. Rather than developing a 
general theory, we prefer to illustrate the ideas by the exam
ple SU(2)IT~SL(2, C)IB. SL(2, C)IB is covered by two 
Bruhat coordinate patches VI (z 1-+[ (! ?) 1B) (previously 
we had Z 1-+ [ ( _ z ? ) ] B; this change bf sign is insignificant) 
and U2 (z'I-+[(f -~ )1B).Ontheoverlap Ul nU2 theco-

. 1T 

ordinates are related by z = (z') -I. The bundle Lx ..... 

SL(2, C)IB is trivialized over each patch by means oflocal 
trivializations h;: 1T- I 

( Uj ) ..... U; X C defined by 
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hl([ (C ~),C)]) = ([ C ~) t,C)' 
h2([ ((~' 0- 1),C')]) = ([ e' 0- 1) t,C} (3.20) 

With respect to these local trivializations, the transition 
function g 12: U I n U2 -+ G L (1, C) is defined to be the func
tion satisfying 

hlohl-l([gC]B'C') = ([gc]n,gI2C') 

on UI n U2• If X is chosen to be (AI)m, then one finds 
gl2(z') = z,m or gl2(z) = z- m. A bundle is said to be holo
morphic if the transition functions g ij are holomorphic func
tions on each overlap Uj n~. Thus for arbitrary m the bun
dles described above are holomorphic. 

Given a subset U of M, a (local) section S is a continuous 
map s: U -+ 1T- I ( U) satisfying 1TOS = 1 u' If U = M we speak 
of a global section. A section is said to be holomorphic if its 
representatives/; with respect to the local trivializations hj 

are holomorphic functions on un Uj • These representatives 
are defined by 

(3.21 ) 

In our example, a holomorphic section S is described by two 
holomorphic functions!1 (z) andfz(z), where 

S([C ~)]J = [(C ~), !I(Z»)] on unul, (3.22) 

s([ (~' 0- 1)]J = [( (~' 0- 1). fz(Z'»)] on un U2· 
(3.23) 

The two representatives are connected by the transition 
function gIl: inzcoordinates,h (z) = gl2(Z)!2(Z-I) or, inz' 
coordinates'!l (Z,-I) = gl2(z') fz(z'). This poses stringent 
conditions on the existence and number of global holomor
phic sections. In fact, global holomorphic sections exist only 
if m<;O [where gI2(Z) = z- m], as!1 and!2 must be Taylor 
series in their respective arguments. By matching the Taylor 
series, the number of linearly independent global holomor
phic sections is easily seen to be - m + 1. 

The above features generalize to arbitrary flag mani
folds. In particular, all line bundles over flag manifolds, con
structed by means of a character as above, are holomorphic. 
The statements in our example concerning the existence and 
number of global sections are generalized by the Borel-Weil 
theorem (see Ref. 11, Chap. 1, and Ref. 17): let R + be the set 
of positive roots of G with respect to some ordering and let B 
be the Borel subgroup of Gc with Lie algebra 
II = f) + ~aER+ gao Let Lx be a line bundle over GJB as 
above. Then the following statements hold. 

(a) If X is not a lowest weight (with respect to the above 
ordering) of any representation (i.e., if X is not antidomin
ant), then there are no global holomorphic sections. 

(b) If X is the lowest weight (with respect to the above 
ordering) of some representation qJ, then the space of global 
sections of Lx forms an irreducible representation of G with 
lowest weight X, and as a consequence there are (dim qJ) 

independent global holomorphic sections. 
In order to be able to define the norm squared, Is1 2, of a 
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section S of L, one requires a further structure, namely, a 
Hermitian structure on L. A Hermitian structure on a com
plex vector space V is a map K: V X V -+ C satisfying 

(1) K(f.llvl + f.l2V2'V) = f.lIK(vl,v) + f.llK (v2,v), 

(2) 7l' (VI,V2) = K(V2'VI ), Vv l,V2,VEV, f.l1,f.l2EC. 
(3.24) 

A Hermitian structure on a complex vector bundle is a con
tinuous assignment to each base point of a Hermitian struc
ture on the fiber over that base point. (As an aside, we re
mark that each fiber of Lx has the structure of a 
one-dimensional complex vector space via the following de
finition of addition and scalar multiplication: 

[(gc,cd] + f.l[ (gc,c2)] = [(gc,cI + f.lCl)]') 

In our examples SU(2)/Tand SU(3)/T, a Hermitian 
structure can be found by inspection. We will discuss a sys
tematic procedure for SU(N)/Tshortly. LetL Am be the bun-

I 

dIe over SU ( 2 ) / T associated to the character A 7' (t) 
= (tl1)m, VtET. [Here AI is the basic weight of SU(2).] 
Then a Hermitian structure KA 7'( .,.) is given by 

KA7'( [(gc,cd ],[ (kc'c2)]) = clc2(kJgc)~' (3.25) 

on the fiber over [gc]B = [kc1n. It is a simple matter to 
check that KA m( .,.) is well defined and satisfies (1) and (2) 

I 

above. Similarly, for SU(3)/Twe have the bundles LAmA" 
I 2 

associated to the character A 7' A ~, where A I' ,.1,1 are the basic 
weights given by AI(t) = tIl' A2(t) = t l1 t22, VtET. Then a 
Hermitian structure on LAmA n is given by 

I 2 

KA7'A~( [(gc,cd ],[ (kc'c2)]) 

= clcl(kJgc)~ (~(YC)j3 (i0j3 r (3.26) 

on the fiber over [gc]B = [kc]B' where (gC)j3 is the deter
minant of the minor of gc with row j and column 3 deleted. 
This choice is suggested by the properties 

-- A (gcb)j) = (gc)j)AI(b) and (gcb)j3 = (gc)j3A2(b), 

which ensure that KA jA;' (.,.) is well defined. 

Following Bott, 17 the Chern form C x of the bundle Lx is 
given, after choosing a non vanishing holomorphic section Sj 

in each coordinate patch Uj ' by 

Cx = (i/21T)aa lnlsj I; == (i/21T)aa In Kx (Sj,Sj)' (3.27) 

The actual choice of non vanishing section in each patch is 
irrelevant as, if S I = fs; with! a holomorphic function, we 
have 

i aa lnls; I; - i aa Inlsll; = i aa InJi = O. (3.28) 

By a similar argument one shows that the above patchwise 
construction of Cx leads to a globally defined form. The main 
result of interest for our purpose, Proposition 10.1 in Bott, 14 
may be phrased as follows: 21TCx may be identified with a 
Kahler form (t) (i.e., the components gaP of 
(t) = igap dZa 1\ dip form a positive definite matrix), if X lies 
in the positive Weyl chamber. We proceed to verify this re
sult in our examples SU(2)/T, SU(3)/T: choosing the sec
tion 
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(3.29) 

where gc (z) is the coordinatized representative of the coset 
[gc(Z)]B in (3.6) Crespo (3.11)], and using (3.25) Crespo 
(3.26)] one obtains. for SU(2)IT, 

(i)=iaaln(1 + IzI2)m, m>O, 

and, for SU(3)IT. 

(3.30) 

(i) = i aa In (1 + IZ312 + IZ212)m(1 + IZI12 + IZ2 - ZIZ312)n, 

m,n>O. (3.31) 

A short calculation shows that these results agree with 
(3.10) and (3.16) if we set,u = m (resp.,u = m, v = n). 

It is instructive to reflect for a moment on the relation
ship between the two approaches we have used to obtain (i). 
The input in the BFR approach was an element of the posi
tive Weyl chamber (continuous parameters), whereas in the 
line bundle approach, the input was a character in the posi
tive Weyl chamber (discrete parameters). Thus the line bun
dle approach picks out a special discrete subset of all the 
possible (i)'S; the relationship between the approaches for this 
subset may be stated concisely as follows: if (i) is obtained by 
the line bundle approach using the character X, then the 
same (i) is obtained from the BFR method usinJ!: Z'" = H y. 

Up to now, in the line bundle approach, we have only 
defined Hermitian structures by inspection in two special 
cases. In order to obtain systematic results from the line bun
dle approach, we must first discuss the notion of the "prod
uct of two bundles." Given two bundles (either principal or 
vector bundles) with transition functions gij (resp. gij) on 
the overlaps Uj n ~ of open sets {U;} covering the base 
space, it is natural to define the product of the two bundles as 
the bundle that has transition functions gij = gijgij on 
Uj n~. Clearly the product bundle obtained in this way is 
not uniquely prescribed, and thus the product is really a 
product ofisomorphism classes of bundles. The line bundles 
Lx we have been considering form a group with respect to 
this product: if the representatives of [gc] Bon Uj (resp. ~) 
are connected by bij (z)eB, then the transition function over 
Uj n ~ is X(bij (z»; thus by the multiplicative properties of 
characters, Lx = LXI Lx,' for X = Xvl'2· 

In general, unlike in the above example, an explicit de
scription of the product bundle is lacking. However, for 
principal U ( 1) bundles, a construction has been given by 
Kobayashj18: let PI and P2 be two principal U (1) bundles 
over M, with projections 11'1 (resp. 11'2); then define 
PIP2 = ll.(PI xP2)1 -, where 

ll.(PI XP2) = {(PI,P2)ePI XP211TI (PI) = 1T2(P2)} 

and (PI,P2)-(U'PI' U- I 'P2)' where' is the action ofU(1) 
on Pj • The projection to M is the restriction to either factor 
followed by projection with the appropriate 11';. and the 
U(1) action on PIP2 is defined by U'[(PI,P2)] 
= [(U'PI,P2)]' 

To each principal U ( 1) bundle P over M there is asso
ciated a complex line bundle Lover Mby the usual construc
tion L=(PXC)/-. where (p,c)_(u'p,u-tc), 
'f/ ueU ( 1 ). The vector space structure of addition and scalar 
multiplication is defined on each fiber by 
[(p, cl )] +,u[ (p, c2)] = [(p, Ct + ,uc2)]· Analogously to 
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Kobayashi's procedure, 18 we define the product LIL2 of two 
associated line bundles as LIL2 = ll.(L I XL2)1 -, where 

ll.(L I XL2) = {(Vt,V2)eLI xL211TI (VI) = 1T2(U2)} 

and (VI' v2) - (zv l , Z-IV2 ), 'f/zeC·. ThenL IL 2 is isomorphic 
to the line bundle associated to PIP2, i.e., (PIP2 X e)1 - via 
the identification 

[([ (PI'CI )], [(P2'C2) ])]-[([ (PI,P2) ]'CIC2)]. 

Through this identification the vector space structure on 
LIL2 is given by 

[([ (PI'CI )], [(P2'C2)])] + ,u[( [ (PI,ci ) ], [(P2'C~ ) ])] 

= [( [ (PI,ci') ], [ (P2,C2) ])], 

where cr c2 = c IC2 + ,uc; ci. This vector space structure may 
also be defined directly in terms of the vector bundles by 

[(UI,V2)] +,u[(vl,vi)] = [(v l,v2+,uvi)]· 
Given Hermitian structures KI ( .,. ), K2 (.,. ) on L I , L 2• 

respectively, a Hermitian structure K on LIL2 is obtained 
by the following definition: 

K( [(V I,V2)], [(vi ,vi)]) = KI(vl,vi )K2(V2,Vl). 
(3.32) 

It is easily checked that K is well defined and satisfies the 
properties (1) and (2) from before. Thus. given the factori
zation of a general line bundle in terms of a set of basic line 
bundles, the problem of finding a Hermitian structure on the 
general line bundle is reduced to that of finding Hermitian 
structures on the basic line bundles. 

For the case of the bundles Lx over Gcl B one first estab
lishes that LXI Lx, = LXIX, in the above sense also (by check
ing that the correspondence 

[( [ (gc'c l )] x,, [(gc'c2 )] x,)]~ [(gc,C IC2)] x,x, 

is an isomorphism), and thus it is sufficient to find Hermi
tian structures for the bundles L "" where the A j are the basic 
weights. For the examples SU (2) IT and SU (3) IT this was 
done by inspection, and formulas (3.25) and (3.26) give the 
Hermitian structure according to the rule (3.32) for a gen
eral weight in terms of the Hermitian structures for the basic 
weights [being the expressions (3.25) and (3.26) with 
m = 1 (resp. m = I, n = 0 and m = 0, n = 1)]. 

Next we look at a different way ofviewing the basic line 
bundles over M = SU(N)IT which leads to a systematic 
method of obtaining a Hermitian structure for this general 
case. First, we discuss the determinant bundle of a Grass
mannian: let G(k, n) be the Grassmannian of complex k
planes in en; thus each point of G(k, n) is a k-plane, which 
we assume to be spanned by the k independent vectors 
el, ... ,ek in en. There is a natural k-plane bundle over G(k, n) 
which has as fiber over each point the k-plane represented by 
that point. Thus a general point of the total space Ek of this 
bundle is (e' , Vk ), where e' is an arbitrary vector in the k
plane Vk • Now the determinant bundle of this k-plane bun
dle is by definition det = A kEk• i.e., the k-fold antisymme
tric tensor product of E k' Thus a general point of det is 
(ei AeiA"Aei, Vk),wheree;eVk, 'f/i,and A is the anti
symmetric product satisfying e l A e2 = - e2 A e l • It is easy 
to check that, for any choice of {e;}, ei A •.. A ei (which is 
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called a k vector) is proportional to the basic k vector 
e 1 A .•. A e k' Thus det is a complex line bundle. Now, follow
ing Chern, 19 we define a Hermitian structure on det by 

Kdet{(e; A'" Ae",Vk),(e; A'" Ae;:,Vk» 

= det[ (e;,ej')], (3.33) 

where the rhs denotes the determinant of the k X k matrix 
with (ij)th element (e;, en, and ( , ) is the canonical Her
mitian structure on e": (e l ,e2) = eie2' 

This construction may be extended naturally to the flag 
manifolds M = SU(N)IT = G( 1,2, ... ,N). A general point 
of M is a one-plane C l contained in a two-plane C2, ••• , con
tained in a (N - I)-plane CN _ l eeN

• Thus, for 
1 <h:,N - 1, there exists a k-plane bundle Ek over M with 
general point (e', Cl ec2 e··· eCN _ l ), where e'eCk • The 
determinant bundle A k E k we will denote detk • A Hermitian 
structure K det• on each detk is defined as above, apart from 
replacing Ck by the flag Cl e··· eCN _ l • 

We now show that detk is precisely the bundle LA.. cor
responding to the k th basic weight Ak • Suppose on two over
lapping coordinate patches the representatives [gc (z)] B 

and [gc (z')] B are related by gc (z) = gc (z')b(z'). The fiber 
over [g c ] B in E k is spanned by the first k columns of g c and 
thus the transition function between the two patches is the 
principal k Xk minor of b(z'). The transition function in 
detk is the determinant of this minor, i.e., 

k 

II bii(z'), 
j=1 

which corresponds to the character of T defined by 
k 

Xk (t) = II tjit 'fIteT. 
j=1 

To see that Xk is the basic weight Ak, we go to the additive 
language and use formula (A9), which expresses the basic 
weights in terms of the simple roots. For convenience we 
replace (.,.) by tr( .,. ): 

6ij = 2 tr(HAI,HA)ltr(H~J,H~), (3.34) 

where Aj(Z) = tr(HA"Z), 'fiZer, and similarly for aj" 
The roots are ij = e j - ej , where e j (Z) = Zii' Choosing as 
before the canonical ordering ij> 0++; <j, the simple roots 
are a j = ; i + 1, ; = 1, ... ,N - 1 = I. Thus H ~I 
= diag(O, ... ,O,I, - 1,0, ... ,0) (one in the ith position). 

Hence, by a simple calculation, 

H AJ = (lIN)diag(N - j, ... ,N - j, - j, ... , - j) (3.35) 

(withj times N - j and N - j times - j). From this we ob
tain the action of Aj acting on Z, namely, 

j 

tr(HAJ,Z) = L Zjj' 
j=1 

Thus, in the multiplicative language, 
j 

Aj (t) = II t ii , teT. 
j=1 

Given a choice ofrepresentativegc (z) ofm = [gc (Z)]B 
on some coordinate patch, it is convenient to define the stan
dard section So of detk by 

so( [gc (Z)]B) = el A'" Aek , (3.36) 
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where el = (ith column of gc (z». In general, if Lx = II~ = 1 

(detk ) m., then define the standard section So of Lx to be the 
product of standard sections in each of the factors. From the 
product rule (3.32) for Hermitian structures one has 

I 

ISol; = II (Kdet• (e l A ... A ek ,el A ... A ek »m •. 
k=l 

(3.37) 

As an application, we calculate the Kahler potential 
arising from the line bundle 

LA. m" m" m, = (det l )m'(det2 )m'(det3 )m, 
I Al A.3 

over SU(4)IT. Choose the standard section So determined 
by the representative 

g«z) );: : ~ ~). (3.38) 

~3 Zs Z6 1 
To simplify the calculations we may use the assertion after 
7.5.3 in Ref. 11, which states that for an n X k matrix vii with 
columns el " 'ek , 

(3.39) 
m 

where m ranges over all k X k minors of vii. Thus, putting 
the results together, we arrive at the Kahler potential: 

F = In [( 1 + IZl12 + IZ212 + IZ312)m, 

X (1 + IZ412 + IZsl2 + IZIZ4 - z21 2 

+ IZIZS - z31 2 + Iz~s - zJZ412)m, 

X (1 + IZ612 + IZ4Z6 - ZSl2 

+ IZ1(Z4Z6-ZS) - (Z~6-Z3W)m,]. (3.40) 

Now we tum to a calculation of the symplectic volume 
in the line bundle approach. Let dim M = 2n and let (U be 
expressed in some coordinate patch as (U = iga/J dZa dzp. 
Then the symplectic volume, (Ullin!, in the same patch is 
given by 

II 

(U"in! = (detg)i" II dzy Adzy. (3.41) 
y=1 

Thus we seek an expression for det g. To this end, recall first 
the classical result that the "Kahler potential" for the Ricci 
tensor Ric is -In(det g), i.e., 

Ric = RaP dZa d zp, 

where 

(3.42) 

a2 

Rap = ( -In(detg)). (3.43) 
aZa ozp 

Equivalently this may be expressed in terms of the Ricci 
form p, a two-form that plays the same role for Ric as the 
Kahler form (U does for g: 

p = i aa( -In(detg)), (3.44) 

where 

(3.45) 

On the other hand, in Ref. 8, BFR showed the remarkable 
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result that for the G-invariant Kahler metrics under consi
deration here, the Ricci tensor and Ricci form are indepen
dent of the particular metric chosen. Because of G invar
iance, one again only needs to specify the components at the 
identity e by a formula analogous to (3.1): 

Pe(Ea,E_ a ) = ia(ZP), 

Pe (Ea,Ep) = 0, a + {3 -1=0, 
(3.46) 

where Z P is a particular element of Co given by 

( 3.47) 

Thus Z P corresponds to the weightp, which is the sum of the 
positive roots or, equivalently, twice the sum of the basic 
weights. We remark that this weight plays a special role in 
representation theory, e.g., in the Weyl character formula. 
Now transferring to the line bundle approach, we may ex
press p in terms of a nonvanishing section s of Lp: 

p=iaalnlsl~. (3.48) 

Combining this with (3.42), we arrive at the expression 

detg=E/lsol~, (3.49) 

where E is a constant to be determined from (the scale of) 
gaP' and where we have chosens to be the standard section So' 
which is non vanishing. [If we were to take instead s = /so, 
wheref(z) is a nonvanishing holomorphic function, then the 
fact that det g is a function on all of M means thatf(z) ex
tends to a holomorphic function on all of M, i.e., fez) is 
constant.] A natural choice for the metric is the Einstein 
metric g = Ric, OJ = p; in this case, by comparing OJ and OJn at 
the identity, one obtains 

( 3.50) 

Making this choice in the example ofSU (3) IT, the symplec
tic volume is given by 

(3.51) 

in agreement with (3.17) with I-l = v = 2. 
In the language of determinant bundles, if we define the 

"volume bundle" Vol = Ilk (detk ) -2, then we may phrase 
the result (3.47) as follows: det g is the norm squared ofthe 
standard section of Vol. 

To illustrate how this approach works for nongeneric 
flag manifolds we discuss the case of Cp n = SU (n + 1) I 
S(U(1) XU(n», whereS(U(1) X U(n» is the centralizer of 

To = {diag(eina,e - ia, ... ,e - ia) laER} 

and thus consists of unitary (1 + n) X (1 + n) block diag
onal matrices. In the complexified description 
M = SL(n + I,C)IP, where the parabolic subgroup Pis the 
subgroup of SL(n + 1, C) consisting of p = [Pij] with Pi! 
= 0, i> 1. The Bruhat coordinatization is then 
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o 0 
Zl 

(ZI, .. ·,zn)1-+ Z2 

p 

(3.52) 

Again we construct a line bundle Lx over M using a charac
ter X of C( To) extended to a character of P. There is only one 
choice of character in this case, namely, X(t) = AI (t) = til' 

'fItET [resp. X(p) =PII' 'fIpEP], up to multiplicity. Inter
preting g c (z) as defining the standard section So as before, we 
obtain, for the Kahler potential on LAm, 

I 

(3.53) 

To obtain the symplectic volume we must first find the "AI 
content" of the special character p = 2 (sum of basic 
weights). More accurately we write p = mlA I + (weights 
that do not affect til)' A simple approach to finding the 
coefficient m l is to notice that 

2 L(H~)II = ml(H~,)w (3.54) 
i 

and, using formula (3.35) for H~, we easily find 
j 

ml = n + 1. The factor det g multiplying the coordinate 
measure in (3.41) now becomes 

E 
detg=---

Isol~," + I 

(3.55) 

leading to the expression for the symplectic volume of Cp n 

with OJ = i aa In Fgiven by (3.53): 

OJn n (i dZj 1\ dZj ) 

-;;!=mn,UI (1+~~~llzkI2)n+l (3.56) 

Finally, we briefly recapitulate the main points of this 
section. The algebraic method ofBFR leads to a family of G
invariant Kahler structures on M parametrized by the posi
tive Weyl chamber Co. The components of the Kahler form 
OJ with respect to a G-invariant basis of one-forms are con
stant and are given by the algebraic expression (3.1 ). The G
invariant one-forms are found in terms of the Bruhat coordi
nates by a somewhat laborious process involving an Iwasawa 
decomposition. In the line bundle approach, one looks in
stead for the Kiihler potential F of OJ and finds that eF is the 
norm squared, Is12, of a section of the line bundle Lx that is 
twisted by means of the (dominant) character X of G. One 
still has to do some work to find the Hermitian structure 
cW'x (.,.) on Lx needed to define Is12. By defining a product of 
line bundles, we were able to reduce the problem to finding 
Hermitian structures on the basic weight bundles LA,. In the 
important generic case of M = SU(N)/T, N arbitrary, this 
problem was solved using a geometric description of the ba
sic weight bundles as generalized determinant bundles. Fin
ally, to achieve an expression for the symplectic volume 
OJnln!, the most efficient method was to calculate the func
tion det g, which is proportional to the norm squared of the 
standard section of the "volume bundle" Vol 
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=llk (detk )-2=L_ p [where p=2 (sum of basic 
weights) ]. 

IV. PROJECTION HAMIL:TONIANS ON FLAG 
MANIFOLDS 

From the dynamical system point of view symplectic 
manifolds constitute a (possibly reduced) phase space of 
some dynamical system. The dynamics is determined by spe
cifying a Hamiltonian function H on the manifold, which 
leads to a Hamiltonian vector field rotH via 

dH(X) = w(X,rotH), VXeTM (4.1 ) 

(rot is an abbreviation of rotation). In this section we will be 
studying certain preferred Hamiltonian functions on flag 
manifolds, which will be termed "projection Hamiltonians." 
The reason for this terminology is that, after suitable rescal
ing, these Hamiltonians are obtained geometrically by pro
jecting the flag manifold, viewed as an adjoint orbit embed
ded in g, onto a line in the t hyperplane. Specifically, let Mbe 
the flag manifold M = {giZ'" g-llgeG}, iZ'" et with the cor
responding symplectic form w [cf. (3.1)] and let iZ Het be 
such that Z H lies in Co, the positive Weyl chamber. The 
corresponding projection Hamiltonian is then given by 

H(giZ"'g-l) = (iZH,giZ"'g-I). (4.2) 

In the simplest example of M = SU(2)IT the flag manifold 
is viewed as a two-sphere in su (2) ~ R3 intersecting the posi
tive (T3/2i axis in iZ'" (which specifies the symplectic form 
on M), and the projection Hamiltonians are (up to an over
all scale determined by iZ H) simply projection onto the (T31 
2i axis. 

It is also instructive to consider an example with a two
dimensional torus such as M = SU (3) IT and to evaluate H 
in two stages: first, orthogonal projection (with respect to 
( .,. » onto t, and then application of the linear function 
(iZ H

,.), regarded as an element oft·. This gives the same 
result as (4.2). After the intermediate stage of projection a 
remarkable phenomenon may be observed: the image of M 
under orthogonal projection is the convex hull of the points 
in the Weyl orbit of iZ '" (which are the only points where the 
flag manifold actually intersects t). As shown by Heckman 
(see Ref. 20, Sec. 2.5) and Atiyah (see Ref. 15, Theorem 3), 
the Bruhat cells Mw = [Bww] B' wew, of Sec. II also have 
nice projections onto t: the image of M w is the convex hull of 
{w'(iZ"') Iw';;;.w}. ForSU(3)IT the situation is sketched in 
Fig. 2, which is taken from Ref. 15. The Weyl group acts, as 

c;;y;,r-< 
P12 

FIG. 2. The projection ofSU (3 )/Tonto t. [Reproduced from Ref. 15 with 
permission of the author.) 
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in the Appendix, through the isomorphism t ~ it = rand 
the lines r~ correspond to r a under this isomorphism. 
The vertices of the hexagon are labeled by Weyl group ele
ments, where w is shorthand for w(iZW). The shaded region 
is the projection of the complex two-cell M ( 32) and the dou
ble line is the projection of M (2 ) • 

The rotation flow (or Hamiltonian flow) of the projec
tion Hamiltonians H, i.e., the flow of which rotH is the tan
gent vector field, has an extremely simple description in 
terms of the Bruhat coordinates of M. We will show the 
following statements about this flow and the related gradient 
flow (expanding on the rather concise treatment in Ref. 15): 

(a) the rotation flow of H corresponds to a rotation 
z~_+·ictz for each Bruhat coordinate z, where c is a constant 
depending on iZ H and on the choice of coordinate z [this 
rotation flow may be described as the left action of 
exp(iZH t) on GcIB, (b) the gradient vector field of H, de
fined by 

dH(X) =g(X,gradH), VXeTM, (4.3) 

is tangent to the gradient flow described by left action on 
G J B with exp ( - ZH t); and (c) each Bruhat cell M w con
tains precisely one stationary point of Hand M w is the unsta
ble manifold of this stationary point under the gradient flow 
ofH. 

We show (a) by showing first that the action of 
exp(iZH t) on GJB is linear in each Bruhat cell. Let 
M w C G J B be coordinatized as in Sec. II, i.e., 

Mw = {[ b W(z)ww h}, 

where iiJ = w; IW and 

bW(z) = 1 + L ~Ea' 
aeR~ 

(4.4) 

(4.5) 

The left action of exp (iZH t) on an element of M w may be 
replaced by the adjoint action of exp(iZH t) on the corre
sponding matrix b W(z), as any torus element may be per
muted through a.Iu; and dumped in B. Then the action on the 
coordinates ~ is ~xp(a(iZ H)t) ~, i.e" a linear action. 
Now we must still show that the left action of exp(iZH t) on 
GJ B corresponds to the rotation flow of H. Left multiplica
tion by exp(iZH t) in the GJB description of M corre
sponds to adjoint action of exp(iZH t) in the adjoint orbit 
description of M, because the Iwasawa decomposition of ex
p(IZH t) is simply exp(iZH t)gc = (exp(IZH t)g)b. Denote 
the derivative vector field of this flow rot, i.e., at 
meM = {giZ'" g-llgeG}, 

rot rn = :t exp(iZHt)mexp( -iZHt)lt=o' (4.6) 

Thus, in the notation introduced after (3.1), a (fO't) = iZ H 

at m. Now we calculate, from (4.1) and (4.2), 

dH(X) = d (giZ"'g-l, iZH)(X) 

= ([giZ"'g-1, gdg- I ], iZH)(X) 

= (gizcug-1,[gdg-I(X), iZH]) 

= (giZ"'g-\[a(X), iZ H]), (4.7) 

where the final equality derives,by pullback, from the equa
tion on the group manifold 
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gdg- I eX) = x, v XEg, 

where k is the vector field 

- d 
Xg = d/exp tX'g)lt=o' 

(4.8) 

(4.9) 

On the other hand, we have, from the expression for the 
Kirillov form, 

dH(X) = m(X,rotH) 

= (giZ"'g-l, [a(x),a(rotH)]), (4.10) 

and thus iZ H = a (rotH) also, showing the equality of rot 
and rotH' 

To show (b) we observe that the isomorphism G I 
T ~ GJ B defines an almost complex structure Jon M, i.e., a 
smoothly varying, linear automorphism of TmM satisfying 
J2 = - 1 (J corresponds to multiplication by i in the tan
gent space). In the present case the complex structure is 
most easily described using the obvious left Ge action on 
Gel B: if the vector k at [ge h is given by 

- d 
X = dt exp(tX)' [ge h It=o, 

whereXEge , then 

JX= :t exp(itX) [ge]Blt=o' 

Now for flag manifolds we have 

gradH = JrotH, (4.11) 

because of the relationship between symplectic form and 
metric 

m(X,Y) = g(X,Jy) , VX,YETM. ( 4.12) 

Thus gradH is tangent to the flow of exp( - Z Ht) acting on 
Gel B. This flow is a linear flow when expressed in the Bru
hat coordinates by exactly the same argument as in (a). It 
does not, however, have Ii natural description on the adjoint 
orbit version of M as the Iwasawa decomposition of 
exp( - Z H t )ge is no longer straightforward. 

For (c) we just need to observe that any z:x coordinatiz
ingMw gets multiplied by the factor exp( - a(ZH t», which 
tends to zero as t -> - 00 by the assumption in (4.2) that 
- a(ZH 1-is positive for all negative roots a. Thus on Mw 

the gradient flow converges to the point [ww ] B with all co
ordinates z:x zero. In other words, M w is the unstable mani
fold of [mw] B under the gradient flow. Clearly on Mw the 
gradient flow is only trivial at [ww] B and thus gradH and 
dH vanish at this point and nowhere else on M w' 

When one wishes to derive explicit expressions for the 
projection Hamiltonians H, in a particular case, one is faced 
with the problem that H is given in terms of the adjoint orbit 
description of M, whereas the Bruhat coordinates come from 
the complex description M ~ GJ B. Thus one has to perform 
an Iwasawa decomposition in order to express giZ'" g-l in 
(4.2) in terms of the Bruhat coordinates. For the cases 
M = SU(2)IT, SU(3)IT, this was done in the previous sec
tion. However, it is clear that for larger groups the Iwasawa 
decomposition becomes an increasingly complicated task. 
For this reason we will proceed to derive in the remainder of 
this section an expression for H based on complex line bun-
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dIes over M ~ GJ B (the "line bundle approach" of the pre
vious section) which leads to a formula for H directly in 
terms of the Bruhat coordinates. Again we restrict ourselves 
to the case M = SU(N)IT. We start by stating the main 
result: Let Z H, Z'" be given by 

I 

ZH = L {3;H~i' {3;ER+, (4.13) 
;=1 

I 

Z'" = L mjHA.
j

' mjEZ+, (4.14) 
j= 1 

where H~, H;.. correspond to A;. A
J
. via 

, J 

A;(Z) = tr(H~Z), AJ.(Z) = (H;..,Z), VZEr. 
, J 

(4.15 ) 

[Thus Z H, Z'" lie in the positive Weyl chamber and, in addi
tion, ZW lies on the weight lattice, i.e., it corresponds to the 

multiplicative weight 11;= 1 (Aj)mJ• We have chosen to ex
press Z H in terms of H ~i as this gives a nicer normalization 
for phrasing the result.] Then the projection Hamiltonian 
given, as in (4.2), by H = (iZH,giZWg- 1

) has the alterna
tive expression 

I 

H = L {3;mj Hij, (4.16) 
;J= 1 

where 

( 4.17) 

Here JY;.. ( ... ) is the Hermitian structure on the jth basic 
J 

line bundle L A.j = detj from Sec. III, SO is the standard section 
of detj obtained from the exterior product of the first j co
lumns of g e (z), the coordinatized element of G e representing 
m = [ge (z) ] B' and . is the action of the torus on sections by 
left multiplication (discussed in more detail below). 

We start by describing the action of the torus on 
[ge (z)] B' Herege (z) is the lower triangular matrix with I's 
on the diagonal and complex coordinates z:x in the ath posi
tion where a is a negative root, i.e., a = ij withj < i. When 
considering the action of the torus on [ge (z) h it is suffi
cient to look at the basic flows exp(itH~)' [ge (z) h. The 
action is simply left multiplication, and, as TeB, one may 
simultaneously multiply ge (z) on the right with 
exp( - itH ~), thus preserving the standard form. Recall 
from (3.35) that 

H~i = (lIN)diag(N - i, ... ,N - i, - i, ... , - i), (4.18) 

with i times N - i and N - i times - i. Thus the effect is to 
multiply the coordinates in the set R; = {Zk1Ik>i + 1, l<::,i} 
by a factor exp( - it), while leaving the other coordinates 
unchanged. The situation has been sketched in Fig. 3. 

Tangent to the basic flow exp(itH ~i)' [ge (z) ] B there is 
a vector field s;, 

S; = :t exp(itH~)' [ge (z) hi t= o· (4.19) 

Writing z = rei'" the rotation flow 7J---+e - ;iz corresponds to 
the vector - a", = - (i12) (z az - z az ). Thus S; may be 
written 
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o 

FIG. 3. The action ofexp{itH'A j ) on Ige (z) ls: the elements in the shaded 
region R j are multiplied by exp( - it) . • = Zii + '. 

i 
~ (zkl a kl - zkl a-kl ). 

2 ~ z z 
Z ER, 

( 4.20) 

Any element of t gives rise to a flow that may be decomposed 
into basic flows, and the corresponding vector field is a linear 
combination of the basic vector fields 5;. In particular, the 
vector field corresponding to Z H [ ( 4.13 ) ], and thus, by (a), 
the rotation vector field of H, is given by 

(4.21) 

We now turn to the action of the torus on sections S of 
L;.. Regarding L;. as thejth determination bundle detj (see 
Se~. III) a sectiod s is an assignment to each flag Y [repre
sented by gc (z)] of the exterior product of a set ofj column 
vectors {el, ... ,e) in eN such that the span of el,. .. ,ej equals 
the span of the first j columns of gc (z). For example, we 
recall that the standard section So corresponds to the choice: 
ej = ith column of gc (z). There is a natural action of the 
torus on sections given by left action on the base point m (as 
discussed above) combined with left multiplication on the 
N Xj matrix formed by the juxtaposition of (e I'" .,ej ). 

A Hermitian structure Jf";. (',.) = Jf"det on the fiber 
J J 

over any flag was defined in Sec. III. However, the definition 
extends naturally to any pair of j vectors 
el /\ ... /\ ej , e; /\ ... /\ e; (not necessarily spanning the same 
j plane): 

Jf"x(el/\"'/\ej,e; /\"'/\ej) =det[(ej,e;>]. (4.22) 
J 

Using the assertion after 7.5.3 in Ref. 11 one may also write 

(f) _ 

Jf";. (e l /\ ... /\ ej,e; /\ ... /\ ej) = L m L mi, 
J L=I 

(4.23) 

where mL (resp. mi) is the L thjxjminor of the N Xjma
trix formed by the juxtaposition of (e l " 'ej ) 

[resp. (e; ·"e;>]. 
With these definitions the expression (4.17) for H ij 

makes sense. It is convenient also to define an action of the 
torus from the right on sections: by right multiplication on 
gc (z) (which corresponds to a trivial action as the torus 
element may be reabsorbed into B; in other words, rotating 
each basis vector of a flag by a phase does not change the 
flag) and simultaneously by right multiplication on 
(e l " ·ej ) with the principaljXj minor ofthe torus element. 
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Now we claim that the formula (4.17) for H ij may be rewrit
ten 

H.. = _ i.!!... Jf",tj(so,exp(iHA/)'so'exp( - iH~/» I 
IJ dt Jf",t/so,so) 1=0 

(4.24) 

(up to an irrelevant constant). The reason for this is that 
each minor determination mL gets multiplied by the same 
factor ,.qexp( - itH~) through the right torus action, 
which thus gives an overall factor. On taking the t derivative 
at t = 0 the difference with H ij as in (4.17) is just a constant. 
[The difference between H in (4.16) and (4.17) and the H 
using (4.24) for Hij instead is - I.L= I mj P;Aj(H~).] 
Thus, modulo this constant, one may replace the left action 
of the torus on So in (4.17) by the adjoint action on gc (z) 
(which was described above) but restricted to the firstj co
lumns of gc (z). 

It is now important to study the effect of the adjoint 
action of exp(itH~) on the determinants ofthejXj minors 
m dz), L = 1, ... , (f). The question is whether each such de
terminant transforms homogeneously, i.e., with an overall 
multiple of exp( - it), despite the fact that m L (z) is not 
necessarily a homogeneous polynomial of the z's. For j<J, 
the answer is clearly affirmative as each row gets multiplied 
by I or exp( - it) depending on whether the row is in the 
shaded region R; or not (Fig. 3). Thus m L (z) is multiplied 
by exp( - inLt), where nL is the number or rows of m L (z) 
in the shaded region. Now supposej> i. Then a generic mi
nor will have the staircase form sketched in Fig. 4. It is clear 
that the top right-hand element of the shaded region will 
always at least touch the staircase as sketched in Fig. 4; in 
particular the element (marked. in Fig. 4) directly to the 
right and above the top right-hand element of the shaded 
region will always belong to the zero region. Defining the 
swap of a pair of elements (ij) and (kl) as the pair of ele
ments (if) and (kj), it is clear that, if we swap any pair of 
elements below the staircase diagonal, either one of the 
swapped elements is zero, or the total number of elements in 
the shaded region before and after the swap is unchanged. 
The determinant m L is a weighted sum of all products of j 
elements such that no two lie in the same row or column. 
Obviously any such product may be obtained from any other 
by a series of swaps. Thus the total number of elements in the 
shaded region is constant for all the nonzero products consti
tuting m L • 

FIG. 4. Aj X jminorofge (z), wherej> i. Above the staircase all elements 
are zero. The shaded elements lie in the region R j in Fig. 3. 
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Thus in all cases mL transforms homogeneously under 
the action of exp(itH~). The multiplicity of the factor 
exp( - it) in the transformation of mL will be denoted 
mult;(L), i.e., mL .... exp( - itmult;(L» mL under the ac
tion of exp(itH~). Then we may rewrite the expression 
(4.24) for Hij' using the formula (4.23): 

(~ 2 1:L= I multi (L) ImL (z) 1 
H·. = --=---=----.:....-..:.---.:=----.:....-

IJ (N) 2 
1:L= 1 ImL (z) 1 

(4.25) 

Next consider the symplectic form 0) given, according to 

(4.14), by the multiplicative weight n;= 1 (Aj )m1• From the 
line bundle approach in Sec. III this means that one can 
write 

(4.26) 

where 

(4.27) 

Thus 0) = 1:j m j O}p where O}j = i aa In Kj • Then combining 
with (4.16) and (4.21) it remains to show 

dHij = - Ls,O}j' (4.28) 

where s; was given in (4.20) [LsO} is the one-form whose 
I 

evaluation on the vector Xis given by 0} (S,x) ]. First calcu
late O}/ 

_.~( 1£ mM(Z)mL(z») 
-1 £.. -uML-

M,L Kj KJ 

XdmM(z) I\d mL (z). 

Now we assert 

LSi dmM (z) 1\ d mL (z) 

= - i(mult; (M)mM (z)d mL (z) 

+ mult;(L) mdz)dmM(z». 

(4.29) 

(4.30) 

Consider a specific coordinate z<X in the region R; corre
sponding to s; and the contraction Lz"a dmM(z). Then if 

za 

m M (z) possesses a term containing z<X the contraction yields 
that term times a factor 2 [from L a z dz = La _; a 

• y 

(dx + i dy) = 2]. Because each terminmM(z) has the same 
number, multi (M), of z's in the region RiO one has 

LSI dmM(z) = 2 mult;(M)mM(z), (4.31) 

and the assertion follows. Now a short calculation gives 

LS,O}j = _1_ (2: mult;(L)d ImL (z) 12) - 2: {~ mM(z) mL (z)(mult;(M)mM(z)d mL (z) + mult;(L) mL (Z)dmM(z»} 
K j L M,L K j 

I dK. =-2: mult;(L)d ImdzW --+ 2: mult;(L)lmL (z)1 2
, 

~ L Kj L 

(4.32) 

where the last step follows after an interchange of the sum
mation variables Land M. Clearly the final expression is the 
exterior derivative of H ij as given in (4.25). 

To illustrate the result (4.16) and (4.17), whichhasjust 
been proved, we give some examples. For M = SU(2)/T, we 
havesl = (-i/2)(zaz -zaz) and 

HII = IzI2/(l + IzI2). (4.33 ) 

For M = SU(3)/Tand writinggc (z) in the usual way as 

o 
(4.34) 

the basic vector fields are 

1:1 = - (i/2) (Z3 az - Z3 a-z + Z2 az• - Z2 az.), 
~" • • (4.35) 
S2 = - (i/2) (Z2 az, - Z2 az, + Zl az , - ZI az,), 

and the four basic Hamiltonians Hij are 

HII = IZ312 + IZ212 , 
1 + IZ312 + IZ212 

H _ IZ2 - ZIZ312 
12 - I + IZl12 + IZ2 - ZIZ31 2' 

H21 = IZ212 , 
1 + IZ312 + IZ212 

(4.36) 

H _ IZl12 + IZ2 - ZIZ312 
22 - 1+ Izd2 + IZ2 - ZIZ31 2 
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I 
These results agree with the Hamiltonians found. by the 
more laborious direct route involving the Iwasawa decom
position. 

Finally we look at the nongeneric flag manifolds Cp n 

= SU(n + 1)/S(U(l) xU(n». We refer to the discussion 
at the end of Sec. III concerning C( To), P, and the Bruhat 
coordinatization. For simplicity, we choose the character 
defining 0} to be X = AI' corresponding to the choice m = I 
in (3.53). Then His given by [cf. (4.16) and (4.25)] 

n 

H= 2: P;HiI' (4.37) 
;=1 

where 

1:"," Iz·1 2 
H - J,I J 

iI - I ~n 1 12 + ~k= 1 Zk 

(4.38) 

This follows from the action ofthe torus on [gc (z) ] p, analo
gously to the discussion of the generic case. In practice it is 
more convenient to change the basis of parameters and write 
instead 

(4.39) 

The condition in ( 4.13 ), P ;ER.+, corresponds to 
o <f-LI <f-L2 < ... <f-Ln' 
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v. THE DUISTERMAAT-HECKMAN INTEGRATION 
FORMULA ON FLAG MANIFOLDS 

In this section we will devote ourselves to a discussion of 
the Duistermaat-Heckman (DH) integration formula, re
ferred to in the Introduction, as applied in the special case of 
flag manifolds. Let us first state a version of the DH result 
appropriate to our purposes: let Mbe a compact, symplectic 
manifold of dimension 2n, with symplectic form m, and Hbe 
a Hamiltonian function on M such that the corresponding 
Hamiltonian vector field 5 = rotH' given by [cf. (4.1)] 

dH + Lsm = 0, (5.1) 

has only isolated zeros (or equivalently H itself has only 
isolated critical points). Here L sm, the contraction of 5 with 
m, is the one-form defined by 

Lsm(X) = m(s,x), . VXETM. (5.2) 

Assume furthermore that the vector field 5 is almost period
ic, i.e., that there exists some torus [product ofU ( 1) 's] act
ing as a group of transformations on M such that 5 is the 
induced vector field corresponding to some element of the 
torus Lie algebra. Now we define the mixed form 

It = exp(H + m) 

( 
m m2 mn ) =exp(H) 1 +-+-+ '" +- , 
l! 2! n! 

(5.3 ) 

i.e., It is the formal sum of forms of different degrees, 

(5.4) 

where It (2p) is the 2p-form component of It. From (5.1) and 
using the fact that m is closed, we have 

(d + L2s)(H + m) = 0, 

and thus also 

(d + Ls)1t = 0. 

(5.5 ) 

(5.6) 

We say that the mixed form It is equivariantly closed. Equi
variant cohomology uses the operator d + Ls instead of d 
(for more information on the use of equivariant cohomology 
in the present context, see Ref. 6). Now the DH formula 
gives an expression for the integral of the highest degree 
component of It over M, namely, 

1 
u(O)(m ) 

1t(2n) = (21T)n r- I 

M ~} Pf( -Js(m I » 
(5.7) 

or, in terms of Hand m, 

, exp(H)!i:...=(21T)n ') exp(H(mI ». (5.8) 
JM n! t,;;;} Pf( - Js (mI» 

Here {mJ are the zeros of 5 and Pf(Js (m I » is a kind of 
winding number of the vector field 5 around its zero at mI' 

More specifically, Js is a linear map T m,M .... T m,M given by 

(5.9) 

Pf(Js)' the Pfaffian of Js' is the square root of the determi
nant of this linear map in the following sense. It is always 
possible to choose coordinates Xi> Yi' i = 1, ... ,n, around m I 

which vanish at m I and such that 
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(5.10) 

where the P i are constants and where the dots indicate high
er-order terms in the x's and y's. Thus with respect to the 
(positively oriented) basis {ax ,ay , ••• ,ax ,ay } of Tm M, J .. 

I I tI n I!:'> 

has the block diagonal form 

Js = block diag (( _Opl ~l) , ... , (-~n ~n)), 
(5.11 ) 

and we define the Pfaffian of Js in this form to be 
n 

Pf(Js) = II Pi' (5.12) 
i=l 

Of course, with this definition, 
n 

Pf( - Js) = II ( - Pi ). 
;=1 

That Js is antisymmetric can be seen from the identity 

s'm(X,Y) = (£sm)(X,y) + m(£sX,Y) + m(X,£sY)' 
(5.13) 

using the vanishing of £sm = (d + Ls )2m, which follows 
from (5.1) and the vanishing of 5 at mI' This justifies the 
antisymmetric form (5.11) of Js' 

As an example, take M = S 2 with H = cos f) and 
m = ! sin f) df) 1\ dq; (the! factor is for later convenience). 
Actually these coordinates are not strictly speaking correct 
as m has coordinate singularities at f) = 0,11', but we will ig
nore this for the moment. The left-hand side of formula 
(5.8) is the integral 

i f.
211" ,11" 1 

S' exp(H)m = 'I'=oJI1=o exp(cos f) "2 sin f)df)l\dq;, 

(5.14) 

which may be evaluated directly yielding 11'( e - e - I). In 
fact, as we will be concentrating on the south pole f) = 11' 

first, we prefer to take m = -! sin f) df) 1\ dq; and write 

1, exp(H)m = f:o [= 11" exp(cos f) 

x( - ~ sin f)df)l\dq; ). (5.15) 

Because of the different direction of integrating f), the an
swer is still1T(e - e- 1). Now we introduce a change of co
ordinates to a complex coordinate z = x + iy, where 

x = cot(f) /2)cos q;, (5.16) 

y = cot(f) /2) sin q;. (5.17 ) 

The south pole f) = 11' now corresponds to z = 0. In these 
coordinates,Handm [in (5.15)] taketheform 

H= -1 +2(x2+y)/(l +X2+y2) 

= - 1 + 2IzI2/{l + IzI 2
), (5.18) 

m = 2 dx I\dy/{l + x2 + y)2 

(5.19) 

Apart from an irrelevant constant - 1, H corresponds to 
the expression obtained in Sec. IV [Eq. (4.33) withPI = 2]. 
Also, one recognizes m as the symplectic form obtained in 
Sec. III [Eqs. (3.10) and (3.30) withlt! (resp. m 1 ) equal to 
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1]. Notice that the change of coordinates has removed the 
singularity at the south pole. The Hamiltonian vector field S, 
which equals 2 a'l' in (B,q;) coordinates, is given by 

s=2(xay-yax)=i(zaz-ziJz) (5.20) 

in terms of the coordinate z. Using (5.11) and (5.12), we 
obtain 

Pf(-Js(z=O»= -2. (5.21 ) 

. Thus the south pole contributes a term 

211" exp(H(z = 0) )/Pf( - Js (z = 0» = - 11" e- I (5.22) 

to the right-hand side ofthe DH formula (5.8). To get the 
contribution from the north pole one changes coordinates 
from z to z' = (z) - I, which vanish at the north pole and in 
which H, w take the form 

H = - 1 + 2/(1 + Iz'1 2), (5.23) 

w = i dz' Adz'/(1 + 1z'12)2. (5.24) 

The Hamiltonian vector field S is now 

S = - i(z' az' - Z' a 7 ), (5.25) 

and thus one has 

Pf(-Js(z'=0»=2 (5.26) 

(after introducing a basis of vectors {ax.,ay }, where 
z' = x' + iy'). Hence the north pole contributes 

211"exp(H(z' = O»/Pf( - Js(z' = 0» = 11"e (5.27) 

to the right-hand side of the DH formula (5.8). Combining 
(5.22) and (5.27), one reobtains the correct answer to the 
integral (5.15). Finally we remark that one may replace the 
integral (5.15) over S 2 by an integral over a maximal Bruhat 
cell (e.g., the complex plane corresponding to the coordinate 
z). With Hand w given by (5.18) and (5.19), one reobtains 
the same result after changing to polar coordinates (r,B), the 
two critical points now being r = 0 and r = 00. 

The essence of the DH formula is "localization": the 
result of the integral may be expressed entirely in terms of 
data localized at the critical points of H. The mechanism 
behind this phenomenon becomes clear from the following 
consideration: let ME denote the manifold M punctured by 
removing small solid spheres of radius E centered around the 
critical points mI' (For the case M = S2, ME is the doubly 
punctured sphere with B ranging from E to 11" - E.) Then 
clearly one has 

1 Wn i W
n 

exp(H) - = lim exp(H) - . 
M n! E_O M, nl 

(5.28) 

On ME we may perform the following manipulation: let dq; 
be anyone-form dual to the Hamiltonian vector field S, i.e., 

'5 dq; = 1. (5.29) 

Such a dq; exists as we have excluded the zeros of S. Then, as 
the symplectic volume is nondegenerate, we have 

!!!:.... = dq;A,s (!!!:....) = dq;A ('sw) A w
n

-

I 

n! n! (n - 1)! 

wn - I 

= dH Adq;A (5.30) 
(n - I)! 

This allows us to write the integrand as an exact form on ME: 
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exp(H)Ct)nlnl = d(exp(H)dq;Awn-l/(n - 1)!). (5.31) 

Then, using Stokes' theorem we have, from (5.28) and 
(5.31), 

i wn 1 wn- I 

exp(H) - = lim exp (H) dq; . 
M n! E";O aM, (n - I)! 

(5.32) 

The precise expression for the right-hand side of (5.8) fol
lows after evaluating the integral and taking the limit in 
(5.32). It is, however, clear that the answer can only depend 
on data localized at the critical points mI , as data from any 
other points can always be excluded by taking E sufficiently 
small. The argument we have just given is very similar to 
Berline--Vergne Theoreme 1.6.1 

Before discussing the generalization to Cp n we would 
like to derive an alternative procedure for obtaining Pf(Js ) 
in terms of data derived from Hand w. Suppose we choose 
coordinates (x;.y;), i = 1, ... ,n, around the critical point mI , 

which vanish at m I , as in (5.10). Then the three key objects 
H, w, and S are expressed in these coordinates as 

(x~ +.0) 
H=H(mI )+2;f3;m; '2 I +''', (5.33 ) 

w = I m; dx; A dy; + "', (5.34) 
; 

s= I f3; (x; aYI - y; ax,) + "', (5.35) 
; 

wheref3;ER+, m;EZ+ are constants. Then we have the alter
native expression for Pf(J 5 (m I ) ), 

Pf(Js (mI » = (det(Hess(H(mI »» 1/2/Iwl (mI ), (5.36) 

where Iwl (mI)' the determinant of w at mI , is defined as 

n 

Iwl(mI ) = II mi' (5.37) 
;=1 

In the example ofCP 1 we can use (5.36) to read off the value 
ofPf(Js ) directly from (5.18) and (5.19) [resp. (5.23) and 
(5.24) ]. 

We now tum to a discussion ofM = cpn, n arbitrary. 
As for Cp 1 we may replace the integration over Cp n by an 
integration over the largest Bruhat cell, in this case cn. Using 
the expressions previously found for H (4.39) and the sym
plectic volume (3.56) [for simplicity we choose m = 1 in 
(3.56)] the integral to be evaluated is 

r (l:7=1,u;IZ;1
2

) ll7=l i dz;Aaz; 
Jc. exp 

1+l:7=llz;j2 (1+l:7=llz;12)n+I' (5.38) 

We use the method described in the previous paragraph to 
determine the right-hand side of the integration formula. 
For the critical point at the origin ofCn

, we have 
n 

(det(Hess(H») 1/2 = II (2,u;) (5.39) 
;=1 

and 

Iwl =2n
, (5.40) 

as i dzAaz = 2 dxAdy. Hence 
n 

Pf(Js ) = II (,u;) (5.41) 
;=1 
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for this critical point, which we call mo. There are a further n 
critical points miO i = 1, ... ,n corresponding to the limits 
IZi 1-+ 00 with IZj I < 00 , j=/= i. Thus there are (n + 1) critical 
points labeled by I = O,i, with i = 1, ... ,n. We obtain the fac
tor Pf(/s- (m i » by changing to Bruhat coordinates centered 
around the corresponding critical point. Explicitly we use 
the freedom to multiply on the right with elements of P to 
convert 

to 

1 * * 

* 

Z; * 
z; 
zi 

1 

Z~ * 

* 

* 

p 

= [gc (z)p(z)] po 

p 

where the 1 is in the (i + l)th row. We do not display the 
remaining n - 1 columns ofthegc's as they contain no infor
mation about the flag. Thus PI I = (Zi) -I and the coordinate 
transformation is 

z; = lIziO z; = Z/Zi' j=/=i. (S.42) 

The same result is, of course, obtained using the more con
ventional homogeneous coordinates for ep". 

Now, in the primed coordinates, 

Iwi (m i ) = 2" (S.43 ) 

stijl holds, as the Kahler potential Fis F = erel [where el is 
the first column of gc (z') ], which has the same functional 
form in both sets of coordinates. Also, H is given in the 
primed coordinates by 

H = J.Li + l:j.,.,iJ.Lj Iz; 12 , 

1 + l:j= I IZil2 
(S.44) 

and thus 

(det(Hess(H(m i »»1/2 = 2"( - J.Li) II (J.Lj - J.Li), (S.4S) 
j.,.,i 

from expanding H to second order. Thus, for the case ep", 
the DH formula (S.8) for the integral (S.38) gives the result 

(217')" ( "1 + i ( exp(J.Li) ) ). 
IIj=1 (-J.Lj) i=1 J.LiIINi(J.L; -J.Lj) 

(S.46) 

We will return to an alternative derivation of this expression 
at the end of this section. 

Now, however, we turn to the DH formula for a more 
complicated flag manifold of generic type, namely, 
M = SU(3)IT. Recallfrom (4.20) that His 
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KI = 1 + IZ212 + IZ312, 

K2 = 1 + IZI12 + IZ2 - ZIZ312. 

(S.49) 

(S.SO) 

For this flag manifold there are six critical points [one in 
each Bruhat cell--cf. (c) at the beginning of Sec. IV], name
ly, m w = [w w ] B, WE W. The index set I is thus equal to the 
Weyl group W. The critical point mllies at the origin ofthe 
Bruhat coordinate patch M( 13), which has coordinates 
(ZI,Z2,z3) and we evaluate its contribution to the right-hand 
side of the DH formula using (S.36). From 

(det(Hess(H(ml ») )1/2 

= 23{32m2' ({31 + {32) (m l + m2) '{3lml (S.S1) 

and 

Iwl (m l ) = 23m l 'm2' (m l + m2), (S.S2) 

the contribution of this critical point is found to be 

exp(H(ml»)!Pf( -/s-(ml » = -lI{32'({31 +{32)'{31' 
(S.S3) 

To get the contributions from the other critical points we 
adopt the following procedure: (a) find the change of co
ordinates relating the Z coordinates in M( 13) to z' coordinates 
in wwM(l3); (b) express H in the primed coordinates; and 
(c) obtain H(mw ) and Hess(H(mw »1/2. This is all that is 
required, because it turns out that 

(S.S4) 

The reason is that the Kahler potential in the primed coordi
nates has exactly the same functional form as in the un
primed coordinates. We will return to this point later. 

To demonstrate this procedure, consider the coordinate 
system in w(23)M(l3)' which is described by 

o 

DJ. (S.SS) Z; 
-1 

The change of coordinates may be found by convertinggc (z) 
into the same form as (S.SS) using the freedom to multiply 
by elements of B on the right: 

[~ !, m. 
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(5.56) 

Thus we read off the coordinate transformation by compar
ing (5.55) and (5.56). The transformed Hamiltonian reads 

Iz~ 12 + IZi 12 
H = {31 m 1 --''--..:---'--'---'-

1 + IZi 12 + Iz~ 12 

+ {3 
IZi - z; zi 12 

1m2 
1 + Iz; 12 + Iz~ - z;zi 12 

Iz; 12 
+ {32m I ----'--::-----::-

1 + IZ312 + Iz~ 12 

1 + Iz' -z'Z' 12 
+f3 

2 I 3 
2m2-----'----'-~ 

1 + Iz; IZ + IZi - z; z31 z (5.57) 

which we expand around the origin of the primed coordinate 
patch: 

H = {3zm z + Iz; IZ ' - {3zmz + Iz~ IZ '{31 (m l + m z ) 

+ IZ3Iz'ml({31 +{3z) + O(z3). (5.58) 

From this we read off 

(Hess{H(m(23) ») I/Z 

(5.59) 

There is, however, an alternative procedure that enables 
one to express H in the primed coordinates without finding 
the explicit coordinate transformation. This method is sim
ply to replace each minor m L in the expression for H (5.47) 
by the corresponding minor in the matrix (5.55). Thus 
1--+ 1; - Z3 --+ - z~ , - Z2 --+ Z3 , 1 . 1 - ( - Z3) . 0--+ 
l'z; - ( - z~) '0, etc. Under these transformations H 
[ (5.57) ] is obtained. The reason for this phenomenon is that 
the torus acts in a universal way on the minors which can be 

constructed from the first two columns of a 3 X 3 matrix, as is 
evident from 

("" 
a l2 

:) exp( - iZt) exp(iZt) a21 a22 
a31 a3Z 

("" 
eil2(Z)talz 

:) = ei21(Z)tazl azz (5.60) 
ei31(Zlta31 ei 32(Zlta3Z 

(cf. the general analysis of the torus action on m L in Sec. 
IV). Thus we give the remaining coordinatizations and cor
responding formulas for the Hamiltonians in Table II. Now 
it is also obvious why Iwl is the same for all the critical 
points: the basic Kahler potentials are Fi = In(K;) , where 
Ki is the sum of the norms squared of the determinants of the 
i X i minors m L> and by inspection K ; , K ~ have the same 
functional form as K I , Kz. Putting everything together, the 
final result for the right-hand side of the DH formula for 
M = SU(3)/Tis 

(21T)3 [ - 1 + exp({3zmz ) 

{31' ({31 + {3z) '{3z (m! ) (m(23) ) 

+ exp({31 m l ) - exp({31 m l + 13lm z + {3zmz) 

(m(l2) ) (m(123) ) 
- exp({3. m. + {3zm l + {3zmz ) 

(m(l32) ) 

+ exp{({31 + {3z) (m l + m z»] 
(m(l3) ) . (5.61 ) 

We have indicated the origin of each contribution in paren
theses beneath it. Given the complicated nature of Hand 
w3/3! [(5.47) and (5.48)] it is unlikely that this integral 
could have been evaluated by any direct method without a 
great deal of effort. 

We postpone any analysis of the general SU(N)/Tcase 
to a future pUblication. However, before leaving the reader, 
we would like to point out an amusing recursive property of 
the Cp n integrals, closely related to the decomposition of 

TABLE II. The remaining coordinatizations and the corresponding formulas for H. 

H = (l,m,("') + (l,m2("') + (l2m,("') + (l2m2("') 

w @wgc(z') (l,m, (l,m2 (l2m , (l2m2 

C 
1 

:) 
1+ Iz; 12 Iz; 12 Iz; 12 (Iz; 12 + Iz; _Z;Z;12) 

(12) -1 0 
K' K' K' K; z' z' , 2 , - 2 , 

( r 
z' 

~) (123) -=-; 
, 

1+ Iz; 12 Iz; 12 1+ Iz; _Z;Z;12 
0 

1 
-

K' K' K' K' z' -1 
, 2 , 2 

3 

(" -1 

D 
(132) _3Z; z' 

1 + Iz; 12 Iz; 12 1 + Iz; 12 , 
K' K' K' K; 

-1 0 
, 2 , 

C'; z; 

~) 1 + Iz;12 1 + Iz; 12 
(13) 

1 
-z) -

K' K' K' K; 
-1 0 

, 2 , 
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cp n into cells. This also has the merit of providing a check 
on the result (5.46). 

Our starting point in the Cp n case is the integral (5.38), 
which we transform by changing variables 

i dz; Adi; -+2 dx; Ady; -+2r; dr; AdO;-+da; AdO;, 

where a; = ,.;, and by integrating out the n trivial 0; inte
grals, giving 

f 
00 f (n~_ldak) 

(21T)n ... exp(H(n» - , 
(K(n»n+ I 

aj=O 

where 

l:; III.·aj H(i) = J= rJ 
K(i) , 

; 

K(i) = 1 + L aj' 
j=1 

Also define 
;-1 

c(i) = J.t; - L (J.tj - J.t; )aj. 
j=1 

It is easily checked that 

c(i)/K(i - 1) = J.t; - H(i - 1), 

c(i)/K(i) = J.t; - H(i). 

(5.62) 

(5.63 ) 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

We carry out the integral (5.62) in steps: first integrat
ing the variable an' taking the upper and lower limits 
an = 00, an = 0, then integrating the variable an _ I' etc. 
After takingj lower limits we denote the indefinite integral in 
the next variable an _ j by Ij + I (an _ j) (with the remaining 
variables a;o i < n - j regarded as constants). Thus 

~+ I (an_ j ) = - f ~(an-H 1= O)dan_ j, 

j= 1, ... ,n, (5.68) 

and II (an) is the indefinite integral obtained from carrying 
out the an integration in (5.62). Thejth upper limit contri
bution 

100 

... 100 

Ij ( 00 )dan_ j dan_ (H 1)" 'da l 

will be denoted Pj • 

(5.69) 

To give a flavor of the nature of this integration problem 
we obtain II [an] and PI' Define 

f 
dan 

I(p) = exp(H(n» . 
. (K(n»p 

(5.70) 

Then using 

aH(n) c(n) 
a;;:- = K2(n) , 

(5.71) 

which follows from (5.63)-(5.65) and partial integration, 
we obtain the recursion 

I(p + 1) = (p - 1) I(p) + _1_ exp(H(n» , p> 1, 
c(n) c(n) (K(n»p-I 

(5.72) 

which is solved by 
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I(p+ 1) = (p-l)! (Pi
l 
(K(n»)p-j~) exp(H(n». 

j=O c(n) J! (K(n»p 
(5.73) 

Settingp = n in (5.67) and taking the upper limit an = 00 

yield 

i
OO ioo 1 PI = (n -1)!eXp(An) ... ---dan_I···dal> 

o 0 (c(nW 
(5.74) 

which is a straightforward integral in the remaining vari
ables as the exponential in the integrand has been removed. 
Notice that K(n) -+ 00 as an -+ 00 so that only thej = 0 sum
mand in (5.73) contributes. At the lower limit an = 0, we 
have a new integration problem 

I2(an_ l ) = - (21T)n(n - I)! 

X f Ct~ (un - H(~ _ 1»n- j j\) 
exp(H(n - 1) d 

X an I' 
(K(n -IW -

(5.75) 

Rather than attempting to solve this integral we now intro
duce a unified approach to solving all the integrals at all 
levels. Define the class of (indefinite) integrals 

I[/;P](H)=..!..fJ<P)(H) dH I , l<p<n, (5.76) 
c KP-

where f is a function of Hand J<P) denotes the pth deriva
tive of f Equation (5.76) is to be understood in the follow
ing sense: we assume that we have taken, say, n - plower 
limits and thus we are integrating the variable ap ' but then 
we change the integration variable to H(p) regarding the 
other variables on which H(p) depends as constants. Now, 
using 

dK(p) dK(p) dap (K(p»2 ---= ------= -'-~:..:-
dH(p) dap dH(p) c(p) 

(5.77) 

and partial integration, a recursion may be set up, similar to 
the previous one in (5.72), leading to 

I[f,p](H) = 
p-I ( 1 )P-j 1 L f(j) -:-;-

(p -1)! 

}=o J.tp -H J. KP 
(5.78) 

If we now take the lower limit ap = 0 and perform the 
change of variables in the next (ap _ l ) integration, 

f 
dap_I = 1 f (K(p - 1»2 dH(p - 1), (5.79) 

c(p -1) 

we are led to the new problem 

-..!..f (Pilf(j) ( 1 )P-j ~) (p -I)! d~2' 
c j=O J.tp'- H J! KP 

(5.80) 

where the argument (p - 1) in H, K, and c is understood. As 
is easily checked, this is the integration problem 

I [f(H)/(H - J.tp );p - 1]. (5.81) 

This may in turn be inserted into (5.78) and the whole pro
cess repeats itself. Now the initial integral 
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(5.82) 

is, on changing variable to H, precisely I[ (217')n exp(H);n]. 
Thus we arrive at the solution for the integrals lj (an _ HI): 

lj(an- H t> = I [fj;n - j + 1] (H), (5.83) 

where 

fj(H) = (217')nexp(H) ,1<J<.n. 
Un _ H 1 <k<n (H - li-k ) 

(5.84) 

The right-hand side of (5.83) is a function of an - H I 

through the an _ H 1 dependence of H,K and is given by the 
formula (5.78). At the final step we have 

In (a l ) = I [/,,;1] (H) = [f~O)/(li-1 - H)]' (11K), 
(5.85) 

yielding at its lower limit a l = 0 the contribution from the 
critical point mo [in the terminology introduced after 
(5.41)], namely, 

- In (0) = (217')n ( 1 ) . (5.86) 
Uk = 1 ( - li-k ) 

Now we consider the upper limit contributions ~ ,j = 1, ... ,n. 
From (5.69), (5.83), (5.78), and (5.67) these are given by 

~ = fj (li-n - HI )(n - j)! 

[i
eo ieo ( 1 )n-j

+ I ] X ". . dan_j"·da l . 
o 0 c(n - ) + 1) 

The integral in square brackets is easily found to be 

lI(n - j)! 

li-n-H 1 Uk:~ (li-n-H I - li-k) 

Together with (5.84) we get the n contributions 

Pj = (217')n exp(li-n_j+ I) , 

li-n-j+IUk#n-j+dli-n-j+1 -li-k) 

j= 1, ... ,n. 

( 5.87) 

(5.88) 

(5.89) 

Thus (5.86) and (5.89) combine to reproduce the direct DH 
result (5.46). 

We may rephrase this same result in a more appealing 
way by defining a class ofDH problems I[f;M] , where/is a 
function of one variable and M is a flag manifold, by 

(5.90) 

As in (5.3), the miXed form/(H + w) is expanded in a Tay
lor series in powers of w. If dime M = n, then SM' picks out 
the nth power of w in the expansion, i.e., 

i /(H + w) = i pn)(H) ~. 
M M n! 

(5.91) 

After changing to the maximal Bruhp.t cell en and taking the 
lower limit of the integration in the first variable an' the 
following lower-dimensional integral remains: 

(5.92) 
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which may be rewritten as 

(217') (217')n - 1 (eo '" (eo (/(H) )<n - \) 
Jo Jo H - li-n 

1 
X-da n _ 1 ... dal' (5.93) 

K" 

This is, however, precisely the form that the first integration 
would have taken had we started with the DH problem in
stead: 

I [217'/(H)/(H - li-n); cp n - I]. (5.94) 

Thus we may phrase the previous recursion for Cp n in terms 
ofDH problems as follows: 

I [fj;cpn-j+l] =Pj +1 [217'fj+l;cpn- j ], (5.95) 

with Pj as calculated previously in (5.89) andfj as given in 
(5.84) but without the factor (217') n. 

Noteadded in proof There are some inexact statements in 
Sec. III. The vector fields Ea and one-forms ea are neither 
G-invariant nor nonvanishing on M. However the one-forms 
ea [defined in (3.4)] are nonvanishing and linearly inde
pendent at each point of the Bruhat coordinate patch. Fur
thermore, under G-transformations l:ea Ea transforms by 
an Ad (T) transformation at each point and, seeing as the 
expression (3.1) for the components of We is Ad( T)-invar
iant, the form w in (3.5) is G-invariant as required. I am 
grateful to J. M. Mouriio for explaining these points to me. 
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APPENDIX: LIE ALGEBRA AND STRUCTURE AND 
REPRESENTATION THEORY 

In this appendix we give a brief survey of relevant parts 
of Lie algebra structure theory and representation theory. 
For further details the reader is referred to Belinfante, 2 

1 

Macdonald,22 BFR,8 Pressley and Segal (Ref. 11, Chap. I), 
and Bott (Ref. 17, Sec. 4). 

1. Representations and weights 

Let G be a compact Lie group and 9 its Lie algebra. A 
representation q; of G is a group homomorphism q;: 

G--+GL( V), where Vis a complex vector space and GL( V) 
is the group of nonsingular linear transformations of V. The 
group homomorphism property means that q; satisfies 
q;(glg2) = q;(gl )q;(g2)' An equivalent way of viewing repre
sentations is to regard the group G as acting directly on V via 

R. F. Picken 636 



                                                                                                                                    

the action': G XV ..... V, whereg' v = tp(g) v, VgeG, ve V. The 
group homomorphism property of tp translates into the 
property 

g\' (g2'V) = (g\g2) ·v, Vg\,g2EG, veV. 

Then Vis said to be a G module under the G action. A repre
sentation tp of G induces a representation of g, i.e., a map ip 
from 9 to gf( V) [the Lie algebra ofGL( V)] via the defini
tion 

if>(X) =!!.... tp(exp tX) I . 
dt 1=0 

Again this may be translated into a module formulation. A 
representation tp of G is said to be irreducible ifthere does not 
exist a proper submodule V' of V (i.e., V' #0, V' # V) such 
that tp ( G) V' C V'.Thedimensionoftherepresentationtp, de
noted dim tp, is defined by dim tp = dime V. 

Given G, we fix once and for all a maximal torus T of G, 
i.e., a maximal Abelian subgroup. As a group, T is isomor
phic to a product of U (1 ) 's. Its Lie algebra t is a maximal 
commuting subalgebra of g. The dimension of Tor t is called 
the rank of G, and is denoted by I. A representation tp of G is 
by restriction also a representation of Ton V. This represen
tation splits into dim tp one-dimensional representations Xi: 

T ..... U ( I), i.e., it is possible to find a basis of V such that in 
this basis tp(t) = diag(x\ (t)"",Xdim 'P (t», VtET. The homo
morphisms Xi are known as the weights of the representation 
tp. The set of all possible weights forms a multiplicative 
group, also known as the group of characters of T. [A char
acter of a group is a homomorphism from the group to 
U ( I).] Instead of these multiplicative weights, many au
thors use an equivalent formulation with the additive 
weights ;b: t ..... 1R. The two approaches are related by 
Xi (exp X) = exp Xi (X). Henceforth we will omit the dot as 
it will be clear from the context which formulation is being 
used. 

2. The adjoint representation and roots 

For any G there is one particular representation known 
as the adjoint representation which is special because it is 
constructed directly from the Lie algebra of G itself. Let ge 
be the complexification of g, i.e., ge = 9 + ig. Thus ge is a 
complex vector space. The adjoint representation Ad: 
G ..... GL(ge) is defined by 

Ad(g)(Z) =gZg-\, VZEge (AI) 
The corresponding representation of 9 is denoted ad and is 
given by 

ad(X) (Z) = [X,Z], VZEge. (A2) 

Consider the weights of Ad. Clearly, Tacts trivially on the 
complexification of t, denoted f); thus the trivial weight, giv
en by X(t) = 1, occurs with multiplicity precisely I (as Tis 
maximal). The remaining nontrivial weights of Ad form the 
set R of roots of G. The one-dimensional subspace of ge cor
responding to the root aER is denoted ga. The decomposi
tion of ge into irreducible submodules under T, 

(A3) 

is known as the root space decomposition. 
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3. The Cartan-Kllling form 

The adjoint representation may also be viewed as a real 
representation acting on the real vector space g, instead of gc . 
This gives rise to a natural symmetric bilinear form ( . , . ) on 
g, the Cartan-Killing form, defined by 

(X,Y) = tr(ad(X),ad( Y», VX,YEg (A4) 

[here ad (X) and ad ( Y) act on 9 only]. Having defined ( . , . ) 
on g, it extends by complex bilinearity to a form on ge' also. If 
the Cartan-Killing form is nondegenerate, the Lie algebra 9 
is said to be semisimple. An equivalent criterion for semisim
plicity is for 9 to have no nonzero Abelian ideals (if a sub
space i of 9 satisfies [i, g) C i it is said to be an ideal). If 9 has 
no nonzero ideals whatsoever it is said to be simple. In this 
case the adjoint representation is irreducible. From now on 
we will restrict our attention to simple Lie algebras. 

4. Weyl chambers and the Weyl group 

Regarded as maps from t to iR, the weights may be 
thought of as elements of it*, which is, like t itself, an 1-
dimensional vector space over R. It is frequently convenient 
to identify it* with an I-dimensional real subspace off) via the 
Cartan-Killing form: XEit* is identified with HxEf), where 
X(iZ) = (Hx,iZ), V iZEt. As the Cartan-Killing form is 
real-valued on 9 this means that it* is identified with it C f), 
and thus becomes a Euclidean space, as ( . , . ) is positive defi
nite on it. We will denote this Euclidean space as 'Y (not to 
be confused with the module V). 

Each root a is normal to a hyperplane 

'YaC'Y: 'Ya = {ZE'Yla(Z) = (Ha,Z) =O}. 

There are half as many hyperplanes 'Ya as there are roots, 
because of the fact that, if a is a root, the only other root 
proportional to a is - a. By removing the hyperplanes 'Ya , 
'Y is separated into wedge-shaped regions known as Weyl 
chambers. The Weyl group is the group generated by the 
orthogonal (with respect to (.,.» reflections in the hyper
planes 'Ya. The Weyl group permutes the Weyl chambers 
freely and transitively and maps the root system R into itself. 

5. Orderings and simple roots 

Next we wish to define an ordering on the weights. A 
lexicographic ordering on 'Y is determined by choosing an 
ordered basis {e\,. .. ,ej} of'Y and defining l" > 0 if the first 
nonvanishing component of l" with respect to this basis is 
positive. If one just wishes to order the roots an alternative 
procedure is to pick one Weyl chamber Co, which will be 
called the positive Weyl chamber, and define 
a > ~a( Co) > O. If a is a root, then - a is a root also. 
Thus, with respect to any ordering, there are equal numbers 
of positive and negative roots. The set of positive (negative) 
roots with respect to some ordering is denoted R + (R _ ). 
Given any ordering it is possible to find I positive roots, de
noted ai' i = 1, ... ,1, known as the simple roots, with the prop
erty that any root is an integer linear combination of these 
roots with coefficients either all positive or all negative. For 
the ordering determined by the positive Weyl chamber Co 
the simple roots are those roots a whose orthogonal hyper
planes 'Ya bound Co. 
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The simple roots are important in the classification of 
simple Lie algebras. In fact, in order to reconstruct the whole 
Lie algebra, it is sufficient to know the Cartan matrix, which 
is an I X I matrix with ijth element 2(a;,a j )/(a;,a;). Alter
natively the essential information about angles between sim
ple roots and their lengths may be coded into the Dynkin 
diagrams, which can be classified combinatorially. We refer 
to any standard text on Lie algebra theory for further details. 

6. A basis for ge' Borel, and parabolic subgroups 

The root space decomposition (A3) suggests a pre
ferred basis for gc' namely, a basis for ~ (e.g., 
{Hj =Hajlj= 1, ... ,/}, where {a j } are the simple roots) 
together with a choice of basis vectors {Ea laER}, where 
ga = CEa . One is at liberty to choose Ea = - E t_ a and, by 
an appropriate scaling of Ea , one can cast the bracket rela
tions in gc into the following standard form: 

[H,Ea] = a(H)Ea, 'ti HE~, 

[Ea,E/d = {Na./3 Ea +/3' a+/3ER, 
H a, a +/3=0, 

(A5) 

with all other brackets zero. The Na ./3 are nonzero and in
teger, and satisfy N a ./3 = - N _ a. _ /3' With these choices we 
have 

(E E) = {I, a+/3=O, 
a '/3 0, otherwise. 

(A6) 

The Lie algebra 9 is the real span of the set 

{iHj,i(Ea +E_a),Ea -E_a; j= 1, ... ,1, aER}. 

As we are only considering compact groups G we will not 
discuss other real forms of gc . 

From (A5) and ordering properties it is easy to see that 
the algebra 

(A7) 

is a subalgebra of gc. The corresponding subgroup B is 
known as a Borel subgroup of G c' Generally, if R p is a subset 
of roots containing at least R + and closed under addition of 
roots, the algebra 

(A8) 

is a subalgebra of gc and the corresponding subgroup P of G c 

is known as a parabolic subgroup. Let B be a Borel subgroup 
of Gc and b its Lie algebra. Then the decomposition 
Gc = GB corresponding to the Lie algebra decomposition 
gc = 9 + b is known as the Iwasawa decomposition. Note 
that it is not a disjoint decomposition as 9 n b = t. 

7. More on the weights of a representation 

Consider the set of weights of a representation module 
V. For any irreducible module one can find a weight X and 
the corresponding weight vector v [i.e., t·v = XU)v, 'titET] 
with the property Ea v = 0, 'ti aER +. Such a weight vector is 
called an extreme vector and the corresponding weight is 
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called the highest weight of the module. (For any a the vec
tor Ea v is a weight vector with weight X + a assuming it is 
nonzero; thus for an extreme vector all weights obtained in 
this fashion are smaller than X.) From the highest weight the 
whole weight system may be obtained by applying the lower
ing algebra, which consists of polynomials of Ea with aER _. 
Alternatively one can start with a weight vector annihilated 
by {Ea laER _} and the corresponding lowest weight, and 
then generate the complete weight system by applying the 
raising algebra consisting of polynomials in {Ea I aER +}. 

The criterion for a weight X to be a highest (resp. low
est) weight of some representation module Vis simply that it 
lies in or on the edge of the positive Weyl chamber Co 
(resp. - Co), Such a weight is said to be dominant (antido
minant). An alternative criterion for X to be dominant (anti
dominant) is that X be greater than or equal to (less than or 
equal to) the other weights in its Weyl group orbit. If X is a 
dominant weight and is not the integer sum of two nonzero 
dominant weights, then it is said to be a basic weight. There 
are precisely I basic weights, A.;, i = 1, ... ,1, and any weight 
may be written as an integer linear combination of basic 
weights. The basic weights may be labeled in such a way that 
one has 

(A9) 

where a j,j = 1, ... ,1, are the simple roots. This formula may 
be used to obtain the basic weights in terms of the simple 
roots. 
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Stochastic action of dynamical systems on curved manifolds. The geodesic 
interpolation 
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Dynamical systems on curved ~anifolds, with a Lagrangian at most quadratic in the velocity, 
are considered. The classical action functional, on some finite time interval, is well defined for 
any smooth trial trajectory in configuration space. The action functional is at the basis of 
Lagrangian variational principles, from which all dynamical properties of the system can be 
derived. Here the problem of extending the action functional from the smooth deterministic 
trajectories of classical mechanics to the very irregular random trajectories of diffusions in 
configuration space is considered. In this way the action becomes a functional of the trial 
diffusion processes and can be put at the basis of stochastic variational principles. Since the 
problem is beset with ultraviolet divergences, the general strategy of renormalization theory is 
followed, by regularizing the trial diffusion processes through piecewise smooth geodesic lines 
for a generic given connection on the manifold. After cutoff removal and infinite counterterm 
subtraction, the quadratic part of the action shows a residual dependence on the generic 
regularizing connection field. Therefore, in the frame ofthis geodesic interpolation strategy, it 
is shown that a change in the connection field is equivalent to a well-defined renormalization of 
the scalar potential. These results apply to the problem of quantization of generic dynamical 
systems on curved manifolds, in particular to the definition of Feynman path integrals on 
curved configuration spaces. 

I. INTRODUCTION 

In this paper we consider a generic dynamical system 
with configuration space given by a smooth n-dimensional 
curved manifold, with Lagrangian at most quadratic in the 
velocity. In the classical case, it is very simple to calculate the 
action for a generic smooth trial trajectory, through direct 
time integration. Then, the physical effectively possible tra
jectories are selected through the stationary action vari
ational principle, among all conceivable trial trajectories. 

On the basis of previous work, related to Nelson's sto
chastic mechanics,1 it looks very natural to consider the 
problem of extending the dynamical action from a functional 
of smooth trajectories to a functional of a generic given regu
lar diffusion stochastic process on the manifold, in some 
average sense. Then, it becomes possible to exploit this sto
chastic action functional in the frame of stochastic variation
al principles, as done for example in Refs. 1 and 2. It is also 
known 1.2 that stochastic variational principles can be con
sidered as a possible approach to quantization of dynamical 
systems in the frame of control theory. 

From a structural point of view, the problem of the de
finition of the stochastic action is very similar to the problem 
of definition of Feynman path integrals on curved configura
tion manifolds3

-
s with one important general difference. In 

fact, Feynman path integrals give a very compact expression 
for the time development of the quantum wave function 
starting from some initial condition.6 On the other hand, the 
action functional must be exploited in the general frame of 
stochastic variational principlesl.2 in order to be able to se
lect, through stationarity, the stochastic processes associat-

ed to quantum states in the frame of stochastic quantization, 
provided by Nelson's stochastic mechanics. 

Therefore we can say that the problem of the definition 
of the stochastic action is not only interesting in itself, be
cause it provides an instructive interplay between aspects 
related to stochasticity and differential geometry, but it is 
also relevant for the quantization of dynamical systems on 
curved manifolds. 

Two types of difficulties appear in the attempt to define 
the action as functional of stochastic processes, in the aver
age sense. 

The first difficulty is very similar to ultraviolet diver
gences in quantum field theory. In fact, the random trajec
tories of diffusions are nowhere differentiable, so that a di
rect definition of the action is senseless, since time 
derivatives are essentially involved. It is therefore necessary 
to introduce a regularization, smoothing out the time depen
dence. By following a very natural strategy in the theory of 
stochastic processes,7-9 we perform a kind of geodesic regu
larization, through the substitution of the random trajector
ies with their piecewise smooth interpolation in small time 
intervals, with geodesic lines, with respect to a given regular
izing connection field. After cutoff removal, i.e., the regular
izing time interval going to zero, some divergent terms ap
pear. However, it was a very important discovery of 
Nelson'sl that these divergent terms are irrelevant, in the 
frame of the variational principles, because they disappear in 
the expression of the variation of the action. In any case, in 
general, it is very easy to deal with them, in the spirit of 
renormalization theory, by substitution of divergent con
stants with finite, but arbitrary, renormalized constants. 
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The second difficulty is very subtle and originates from 
geometric features, enhanced by the stochastic nature of the 
trial processes. In fact, since we are dealing with a generic 
configuration manifold, the regularization procedure has a 
local character, given by the regularizing connection field. 

Since the trial processes have very irregular trajectories 
with Brownian-like properties, they make, so to speak, a 
very detailed exploration of the local geometric properties of 
the manifold. As a result, the stochastic action, even after 
elimination ofthe divergent infinite terms, is sensitive to the 
regularization procedure. In fact, we show that the quadrat
ic part (in the velocity) of the action has a residual depen
dence on the chosen connection field, playing a central role 
in the regularization procedure. However, the effects of a 
change in the connection field can be completely absorbed 
into a suitable change of the scalar potential in the Lagran
gian, of the secorid order in the diffusion constant. 

Our results put into a general geometric perspective the 
old problem of whether the quantum Schrodinger equation 
on a curved manifold does contain or not a term involving 
the curvature invariant. 3-5,10 In fact, in the most general 
case, the quantization procedure, starting from a classical 
system, seems to be able to define the total action, up to a 
term in the scalar potential of second order with respect to 
the diffusion constant, and therefore also to the Planck con
stant. 

In other words, at l~t in the frame of the regularization 
based on geodesic interpOlation or equivalent means, the 
quantum theory, associated to a given classical theory is sub
ject to a scalar potential defined but for a possible additive 
contribution, of second order with respect to Planck's con
stant, and therefore negligible in the semiclassical limit. 

In a forthcoming paper, II as an additional proof of the 
subtleties of the interplay between geometric and stochastic 
aspects, we show that the exploitation of the developing 
map5,II,I2 (Cartan map) leads to a quite different qualitative 
structure, where the curvature term in the quantum Schro
dinger equation does not arise at all, in agreement with the 
conclusions of Refs. 5 and 10. , . 

The organization of the paper is as follows. In Sec. II, we 
recall all basic aspects of the kinematics of controlled diffu
sions on a manifold. Geodesic interpolation, with respect to 
a generic given connection field r, is also introduced and 
fully characterized up to order O(t1t 3/2

), beyond the reach 
of ordinary stochastic differential calculus usually limited to 
O(t1t). Section III has a technical nature. We show how to 
calculate higher-order corrections to correlation functions 
for the increments t1q, starting from the basic controlling 
fields and exploiting Markov property. In Sec. IV we intro
duce canonical Lagrangians of the second order with respect 
to the velocity, involving a generic kinetic tensor field 
gij (x,t), a vector field Ai (X,t) , and a scalar potential V(x,t). 
We define a regularized stochastic action functional by ex
ploiting the well-known geodesic interpolation for diffu
sions. We show how to remove the regularization for the 
simple cases of the scalar and vector potentials. Section V 
contains the main results of this paper. We give the full 
expression of the contribution to the stochastic action func
tional coming from the kinetic term. 
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It is important to remark that in our treatment we con
sider a generic controlling covariance field 1/ij and a generic 
kinetic field g ij' not being necessarily correlated at this stage. 
In fact, 1/ and g playa completely different role and must be 
kept as distinct objects, in the procedure of definition of the 
action functional (but see also Ref. 13). 

Moreover, the regularizing connection field r is also 
completely generic, not being related to 1/ or g. This is neces
sary, in order to have a complete independence of the proce
dure from the trial stochastic processes and a resulting ac
tion linear in the general fields g, A, and V. 

In Sec. VI we study the dependence of the stochastic 
action on geodesic gauge transformations arising from a 
change in the regularizing connection field r. 

Finally, Sec. VII is devoted to conclusions and outlook 
for future developments. 

II. KINEMATICS OF CONTROLLED DIFFUSION ON 
MANIFOLDS 

In this section we give a short review of all properties 
related to kinematics of controlled diffusions on manifolds, 
which will be exploited in the following. Let Mbe a generic 
smooth, n-dimensional manifold, taken as the configuration 
space of the system. We call TMx the tangent space at the 
point xEM and TM the tangent bundle. 

Let us introduce smooth, C 00 bounded, controlling 
fields, b( +) and 1/, given in each local chart by the compo
nents 

b ~ + ) (x,t), 1/ij(x,t) , 

xEM, te[to,td, i,j=1,2, ... ,n. (2.1) 

We consider controlled diffusions as Markov processes on 
the manifold 

(2.2) 

whose time development is fully specified by the local condi
tions 

E(t1q(t) Iq(t) = x) = b ~ +) (x,t)t1t + O(at 2), (2.3) 

E(t1qi(t)t1qi(t) Iq(t) = x) = 2V7,u(X,t)t1t + O(t1t 2) , 

(2.4) 
where 

t1q(t)=q(t+t1t) -q(t), t1t>O. 

Here E( 'Iq(t) = x) denote conditional expectations with re
spect to all trajectories starting from the generic point xEM 
at time to. As a shorthand notation, we will write them some
times in the form Ex,l' In general, we will denote E, the 
conditional expectation with respect to the 0" algebra genera
ted by q(t) and by E the expectations. Obviously we have 
E(E, (.» = E(·). The diffusion coefficient v in (2.4) is a 
given positive constant. We notice also that the controlling 
covariance matrix 1/ must be positive semidefinite at each 
point. 

On the basis of the standard theory of parabolic differen
tial equations on manifolds, it is very well known, under 
suitable regularity conditions, that the controlling equations 
(2.3) and (2.4) define completely the process provided its 
initial density is given. For example,9 we can assume 
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M n-dimensional C co - manifold, 

b( +)J1] C'" - fields on M, (2.5) 

1] positive definite on M. 

It is convenient to introduce an arbitary fixed smooth 
invariant measure df..t(x) on the manifold and define the rel
ativeinvariant density field of the process,p(x,t), so that for 
the expectations we have 

E(Jilq(t),t» = fM F(x,t) p(x,t)df..t(x) , (2.6) 

for any smooth function Fwith values F(x,t). 
In the following, without effective loss of generality, we 

consider regular processes, corresponding to the regularity 
assumptions given in (2.5) for the controlling fields b( + ) ,1], 

with the additional assumption that p(. ,to) is C'" bounded 
and everywhere positive on M, so that the same properties 
are preserved for all tE [to,t I]' 

These very strong smoothness assumptions allow a 
drastic simplification of all mathematical treatment. How
ever, in the applications, for example to the stochastic vari
ational principles, it is necessary to consider, in some cases, 
also processes which are not regular according to the defini
tion given before. This extension can be easily done, by ex
ploiting limiting procedures of the type described in Ref. 14, 
where it is shown how to construct processes with possibly 
very singular drift fields and zeros in the density, exploiting 
remarkable stability estimates given by Carlen in Ref. 15. 

For the moment, we consider some properties of the 
stochastic flow given by (2.3) and (2.4), not involving fea
tures related to the density. 

In the following, we deal very frequently with stochastic 
increments, associated to lit> O. In order to simplify nota
tions and evaluations, it is convenient to introduce stochastic 
symbols of the type 

O(lit S
), s = 0,1/2,1,3/2, ... , lit> O. (2.7) 

We assume the following conditions to hold for random vari
ables a(lit), b(lit), 

a(lit) = O(lit S
) 

=} Ex.t(a(lit)} 

{
O(lit S), 

= O(lits+ (112», 

if s is integer, 
if s is half-integer, 

(2.8) 

a(lit) = O(lit S
) , 

b(lit) = O(lit s,) (2.9) 

=} a(lit)b(lit) = 0(lit s+1 ) . 

Notice that the stochastic symbols O(lit S
) give always rise 

to ordinary symbols O(lit k) under conditional expectation. 
With these definitions, we can write the basic property 

of diffusions in the form 

(2.10) 

and check its agreement with the controlling equations (2.3 ) 
and (2.4) and all their consequences. 

Let us now recall a very important property of stochas
tic increments. In the classical case, we know that liqi trans
form as the components of a vector in TMq(t) ' but for error 
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terms of order O( lit 2). The situation is deeply different in 
the stochastic case. Here, as a consequence of (2.10), liq 
fails to be a vector for very relevant first-order terms in lit. 
As a result we find that b( +) is not a vector. In fact, we find 

b,i+) (x',t) =ajXib{+) (x,t) +Va]kXi1]jk(x,t). 

(2.11 ) 

On the other hand, we can easily check, starting from the 
product ofthe expansion (2.9) taken for two different com
ponents, that 1] does indeed transform as a second-order ten
sor 

(2.12) 

In order to have a covariant scheme, it is convenient, by 
following the methods in Refs. 16, 10, and 1, to introduce a 
generic smooth symmetric connection field r, with compo
nents rJk (x) = r~j (x) in each local chart transforming as 

r-+r', r~akxq=aiXlajxmr;! +a~xq. (2.13) 

Considernow the points q(t) = x and q(t + lit), lit> O. For 
the sake of simplicity, assume that q(t + lit) is so near to x 
that there is only one geodesic line y for r, connecting q ( t) to 
q(t + lit). With respect to an affine coordinate s we have 

[0,1] 3s-+y(s)eM, 

y(O) = q(t) = x , 

y(1) = q(t + lit) , 

. /(s) + rJk(Y(S»yj(s) jl(s) = O. 

Let us define the geodesic initial tangent 

~ = y(O)ETMx . 

Obviously we have 

'aq = O(lit 1/2) • 

(2.14 ) 

(2.15) 

(2.16) 

Through a very simple calculation we can prove the follow
ing. 

Theorem 1 (Geodesic interpolation up to order 
O( lit 3/2»: Under the stated regularity conditions we have 

liqi = K¢ - !rJk~W 
+ iSJklKq1fqk~ + O(lit 2) , (2.17) 

Ii -qi = liqi + ! rJk liqj liqk 

+ i SJklliqjliqkliql + 0(lit 2
) , 

SJkl = Y(jkl) (2r~jr~1 - ajru , 

(2.18 ) 

(2.19) 

S Jkl = Y (jkl) (r~jr~1 + aj r~/) . (2.20) 

In (2.19), (2.20), Y ( ... ) is the symmetrizer with respectto 
the ( ... ) indices, i.e., 

Y (jk) (ajk ) = !(ajk + akj) , etc. (2.21) 

Proof: Starting from the definitions in (2.14), we notice 

liq(t) = q(t + lit) - q(t) = y(1) - y(O) = f y(s)ds . 

(2.22) 
Therefore y(s) = O(lit 1/2). Moreover, from the geodesic 
equation we see also ji(s) = O(lit). By differentiation we 
have also 

(2.23) 
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which gives yIIIi(S) = O(At 3/2 ). Analogously, we would 
find/v(s) = O(At 2

), etc. Therefore we can write for the 
interpolating geodesic 

yes) = yeO) + sy(O) + !~y(O) + i~yIIl(O) + 0(At2) , 

(2.24) 

where, by definitions (2.14) and (2.15) and Eq. (2.23), 

q(t) = x, yeO) = 4 YeO) = - r5kK;1Kqk, 

yIIIi(O) = (-Bjnl +2r~jrj<l)~At~. (2.25) 

Here rand Br are evaluated at x = q( t). But we have also 

Aq=y(1) -yeO) 

=y(O) +!y(O) +iyJII(o) +0(At 2
) , 

(2.26) 

and (2.17) follows. Solving (2.17) with respect to Aq, by 
iteration, taking into account only the relevant terms, we 
have also (2.18). Q.E.D. 

In this theorem, we have pushed the evaluation up to 
order At 3

/
2

, because we need these results in the following. 
Here we exploit only the O( At) part. In fact, let us introduce 
the vector field v( +) (x,t), so that 

E{~!q(t) = x) = v~ +) (x,t)At + O(At 2) . (2.27) 

From (2.18) we find 
iii jk v( + ) (x,t) = b (+) (X,t) + vrjk (x)7] (x,t). (2.28) 

One can easily check, starting from the transformation prop
erties (2.13) of r5k and (2.11), that v~ +) do indeed trans
form as the components of a vector, as it is in any case ob
vious from the definition (2.15). We see that the stochastic 
flow can be defined either through the couple (b( +) ,7]) or 
through (v( +) ,7],r). Due to (2.28), a change in the connec
tion field r can be completely absorbed into a change of 
v( +)' giving rise to the same b( +)' provided 

i ri jk Ii r/i jk ( ) v( +) - V jk 7] = v( +) - V jk 7] same 7] . 

(2.29) 

We call geodesic gauge transformations changes of the type 

(2.30) 

such that (2.29) is satisfied. They keep invariant the con
trolled stochastic flow. 

Mean forward derivatives of scalar fields rp(x,t) are de
fined in the usual wayl,l? 

(D( +) rp)(x,t) = lim (At) -IE{Arp(t) !q(t) = x), 
at-O+ 

Arp(t) =rp{q(t + At),t + At) - rp{q(t),t). (2.31) 

Therefore one can also write 

E,{Arp(t» = (D( + )rp)(q(t),t)At + 0(At 2). (2.32) 

A simple calculationl,l? gives 

(D( + ) rp )(x,t) = (B,rp + b ~ +) Birp + v7]ij B t rp )(x,t) . 
(2.33 ) 

It is also convenient to introduce covariant derivatives V 
with respect to the connection r such that 
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Virp=Birp, 

ViA j = BiA j + r {iA s, 

ViBj = B;Bj - rJiBs' etc. 

Then we can define the invariant operator?,8,16,1O 

(2.34) 

I B i ij D(+) = ,+v(+)Vi +V7] ViVj (2.35) 

and check that D i +) rp = D( +) rp on scalar fields. More
over, one can easily verify the invariance of (2.35), when 
acting on scalar fields, under geodesic gauge transforma
tions (2.30). 

However, it is convenient to remark that the operators 
(2.33) and (2.35) have different effects when acting on com
ponents of generic tensor fields (other than scalars). 

According to standard proceduresl,l? it is also conven
ient to introduce backward controlling fields b( _)' v( _). 

For the sake of simplicity, we assume the invariant mea
suredp(x) in (2.6) to be compatible with the given connec
tion r, so that we can freely perform integrations by parts on 
V, in the case of smooth fast decreasing fields, as for example, 

JM I//(x)(Vi rp)(x)dp(x) = - JM (Vi¥i)(x) rp(x)dp(x) . 

(2.36) 

The compatibility condition between rand dp, by assuming 
a local form of the type dp(x) =p(x)dx, where dx is the 
Lebesgue measure in a local chart, can be written as 

r~i = Bi log P . (2.37) 

It is surely satisfied if, for example, r is the symmetric ca
nonical Riemann connection associated to a metric field h ij 

and p = ~det(h( .. ». Under geodesic gauge transforma
tions given by (2.29), (2.30) the local densities p(x) should 
transform so that 

r-+r/=r+or, p-+p', or~i=Bilog(p'lp). 

(2.38 ) 

The transformation law for the relative densities of the pro
cess, as defined in (2.6), must be 

p-+p' =p( pip'). (2.39) 

We introduce the backward control field b ~ _ ) (x.t) , so 
that for the backward increments we have 

Aq( _) (t) =q(t) - q(t - At), At> 0, 

E{Aq~ _) (t) !q(t) = x) = b ~ _ ) (x,t) At + O(At 2) , 

E{Aq( _) (t)Aq{ _) (t) !q(t) = x) 

= 2vTjij(x,t)At + O(At 2) . (2.40) 

We also introduce generic backward increments for scalar 
fields, 

A( _) rp = rp{q(t),t) - rp{q(t - At),t - At), At> 0, 
(2.41) 

and define mean backward derivatives D( _) as in (2.31) 
with Arp substituted by A( _) rp. Then one has 

(D( _ ) rp)(x,t) = (B,rp)(x,t) + b ~ _) (x,t)Birp(x,t) 

- VTjij(x,t)Bt rp(x,t) . (2.42) 

As in the flat casel,l? we can apply the Nelson formula 
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d 
- E(Ji{q(t) ,t)G(q(t) ,t» 
dt 

= E«D( + ) F)(q(t),t)G(q(t),t» 

+ E(Ji{q(t),t)(D( _) G)(q(t),t» , 

and obtain (see also Ref. 18) 

(2.43) 

b ~ _ ) (x,t) = b ~ +) (x,t) - 2vaj (pp,TJ'f)/pp, , (2.44) 

together with the forward Fokker-Planck equation 

p,a,p= -ai(p,pb~+» +vaA(p,P1J/j). (2.45) 

In order to write (2.44) in a covariant form, we exploit 
(2.34), (2.37) and arrive at 

o 0 Jk 
b ( _) (x,t) - vrjk (x)7J (x,t) 

i i Ok -I /j 
= b ( +) + vrjk 1J' - 2vp Vj (p7J ) . (2.46) 

Recalling the definition (2.28) of v( + )' we can introduce 
iii ]i< v( _ ) (X,t) = b (_) - vrJk 7J (2.47) 

and write the following relation between the two fields: 

v; _) = v; +) - 2vp- IVj (p7J/j) . (2.48) 

This should be compared with analogous expressions ex
ploited in Refs. 1, 16, and 10, but it should be remarked that 
here the connection r giving rise to V is completely arbitrary 
and not related to 7J. 

Due to geodesic gauge invariance of p,p, coming from 
(2.39), we see that b( _) is also invariant. We have also 

b=~(b( +) + b( _) ) = !(v( +) + v( _) ) =v . (2.49) 

Therefore v is also invariant, while v( +) [recall (2.29)] and 
v( _) transform as 

i ,i ; + o~ri lk v( +) -+v( +) = v( +) Vu jk7J , 
i ,i ; o£ri jk v( _) -+v( _) = v( _) - Vu jk7J , (2.50) 

r-+r'=r+8r. 
The physical interpretation of v( _) is very simple. In fact, 
introducing the backward geodesic starting at q(t - 6.t) for 
s = o and arriving inq(t) = xfors = 1,0necanimmediately 
see that v( _) coincides with the s derivative of the geodesic 
at the final point s = 1. 

We can also introduce the osmotic velocity 

i l(; + i) -IV ( /j) U = 2 v( + ) v( _ ) = vp j P7J . (2.51 ) 

It is a vector field under coordinate transformations, but 
under geodesic gauge transformations (2.29), (2.30) it be
haves as 

U'-+U,i = ui + V8rjk 7Jjk. (2.52) 

Finally (2.45) can be written in the explicitly covariant 
forms 

a, p = - Vie pv; ±» ± vV,V1 ( P7J/j) , 

a,p= -Vi(PVi). 
(2.53 ) 

Moreover the backward derivative (2.42) is written in the 
equivalent form 

(D( _ ) f/J) (x,t) = a,f/J + v; _) Vi f/J - 'V1J iJV, Vj f/J . 

(2.54) 

In many applications, the following transport formula is 
very useful: 

E(Ji{q(tI),tl)lq(to) =xo) 

= F(xo,to) + i:' E«D( + )F)(q(t),t)lq(to) = xo)dt. 

(2.55) 

It is easily interpreted as the integrated form of (2.32). An 
analogous formula holds also for D( _)' with final condi
tioning. 

III. HIGHER-ORDER CORRECTIONS TO 
CORRELATIONS 

In the following we will need the explicit expressions of 
the higher-order terms, up to 0 ( 6.t 2), arising in (2.4 ) and in 
the analogous correlations involving three and four compo
nents of the increments 6.q. 

These are easily found, by exploiting (2.3), (2.4), and 
Markov property, through a rescaling of the time interval 
6.t, in the frame of techniques very similar to the renormal
ization group in quantum field theory and statistical me
chanics. Therefore, let us establish the following. 

Theorem 2 (higher-order corrections to correlations): 
Under the stated regularity assumptions given in the pre
vious section, we have in each local chart 

E(A¢(t)~(t)lq(t) = x) = 2'V1J/j(x,t)6.t + (b; +)b (+) + V(7Jik akb{ +) 

+7J1kakb;+) +D<+)7J/j»(X,t)6.t2+0(6.t 3) , 

E(~(t)Aq1(t)~(t) Iq(t) = x) = 2v( 7J% ~ +) + 7JJkb: +) + 7Jkib{ +) )(x,t)6.t 2 
(3.1) 

+ 2v( 7JiI al 7J jk + 7J jl al 7Jki + 7Jkl al 7J ji ) (x,t) 6.t 2 + O(6.t 3) , 

E("i:;(t)K;J(t)i:'qk(t)Kqi(t) Iq(t) = x) = 2v( 7J/j7Jkl + 7Jik7Jl/ + 7Jil7J1k) (x,t)6.t 2 + O(6.t 3) • 

(3.2) 

(3.3 ) 

Proof: We give the explicit proof of (3.1), following our 
general method. Then, (3.2) and (3.3) are proven through a 
very simple adaptation. 

Let us write the O(6.t 2) term on the right-hand side of 
(2.13) in the form 

Ex., (6.q'6.qj) = 2'V1J/j(x,t)6.t + a/j(x,t)6.t 2 + O(6.t 3) , 

(3.4) 

where a/j is unknown for the moment. 
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Consider, for the sake of simplicity, the midpoint split
ting of the time interval 6.t and define 

t'=t+ (6.t/2), 6.'q=q(t') -q(t) , 

6."q=q(t+ 6.t) -q(t') , 

6.q=6.'q+6."q. 

(3.5) 

Then the left-hand side of (3.4) becomes the sum offour 
terms involving 6.' q and 6." q instead of 6.q. 
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+ Ex,t(A"qiA'qj) + Ex,t(A"qiA"qj) . 

(3.6) 

For the first term, in analogy with (3.4) written for At 12, we 
have 

Ex,t (A'qiA'qj) = 2V1]Ii(x,t) (At 12) 

+ ali(x,t)(At 12)2 + O(At 3) . (3.7) 

For the second term, we can write 

Ex,t(A'qiA"qj) = Ex,t(A'qiE"A"qj) 

= Ex,t (A'qib{ +) (q(t '),t'» (At /2) 

+ O(At 3) , (3.8) 

where first we have exploited Markov property, denoting 
with Et' the conditional expectation with respect to the u 
algebra generated byq(t '), and then we have exploited (2.3) 
to evaluate 

E"A"qj=b{+)(q(t'),t')(At/2) +O(At 2). (3.9) 

Moreover, we have 

b{ + )(q(t'),t') = b{ + ) (q(t),t) 

+ (akb{ +) )(q(t'),t')A'qk + O(At) . 

(3.10) 

Therefore, collecting all terms in (3.8), we conclude that 

Ex,t(A'qiA"qj) = (b~+)b{+»(x,t)(AtI2)2 

+ 2v(TJikakb{ +) )(x,t)(At 12)2 

+ O(At 3
) • (3.11) 

I 

The third term is identical to (3.11), with i,j interchanged. 
For the fourth term, we have 

Ex"(A"qiA"qj) = Ex"(E,,A"qiA"qj) 

= Ex,,(2V1]Ii(q(t '),t ')CAt 12) 

+ ali{q(t '),t ')(At 12)2) + O(At 3) . 

(3.12) 

Now we exploit the analog of (2.32), written for TJ and a 
instead of cp, and conclude 

Ex" (A" qiA" qj) = 2V1]Ii(x,t) (At /2) 

+ 2v(D( +) TJIi) (x,t) (At 12)2 

+ ali(x,t)(At 12)2 + O(At 3 ) • 

(3.13) 

Finally, we substitute the four terms, so found, in (3.4) and 
solve for ali, arriving at (3.1). Similar calculations lead to 
(3.2) and (3.3). Q.E.D. 

We notice also that next higher-order terms could be 
easily calculated with the same method. 

Of course, Eqs. (3.1)-(3.3) hold in any local chart and 
their covariance properties are very complicated, due to the 
peculiar transformation properties of Aqi pointed out in Sec. 
II. In order to have an explicitly covariant formulation, we 
can introduce the correlations of Aq, defined in (2.18). Ex
ploiting (2.18) and (2.34), through a very simple direct cal
culation we arrive at the following. 

Theorem 3 (higher-order corrections for the geodesic 
tangent): Under the stated regularity conditions, we have 

E(Kqi(t) Kqj(t) Iq(t) = x) = 2V1]Ii(X,t) At + (v: +) v{ +) + V(TJikVkV{ +) + TJj~kV: +) + D1 +) TJIi) 

+ jv2(R jkls TJSi + R ikls TJSj)TJk~(x,t)At 2 + O(At 3) , 

E(iqi(t)iqj(t)iqk(t) Iq(t) = x) = 2v( TJliVZ +) + TJjkv: +) + TJkiV{ +) )(X,t)At 2 

(3.14 ) 

+ 2v2(TJi~/TJjk + TJj~/TJki + TJk~/TJji) (x,t)At 2 + O(At 3) , 

E(iqi(t)Kqj(t)Kqk(t)iql(t) Iq(t) = x) = 2v2( TJliTJkl + TJikTJjl + TJilTJjk)(X,t) At 2 + O(At 3) , 

(3.15 ) 

(3.16 ) 

where R is the curvature tensor associated to r, 
R jkl = akrjl - a/rjk + r~kr;1 - r~/r;k . 

IV. GEODESIC INTERPOLATION AND THE 
REGULARIZED STOCHASTIC ACTION 

(3.17) 

On the configurational manifold M, we consider dy
namical systems with the following form of canonical La
grangian at each time t: 

.2"(x,v;t) =~mgij(x,t)vivj+Ai(X,t)vi- V(x,t) , 

xEM, V€TMx, tE[to,ttl. (4.1) 

Here V, A, and g are given smooth external fields, possibly 
time dependent. Their transformation properties are as a 
scalar, a covariant vector, i.e., AET*Mx , and a covariant 
symmetric tensor, respectively. The constant m > 0 has been 
introduced for dimensional reasons. 
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In the classical case, for a generic smooth trajectory, 
t ->.q (t), the action functional for the time interval tE [to,t I] is 
defined by 

(" 
A (to,tl;q) = J," .2"(q(t),q(t);t)dt. (4.2) 

We would like to extend, in some average sense, the 
definition (4.2) of the action, to the case where the smooth 
deterministic classical trajectory is substituted by a generic 
given controlled diffusion, of the type introduced in Sec. II . 

Of course, the main difficulty is given by the fact that the 
time derivative q( t) is not well defined. In the spirit of renor
malization procedures in quantum field theory and accord
ing to general methods exploited in the theory of stochastic 
processes, 1,5,7-9 we firstly perform a regularization and then 
remove it, with the purpose of isolating the infinite terms. 

The results are essentially equivalent for a large class of 
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regularization procedures. The following one, called geodes
ic interpolation, looks very natural, because of its geometric 
invariant character (see also Ref. 1). 

Let us recall that in our treatment the controlling co
variance matrix 71, the kinetic matrix g, and the auxiliary 
connection r are completely generic, and not related a priori 
among themselves. 

Let us split the time interval [to.t I] into K equal pieces of 
length At, so that KAt = tl - to. Let us call t the initial points 
of each interval, 

t = to. to + At, to + 2At •... , tl - At. (4.3) 

Call t' the dummy integration variable in the generic time 
interval [t,t + At], and s the corresponding affine param
eter, so that t' = t + sAt. 

Consider a generic smooth diffusion q. Let q(t) be the 
points on M reached at the discrete times t. defined before. 
Call q (t , ) the interpolating geodesic between q (t) and 
q(t + At). with reference to a given symmetric connection 
r, as explained in Sec. II. so that 

q(t') = yes). t' = t + sAt. O,s,l. (4.4) 

Then, the regularized stochastic action is defined through 
the average 

I, - AI il + AI A 

AAI(tO,tl;q,r) = I~I" t E(,,?(q(t'),q(t');t'»d('. 

(4.5) 

Notice the explicit r dependence. 
The stochastic action will be reached in the limit 

At-+O, K -+ 00. 

Due to linearity, there will be three contributions to the 
limit. A (S), A (V). and A (n, coming from the scalar potential 
V, the vector potential A, and the tensorial kinetic metric gin 
(l) (tensor potential), respectively. 

The scalar potential does not give any trouble. In fact, 
no regularization would be even necessary in this case. The 
result is 

A (S) = - L' E( V(q(t),t»dt 

-L' dt f V(x,t)p(x,t)d",(x) . (4.6) 

Let us define the trivial Lagrangian fields 

,,?~~) = .2"~~) = ,,?(S) = - V(x,t) , (4.7) 

so that 

A (S) = L' E("?<,ff)(q(t),t»dt. (4.8) 

The evaluation of the vector potential contribution is also 
very easy (see for example Ref. 19 for a very similar stochas
tic line integration theory). First of all, one can easily prove 
the following. 

Theorem 4 (conditional expectations of vector potential 
contributions): For any tE [to,t I] and sufficiently small 
At>O we have 

f
'+AI 

I E(A;(q(t'),t')q(t')lq(t) =x)dt' 

= "?~'2) (x,t)At+ O(At 2
), (4.9) 
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with 
CR(V) ; i" 

..z. (+) (x,t) = (A;v( +) + vn!1V;Aj )(x,t) . (4.10) 

Proof: We give a detailed proof of this very simple result, 
because the much more complex proof of Theorem 5 in the 
next section is based essentially on extensions of the same 
technique. 

It is convenient to introduce the affine coordinate s, as in 
(4.4), so that 

q(t')=y(s), t'=t+sAt, 

q(t') =y(s)/At, dt' = Atds. 

Therefore, the integral in (4.9) reduces to 

f E"'IA; (s) i(s)ds , 

where 

A; (s) =A;(y(s),t + sAt) . 

(4.11 ) 

( 4.12) 

(4.13) 

In order to get (4.9), (4.10), we must evaluate (4.12) cor
rectly up to order At. Recalling (2.24), (2.25), we have 

yes) = yeO) + sy(O) + O(At 3/2) , 

A;(s) = A; (x,t) + ajA;(yj(s) - yj(O» + O(At) 

= A; (x,t) + sajA;yj(O) +O(At). (4.14) 

Therefore 

(A; i) (s) = A; (x,t)( i(O) + sY(O» 

+sajA;i(o)yj(O) +O(At 3/2
). (4.15) 

Taking the conditional expectation E",I' performing the inte
gration on s and taking into account (2.15), (3.14), we find 
immediately (4.9), (4.10). Q.E.D. 

By exploiting the results of this theorem and taking into 
account the definition (4.5) for the action and the properties 
of the conditional expectation, we immediately find, in the 
limit At-+O, the following contribution to the action: 

A (V) = f' E("?~'2 ) (q(t),t»dt . (4.16) 

One can also introduce 
CR(V) ;;m ..z. (_) (x,t) = (A;v( _) - VTJ-y ;Aj) (x,t) , 

,,?( V) (x,t) = (A;v;)(x,t) , (4.17) 
CR(V) _ I( CR(V) + CR(V) ) ..z. -2..z. (+) ..z. (_) , 

and notice that A (V) can also be calculated by substitution of 
.2"~ '2) in (4.16) with.2"~ ~) or ,,?(V), as shown by a simple 
integration by parts on the space variables. 

It is also very important to remark that ,,? ~ V) are invar
iant under geodesic gauge transformations given by (2.30). 
For example, the variation ofv( +)' given by (2.29), is exact
Iy absorbed by the variation of V;, following from (2.34). 

v. THE STOCHASTIC KINETIC ACTION 

The evaluation of the kinetic tensor contribution to the 
action is based on the following theorem, one of the main 
results of this paper. 

Theorem 5 (conditional expectations of kinetic tensor 
contributions): For any tE[to,td and small At> 0 we have 
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1
'+4' 

, E(!mgl/(q(t'),t')~i(t')~l(t')lq(t) =x)dt' 

.J 1/ .. A) = m",gl/'T/ + ~D( +) (gij'T/")l.JI.t (X,t) 
U'T . 2 + .z (+) (X,t)fl.t + O(fl.t ), 

~r + ) (X,t) = ! mgl/v~ + ) V{ + ) 

+mw/"Vk(gl/V{+» - V., 

- Vs =! mvgijR iklm'T/kl'T/ 1m 

+ !mvVkgij(2'T/'~I'T/kj - 'T/k~I'T/ij) 

+ imvV k VI gij (4'T/ki'T/lj - 'T/kl'T/ij) . 

(5.1 ) 

(5.2) 

Proof The proof is based on a careful evaluation of the 
contributions to all necessary orders. 

In particular, terms of order (fl.t) 3/2 in the displacement 
fl.q enter in an essential way. Firstly we perform the substitu
tion (4.11) in the integrand and get 

1
'+4' 

(fl.t)-I, Ex., (!mgij(y(s),t + sfl.t)ji(s)Yi(s) )ds. 

(5.3 ) 

Define 

A(s)5:gij(y(s),t + sfl.t)ji(siYi(s) = O(fl.t). (5.4) 

We see that A(s) must be calculated correctly up to order 
fl.t 2 in order to have (5.1) correct up to fl.t. Notice 

A(s) = a~1 gl/ ykjiyi + 2gij yyi + a,gl/ yyifl.t 

= O(fl.t 3/2 ) , (5.5) 

A(s) = a~1 gij ykyIy' yi + 3 [akgij] ykyyl 

+ 2akgij ykyyi + 2gij yIllyi + 2gl/ /yi + O(fl.t S/2 ) 

= O(fl.t 2) , (5.6) 

(5.7) 

In (5.6) we have denoted by [akgij] the symmetric part of 
the argument. Therefore, we can write 

A(s) =A(O) +s.4(O) +!s2A(O) +O(fl./S/2). (5.8) 

It is convenient to work in normal coordinates for r at the 
initial point x, so that rex) = O. Then, from (2.25) we have 

yeO) = 0, yIlli(O) = - ainlfl.qifl.qkfl.ql. 

In (5.8) we must substitute 

A(O) = gl/(x,/)fl.qifl.qi , 

.4 (0) = (akgij) (x,t)fl.qifl.qifl.qk 

+ fl.t(a,gij) (x,t)fl.qifl.ql, 

A (0) = [(a Zigl/ }(X,/) - 2gsAr,;d 
x fl.qifl.qifl.qkfl.q1 + O(fl.t 3/2) . 

(5.9) 

(5.10) 

Collecting all terms and performing the s integration in 
(5.3), we find that the integral in (5.1) is expressed as 

fl.t -I [ ( gij + !fl.ta,gij )Ex.,fl.qifl.qi 

+ ~V kgijEx.,fl.qifl.qlfl.qk 

+iVkVlgijEx.,fl.qifl.qlfl.qkfl.ql] . (5.11) 

Finally, we can exploit the expressions (3.14)-(3.16) and, 
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after a simple rearrangement of terms, we derive (5.1), 
(5.2). This ends the proof of Theorem 5. 

At first sight, it could seem strange that the integral in 
(5.1), performed over the time interval [I, t + fl.t), starts 
with a term O(fl.to) and not O(fl.t). Obviously, this is due to 
the highly singular nature of the time derivatives ~ in the 
limit fl.1 .... O. 

Starting from Theorem 5 we see immediately that the 
kinetic part of the regularized action, according to the defini
tion (4.5), can be written in the form 

Ai;> = mv (" E« 8T/)(q(t),/»dt 
fl.t J~. 

+ L' E(~~~ ) (q(t),/»dt + O(fl.t) 

5: mv (" dl f ( g'T/) (X,t) p(x,t)dp.(x) 
fl.t J~. 

+ L' dt f ~~~) (x,/)p(x,/)dp.(x) + O(fl.t), 

(5.12) 

where 
ij (8T/)(x,/) =gij(x,t)'T/ (X,/). (5.13 ) 

The proof of (5.12) is obvious for what is related to ~~~)' 
For the first term, let us notice that for a generic smooth 
scalar field (J we have 

(" E«(J(q(t),t»dt 
J~, 

= L E«(J(q(t),t»fl.t , 
fl./2 

+ LE«D(+) (J)(q(t),t»-+O(fl.t 2) , (S.14) 
, 2 

where the dummy parameter t takes continuous values in 
[to,/d on the lhs, and discrete values, as explained in (4.3), 
on the rhs. In order to prove (S.14) ,let us write the lhs in the 
form 

1
'+4' 

L E«(J(q(t'),t'»dl' . , , (S.15) 

Then we can exploit (2.32) to write 

E«(J(q(t'),I'» =E«(J(q(t),t» +E«D(+) (J)(q(t),/» 

(S.16) 

By integrating on dt ' and summing on the discrete t, we im
mediately recover (S.14). 

VI. THE STOCHASTIC ACTION AND GEODESIC GAUGE 
TRANSFORMATIONS 

Now we can collect all results, obtained so far, in the 
following. 

Theorem 6 (the regularized stochastic action): Let us 
define, exploiting (4.7), (4.14), (4.21), and (5.2), 

~(±) (X,/) = ~~~) + ~~',;) + ~~'Z) , 
~ (x,t) = ~(S) + ~(V) + ~<n , 
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where 

.2"~~ l (x,t) = !mgijv; _ l v{ _ l 

-mv1l"Vk(gijV{_l) - Vs ' (6.2) 

.2"T(X,t) = !mgijv; + l v{ _ l - Vs . 

Then the regularized stochastic action, defined through the 
geodesic interpolation in (4.5), is given by 

AAt(tO,tl;q;r) = mv 1" E«g7])(q(t),t))dt 
I:1t Jto 

+ f' E(.2" # (q(t),t»dt + 0(1:1t) . 

(6.3) 

The stochastic action should be recovered in the limit 
I:1t --> O. However we see that a singularity develops in the first 
term. In the spirit ofrenormalization theory, we can substi
tute a finite undetermined constant liT to the infinite con
stant given by limAt_O (I:1t) -I. Therefore we assume, as ef
fective action for our dynamical system on the manifold, 
A (to,tl;q,r) given by (6.3), with liT in place oflll:1tand the 
term 0(1:1t) suppressed as a result of the limit I:1t ..... O. 

In any case, following a basic remark of Nelson,1 we 
notice that the liT term does not play any role in the vari
ational principle where the controlling covariance 7] is kept 
fixed and only b ( + l or v ( + l are subject to variations. There
fore we have the following. 

Definition: The renormalized stochastic action is given 
by 

(6.4 ) 

It is very interesting to investigate how the expression of 
the action, so obtained, does really depend on the regulariz
ing connection r. We have already noticed that the scalar 
and vector parts are independent of r, as shown in Sec. IV. 
However, we find that this is no longer true for the kinetic 
part. In fact, through a long but straightforward calculation, 
one can obtain the following. 

Theorem 7 (geodesic gauge transformation of the sto
chastic kinetic Lagrangian): If the regularizing connection 
field changes according to r ..... r', then the effective potential 
Vs , appearing in (5.2), is modified as follows: 

Vs ..... V~ = Vs + jmv!(f' + f")k.ij(7]ij7]lm 

+ 7]il7]jm + 7]im7]jl)(r' - r)7m , (6.5) 

where 

f'k.ii = ~(Vjgik + Vigjk - Vkgij) , (6.6) 

and f" has the same expression, but the covariant derivative 
V with respect to r must be replaced by V' with respect to r'. 

For the proof of the theorem we must take into account 
all changes in (5.2) arising from r ..... r'. In particular, the 
change in v( + l is handled through (2.29), whileforVandR 
we exploit (2.34) and (3.17). By collecting all terms coming 
from r ..... r', we arrive at (6.5), (6.6). 

If we assume that the geodesic interpolation gives the 
correct definition for the stochastic action, then Theorem 7 
has far reaching consequences. In fact, if we are willing to 
insist on global geodesic gauge invariance of the total action, 
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we must introduce a change in the potential so to balance the 
effects of (6.5): 

V ..... V' such that Vs + V= V~ + V'. (6.7) 

The physical interpretation of this change is very simple. It 
only tells us that the effective potential in the stochastic theo
ry is determined up to terms involving the square of the dif
fusion constant, starting from the potential of the classical 
theory. 

On the other hand, the stochastic theory can be exploit
ed as a way of providing a kind of stochastic quantization for 
classical dynamical systems on manifolds, according to the 
general strategy expounded in Refs. 1,2, and 13. Then we 
must conclude that the classical theory determines the quan
tum potential up to second order terms in the Planck con
stant (recal.l that v = "/2m in Nelson's stochastic quantiza
tion).1.17 

It is also very interesting to discuss some particular 
cases where the expression of the stochastic action simplifies. 
For example, assume that g is time independent, and choose 
for r the Riemann connection canonically associated to g, 

r i '1(a a a .' k jk =!K' jglk + kglj - Igjk)' glJgjk = 8i · (6.8) 

In this case, the last two terms in the definition (5.2) of Vs 
disappear, because V g = 0, while the first term involves the 
curvature tensor R ik1m associated tog, saturated with 7]. If, in 
addition, the controlling 7] is assumed in the form 7]ij = gij, 

then we see that Vs reduces to the well-known form of Pauli
De Witt,4,5 involving the curvature invariant R. 

Therefore, in general, the expression (5.2) for Vs gives a 
very detailed understanding of the origin of the various con
tributions related to the, conceptually different, kinetic term 
g, control correlation 7], and the curvature tensor for the 
auxiliary connection r. 

VII. CONCLUSIONS AND OUTLOOK 

We have introduced a general stategy, well known in the 
theory of stochastic processes, and based on piecewise geo
desic approximations, in order to extend the definition of the 
action of dynamical systems on curved manifolds (see also 
Refs. 1 and 20). 

The resulting average action, instead of being a func
tional of trial smooth trajectories, becomes a functional of 
controlled stochastic Markov processes on the manifold. 

Infinite quantities have been substituted by finite unde
termined constants, according to the spirit of renormaliza
tion theory. 

The action functional, so obtained, can be considered as 
the starting point for stochastic variational principles, as in
troduced in Refs. 1,2, and 13. 

A very important property of the action functional is 
given by the noninvariance of its kinetic part, with respect to 
changes of the regularizing connection field. This is a new 
additional example of the strict interplay between stochastic 
and differential geometric aspects of dynamics on curved 
manifolds. Previous examples where given about the need of 
a geodesic correction to stochastic parallel displacement of 
vectors on a manifold, as explained, for example, in Refs. 1 
and 10. 

The general definition of the stochastic action, obtained 
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in this paper, can be exploited in the frame of stochastic 
variational principles along two main lines. The first line 
deals with the extension of the results contained in Ref. 13, 
where a purely heuristic definition of the action was as
sumed. The second line is related to the extension to nonftat 
manifolds of the stochastic variational principles of Lagran
gian type, introduced in Refs. 21 and 22. We plan to report 
on these topics in future publications. 
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Space-times admitting a special affine conformal vector (SACV) are shown to be precisely the 
space-times that admit a special conformal Killing vector. All possible SACV space-times are 
listed together with the corresponding SACV's and covariantly constant tensors. 

I. INTRODUCTION 

In general relativity the existence of certain symmetries 
in the space-time manifold is often assumed in the pursuit of 
exact solutions of Einstein's field equations, and such sym
metries and their corresponding vector fields have been stud
ied by many authors (see Ref. 1 for references). The Lie 
derivative of the metric tensor, gab' in the direction of the 
vector field S a can be written in the general form 

(1) 

where t/J is a scalar function of the coordinates and Kab is a 
symmetric tensor. Among the various special symmetries 
generated by S a are: 
(i) Killing vector (KV): t/J=O,Kab =0, 
(ii) Homothetic vector (HV): t/J = const #0, Kab = 0, 
(iii) Proper conformal Killing vector (CKV): t/J,a #0, 

Kab =0, 
(iv) Special conformal Killing vector (SCKV): t/J.ab = 0, 

t/J,a #0, Kab = 0, ' 
(v) Affine vector (A V): t/J = 0, Kab #0, Kab;c = 0, 
(vi) Proper affine conformal vector (ACV): t/J,a #0, 

Kab #0, Kab;c = 0, 
(vii) Special affine conformal vector (SACV): 

t/J;ab = 0, t/J,a #0, Kab #0, Kab;c = 0, 
where, in (v), (vi), and (vii),Kab isnotproportionaltogab • 

An ACV or a CKV [which can be regarded as a special case 
of (vi) in which Kab is proportional to gab I generates a con
formal collineation characterized by 

-r {:J = 8'bt/J,c + 8~t/J,b - gbct/ta. (2) 

An SACV or an SCKV generates a Ricci collineation char
acterized by 

(3) 

Recently, we have investigated SCKV'SI and have 
found all space-times admitting SCKV's. The existence of 
the covariantly constant vector t/J,a and the SCKV equations 
given by (1) and (iv) imply that there are very few SCKV 
space-times, none of which can represent a perfect fluid, a 
non-null electromagnetic field, or a vacuum space-time oth
er than a pp-wave space-time. However, such space-times 

can represent viscous fluids and a set of anisotropic fluids 
satisfying particularly restrictive equations of state. A thor
ough study of A V's has been made by Hall and da Costa,2 

while ACV's have been discussed by Duggal\ and SACV's 
have been studied by Duggal and Sharma4 and Mason and 
Maartens.s 

In this paper we discuss SACV's and show that the only 
space-times admitting SACV's are precisely those which ad
mit SCKV's. We display the form of the SACV for each 
space-time and give the associated covariantly constant ten
sor K ab . 

II. SACV SPACE-TIMES 

We first note a result due to Hall and da Costa,2.6 name
ly if a simply connected space-time admits a global, nowhere 
zero, covariantly constant, second-order symmetric tensor, 
Kab , which is not a constant multiple of the metric tensor, 
then one of the following three possibilities occur: 

(a) There exists locally a timelike or spacelike nowhere 
zero covariantly constant vector field 'TJa =='TJ,a such that 
Kab = 'TJ,a'TJ,b and the space-time decomposes into a 1 + 3 
space-time, in the notation of Ref. 2. 

(b) There exists locally a null nowhere zero covariantly 
constant vector field 'TJ a == 'TJ,a such that Kab = 'TJ,a'TJ,b and the 
space-time is the generalized pp-wave space-time1,7 which, in 
general, is not decomposable. 

(c) The space-time is locally decomposable into a 2 + 2 
space-time and no covariantly constant vector exists unless 
the space-time decomposes further. 

We note that, if a 2 + 2 space-time does admit a covar
iantly constant vector, then it must locally decompose 
further into a 1 + 1 + 2 space-time. This follows immediate
ly from holonomy considerations6 or is shown easily by writ
ing the general 2 + 2 space-time metric in the form 

ds'l = ~J.l ( - dt 2 + dX2) +~" (dT + dr), (4) 

where,u = ,u(t,x) and v = v (y,z) , and solving the equations, 
'TJ a;b = 0. It is found that 'TJ a = ° unless one (or both) of the 
following conditions hold: 

,uti - ,u"" = 0, vyy + Vzz = 0. (5) 

The first of these implies that the first two-space is flat (i.e., 
decomposes into a 1 + 1 space), while the second condition 
implies that the second two-space is flat. Since the SACV 
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space-times admit the covariantly constant vector f/!.a, it fol
lows that we need consider only cases (a) and (b), the 
1 + 1 + 2 decomposition being treated as a special case of 
the 1 + 3 decomposition. 

In cases (a) and (b) Eq. (1) becomes 

Sa;b + Sb;a = 2f/!gab + 'TJ.a'TJ.b ' 
which can be rewritten in the form 

(6) 

(Sa - !'TJ'TJ.a );b + (Sb - !'TJ'TJ.b );a = 2f/!gab' (7) 

so that;a =-Sa - !'TJ'TJ.a is a CKV (which will be an SCKV if 
f/!;ab = 0 or an HV if f/!.a = D), and 'Ta =-Sa - ;a = !'TJ'TJ.a is 
an AV. Thus, in cases (a) and (b), the ACV is necessarily 
the sum of a CKV and an A V, so that space-times admitting 
ACV's must also admit a CKV and an A V. 

Applying this result to SACV's, we see that space-times 
admitting SACV's are precisely those which admit SCKV's 
and which were found in Ref. 1. On the other hand, given an 
SCKV space-time satisfying 

;a;b + ;b;a = 2f/!gab (8) 

with f/!;ab = 0, we see that the vector X a = i #.a is an A V 
since 

.5t' gab =-X a;b + X b;a = f/!.a f/!.b 
X 

(9) 

SO that Sa =;a + Xa satisfies 

(10) 

and Sa is an SACV. Thus we have the following theorem.s 

Theorem: A simply connected space-time will admit an 
SA CV if and only if it admits an SCKV. The theorem asserts 
the complete equivalence between SACV and SCKV space
times. 

From Ref. I, when f/!.a is timelike we can choose local 
coordinates such that f/!.a = ( - 1,0,0,0) and the space-time 
metric is 

di2 = - dt 2 + dx2 + x2(dy2 + j2(y,z)dr). (11) 

The SCKV is; a = ( - it 2 - !x2, - tx,O,O) and, since f/!.a is, 
up to constant scalings, the only covariantly constant vector, 
we have Kab = f/!.a f/!.b so that Koo = 1 is the only nonzero 
component. It follows that the A V, ~ , and the SACV, Sa, 
have components 

~ = W,O,O,O), 

sa = ( - it2 + it - !x2, - tx,O,O). 

(12) 

(13) 

When f/!.a is spacelike, the space-time metric takes one of the 
following possible forms: 

di2 = dx2 - dt 2 + t 2(dr + g2(y,z)dr), (14) 

di2 = dx2 + dr + r( - dt 2 + h 2 (t,z)dr). (15) 

In each case f/!.a = (0,1,0,0), which is the only covariantly 
constant vector, and Kab = f/!.af/!.b has Kl1 = 1 as its only 
nonzero component, so that the A V is 

(16) 

For the metric (14) the SCKV and SACV are, respectively, 

;a = (xt,!X2 + !t 2,O,O), (17) 

(18) 
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while for the metric (15), the corresponding quantities are 

(19) 

(20) 

Note that the space-time metric (15) does not satisfy the 
dominant energy condition and so has no reasonable phys
ical interpretation. 

When f/!.a is null, the space-time must be the generalized 
pp wave space-time with metric 

di2 = P -2(dx2 + dy2) - 2du(dv - mdx + Hdu), (21) 

where H, m, and P are arbitrary functions of u, x, and y only. 
Not all space-times of the form (21) admit an SCKV, but in 
the case when the Ricci scalar, R, is not zero, if an SCKV 
exists it is of the form 

;a= [_ (u2+au+/3),av-D(u,x,y) 

+ (2H + m2p 2) (u2 + au + /3) 

+ mP2B(u,x,y),mP 2(u2 + au + {3) 

+ p 2B(u,x,y),P 2C(u,x,y)], (22) 

where a, {3 are arbitrary constants and B, C, and D satisfy a 
set of six first-order differential equations [Eqs. (4.23) of 
Ref. 1] which serves to delineate those members of the set of 
space-times (21) which admit an SCKV. 

When R = 0, the space-time metric can be written in the 
form 

di2 = dx2 + dy2 - 2du(dv + H du), 

and such a space-time will admit the SCKV 

;a= [_ (u2+au+{3),av-!x2-!r+Jux 

+Kuy+L(u), 

(23) 

- ux + yy + J(u), - uy - yx + K(u)], (24) 

provided that the metric function H satisfies the equation 

Hu (u2 + au + {3) + Hx (ux - yy - J) 

+ Hy (uy + yx - K) 

+ 2H(u + a) - Juux - KuuY + Lu = 0, (25) 

where a, {3, and yare arbitrary constants and J, K, and L are 
arbitrary functions of u only. 

In each of the above cases, the null vector 
f/!.a = ( - 1,0,0,0) is the only covariantly constant vector 
(see the Appendix), and Kab = f/!.a f/!.b has only Koo = 1 as a 
nonzero component. The A V and SACV are, respectively, 

~ = (0, - iU,O,O), 

sa=;a+~, 

with;a given by either (22) or (24). 

(26) 

(27) 

The equivalence of SACV and SCKV space-times and 
the form of Kab can be demonstrated also by using a coordi
nate dependent approach similar to that used in Ref. 1 (see 
MacLean9

). In addition, the various results obtained in Ref. 
1 are applicable in the SACV case. In particular (Ref. 1, 
Theorem 7), the energy-momentum tensors for the space
times (11) and (14) are of Segre type {(1, 1) (1 I)}, while 
the space-times (21) and (23) are either of this type or of 
type {2(1 1)}, where, in either case, the bracketed pair of 
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space-like vectors have zero eigenvalue (see also Halpo). 
This implies that the existence of an SCKVor, equivalently, 
an SACV, eliminates all perfect ftuid space-times and all 
non-null electrovac fields. The only vacuum space-times are 
the pp-wave solutions, and the only null electrovac fields are 
the conformally ftat pp-wave type. On the other hand, the 
space-times can be interpreted as viscous ftuid solutions or, if 
R i= 0, as anisotropic fluid solutions subject to the restriction 

f-l = - PI! = !R, PI = 0, (28) 

where f-l is the energy density, and PI! and PI denote the 
parallel and perpendicular pressures, respectively. Equation 
(28) indicates that the various subcases considered by Ma
son and Maartens5 are not, in fact, possible. 

III. CONCLUSION 

We have found all space-times that admit an SACV 
[i.e., space-times (11), (14), (15), and the appropriate 
members of (21) and (23) ]; these are identical to the set of 
space-times admitting an SCKV and, consequently, have 
only a limited number of possible physical interpretations. 

Duggal and Sharma4 have considered space-times ad
mitting SACV's (which they refer to as "special conformal 
collineations"), particularly those representing anisotropic 
ftuids, subject to the condition 

(29) 

where r is a scalar function. This condition implies that the 
space-time is Ricci recurrent. However, on calculating the 
Ricci tensor in the cases of the space-times (11), (14), (15), 
and (21), it is easy to see that Kab = tP.a tP.b is never propor
tional to Rab . In fact, (29) cannot be satisfied even if we take 
Kab to be of the form Kab = tP.a tP.b + Cgab , for some con
stant C. In the case of the metric (23), the only nonzero 
component of Kab is Koo = 1 and the only nonzero compo
nent of Rab is Roo, so Eq. (29) does hold. Since R = 0, the 
metric (23) admits no anisotropic ftuid solutions~nly vis
cous fluid, null electrovac, and pure radiation solutions
and the energy-momentum tensor is of the form 
Tab = A tP.a tP.b· Thus many of the results concerning aniso
tropic and isotropic ftuids presented in Ref. 4 are illusory 
since there exist virtually no SACV space-times satisfying 
the physical interpretations and mathematical conditions 
considered in that article. 
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APPENDIX 

The statement that each of the SACV space-times ad
mits only one covariantly constant vector, namely tP.a, is 
easily proved in the cases of the space-times (11), (14), 
( 15), and (23) by solving the equations ma;b = ° and show-
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ing that ma = tP.a is the only solution. However, in the case 
of the space-time (21) the proof is rather less simple; here we 
present an outline of the proof. 

We consider the metric (21) and specify that R i= ° 
[otherwise we have the metric (23)]. The covariantly con
stant vector tP.a Eka is of the form ~ = (0,1,0,0). Suppose 
there exists another vector ma satisfying ma;b = 0. From the 
integrability conditions we find that 

(A1) 

and since the only nonzero components of Rab are Roo, R 02' 
R03' and R22 = R33 =!P -2R, these conditions are 

Roomo + R02m2 + R03m3 = 0, 
R 20mo + R22m2 = 0, 

R 30mo + R33m3 = 0. 

(A2) 

Now mO, m2
, and m3 cannot all be zero, otherwise ma will be 

a constant multiple of ~, so that the determinant of the 
system (A2) must vanish, i.e., 

(A3) 

But, from Ref. 1, this is precisely the-condition for the metric 
(21) to admit a Tab of Segre type {(1,l) (1 I)}, which 
implies that there are two null eigenvectors, ~ and l" , such 
that kala = I, each corresponding to the same eigenvalue, 
and Tab is given by! 

(A4) 

so that Tabk b= -!Rka and Tabl b= -!Rla' Now from 
(AI) we see that ma also satisfies Tabmb = - !Rma' so that 
ma lies in the two-space spanned by ka and la and, without 
loss of generality, we may take ma Ela. Defining a timelike 
unit vector, Ua , and a spacelike unit vector, na , by 

Ua = (1/{l)(ka + la), na = (1/{l)(ka -la)' so that 
uana = 0, we see that Ua and na are each covariantly con
stant and coordinates can be chosen so that the space-time 
can be written in the form 

where (A,B) = (2,3), and a further coordinate transforma
tion leads to the form 

dr = - du2 
- 2 du dv + P -2(X,y) (dX2 + dr), 

(AS) 

which is the metric (21) with m = 0, H = 1/2, Pu = 0. 
We now have to determine whether or not this metric 

admits an SACV or SCKV. Applying Eqs. (4.23) of Ref. 1 
to the metric (AS), we find that these equations can be satis
fied only if 

P; +P; -PPxx -PPyy =0, 

which is precisely the condition R = 0, thus contradicting 
our initial premise. Hence, none of the space-times admitting 
SACV's or SCKV's admit any covariantly constant vector 
other than tP.a . 
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Contact symmetries of generalized hyperheavenly and hyperheavenly equations are 
investigated. It is shown that the groups of contact transformations admitted by these 
equations are the first prolongations of appropriate point transformation groups. 

I. INTRODUCTION 

This is the second part of our work devoted to the group 
theoretic analysis of nonlinear partial differential equations 
playing a distinguished role in the gravitational instanton 
theory and/or in the complex relativity. 

The previous paperl has dealt with the main equations 
of gravitational instanton theory and their complex exten
sions. Now we intend to study the hyperheavenly equations 
that are evidently the most fundamental differential equa
tions of the complex relativity. 

As it has been demonstrated by Plebanski and Robin
son2 (see also Refs. 3-5) for all one-sided algebraically de
generated, Ricci-flat complex space-times, Einstein's equa
tions can be reduced to a single nonlinear partial differential 
equation of the second order on one holomorphic function. 
This equation is called the hyperheavenly equation. Al
though several solutions of the hyperheavenly equations are 
known5

-
7 we are very far from understanding the procedure 

leading to the general solutions of these equations. Our belief 
is that the group theoretic analysis can enlighten this prob
lem. 

The role of group theoretical methods in the theory of 
differential equations is well known8-11 (the method of in
variant variables, the generating of new solutions by group 
transformations, the linearization of nonlinear equations, 
etc.). Therefore, it seems to be reasonable to accomplish the 
systematic analysis of hyperheavenly equations from the 
group theoretical viewpoint. This is just the purpose of the 
present paper. We find the general generating functions of 
the groups of contact transformations leaving the hyperhea
venly equations invariant. It appears that these groups are 
the first prolongations of appropriate point transformation 
groups. 

In this paper, as in the previous one, I we employ the 
formalism of Lie-Backlund transformations.s.IO•

11 Accord
ing to this formalism, we consider the invariance equation 
for the partial differential equation 

F(xi,u,Ui ,U,' I' ,00') = 0, , " 
(1.1 ) 

in the form of 

XJ 1.7~ = 0, (1.2) 

where Xc is the canonical Lie-Backlund operator: 

a a 
Xc =fL-a + IDi, "'Di,(fL) -au ' 

u s>l ;"";$ 

fL = fL(Xi,U,Ui ), 

a a a 
D··=-+u.-+~u --' (13) 

I' a. i I a £.. ii .. ··i, , • 
X U s>1 aU i "'i , , 

y 00 is the infinite prolongation ofEq. (1.1) and I.'T~ means 
the "restriction to yoo"; Xi, U, Uit Ui,i, .... , i, ii' i2,00. = 1,2,3,4, 
are the coordinates on the complex jet bundle, J 00 (C 4, C). 

Then the infinitesimal operator of the group of contact 
transformations admitted by Eq' (1.1), 

X=£-i~ ~ f- ~ ~ a. . + 7J a + ~i a ' x' U U i 

is defined by the operator Xc as follows: 

afL 
7J=fL- Ui-a ' 

Ui 

(1.4) 

The function fL = fL (Xi,U,Ui ) is called a generating function 
of the contact transformation group. 

One can easily find that the contact transformation 
group appears to be the first prolongation of some group of 
point transformations iff 

a2
fL -----!..-=o. aui, aui, 

( 1.6) 

Our paper is organized as follows: In Sec. II we examine 
the so-called generalized hyperheavenly equation that con
tains as special cases the hyperheavenly equations. It is 
shown that the maximal group of contact transformations 
admitted by the generalized hyperheavenly equation is the 
first prolongation of the group of point transformations. Sec
tion III is devoted to the group theoretic analysis of the hy
perheavenly equations. We consider "nonexpanding" and 
"expanding" spaces and for all cases the general solution of 
the invariance equation ( 1.2) is given. The computations are 
very long and hard, and, as a rule, we omit them here. Con
cluding remarks close the paper. 

II. THE GENERALIZED HYPER HEAVENLY EQUATION 

In this section, we study symmetries of the following 
equation: 

F: J 2 (C 4 ,C) -C, 

F = UIIU22 - Uf2 + I(xi). (U14 + u23 ) 

+ g(Xi,U,Uit"WUI2,U22) = 0, j = 1, ... ,4, (2.1) 

where I = l(xi):;60 and g = g(Xi,U,Ui,UWUI2,U22) are holo
morphic functions of their arguments and, moreover, g is 
linear with respect to the variables Uw U12, U22' Since Eq' 
(2.1) contains as its special cases the hyperheavenly equa
tions we call it the generalized hyperheavenly equation. 

In order to find the contact symmetries-ofEq. (2.1) one 
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must solve the invariance equation (1.2), which now takes 
the form 

'{(U22 + ag )'DIDI(P,) + (u 11 + ag )'D~2(P,) 
au 11 aU22 

+ (- 2U l2 + ag )'DID2(P,) + j- [DID4(p,) 
aU l2 

+D2D3(p,)] +p, ag + ag 'Di(P,)} =0. (2.2) 
au aUi .'T~ 

Extracting from (2.2) the elements containing U33 or U44 one 
has 

(2.4) 
Hence, 

a
2
p, =0= a

2
p, , 

aUi aU3 aUi aU4 
a 2p, a 2p, a 2p, a 2p, 

--::--!--+U2---=0= +u l ---· 
ax2 aU3 au aU3 axl aU4 au aU4 

From (2.5) it follows that 

p, = p(Xi,U,U1,U2) + U3V(XI,X3,X4) 

+ u4m(x2,x3,x4), 

(2.5) 

(2.6) 

where p = p(Xi,U,UI,U2), v = V(X I,X3,X4), and 
m = m(x2,x3,x4) are some holomorphic functions of their 
arguments. 

Then, employing (2.6) and extracting from (2.2) the 
elements containing U 13' U24' or U34 we find 

654 J. Math. Phys., Vol. 31, No.3, March 1990 

(2.7) 

(2.8) 

(2.9) 

From (2.7)-(2.9) one infers that 

a
2
p = a

2
p = a

2
p ---,--=0, 

au~ au~ au I aU2 
av = am = 0, 
axl ax2 

...EL =...EL= 0, 
au aUI au aU2 

av + a
2
p =0, 

ax4 ax2 aUI 
(2.10) 

am + a
2
p = o. 

ax3 axl aU2 
Consequently, p, is of the form 

p, = ula(xi) + uj3(Xi) + u3Y(X\X4) 

+ u4c5(X3,X4) + E(Xi,U), (2.11) 

where a = a(xi), /3 = /3( Xi), y = Y(X3,X4), c5 = c5(X3,x4), 
and E = E(Xi,U) are some holomorphic functions of their ar
guments, and the following equations are satisfied: 

ay + aa = 0, ac5 + a/3 = o. (2.12) 
ax4 ax2 ax3 axl 

Gathering the elements of (2.2) containing U11 'U22 or Ui2 or 
U23 one finds that 

(2.13 ) 

moreover, 

_ ac5 +0"=0 
ax4 ' 

(2.14 ) 

aa _ a/3 _ ay + ac5 = o. 
axl ax2 ax3 ax4 

The conditions (2.12) yield 

a = a l (x
3,x4) 'xl + a2(x3,x4)'x2 + a3(x\x4), 

(2.15 ) 

and 

ay ac5 
a 2 = - ax4 ' /31 = ax3 ' (2.16) 

Then, from (2.14) with (2.15) one gets 

a l +2/32- ac5 +t-I.(at a+ at /3+ at y+ at c5) 
ax4 axl ax2 ax3 ax4 

+ 0" = 0, (2.17 ) 

a I - /32 = ay _ ac5 . 
ax3 ax4 

Finally, gathering the remaining elements of (2.2) we obtain 
the following condition: 

(2.18) 
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Now, as,u defined by (2.11) satisfies the condition (1.6) we 
arrive at the following theorem. 

Theorem 2.1: Every group of contact transformations 
admitted by the generalized hyperheavenly equation (2.1) is 
the first prolongation of some group of point transforma
tions admitted by this equation. The general infinitesimal 
operator of the maximal point transformation group leaving 
Eq. (2.1) invariant is oftheform 

. a a 
Xp = 5 I axi + 7'J au ' 

51 = - a l (X
3,X4) ·x l 

- a2(x3,x4) ·x2 - a 3(x3,x4), 

52 = -/3I(X3,X4)·XI -/32(X3,X4)·X2 -/33(X3,X4), 

53 = - r(x3,x4), 54 = _ ~(X3,X4), 

(2.19) 

where the functions ai' a 2, a 3, /31' /32' /33' r, ~, 0', r, consti-
tute the general solution ofEqs. (2.16)-(2.18). • 

III. SYMMETRIES OF THE HYPERHEAVENL Y 
EQUATIONS 

Plebanski and Robinson2 (see also Refs. 3-5) have 
shown that ten Einstein equations for the metric of one-sided 
algebraically degenerated, Ricci-fiat complex space-time 
can be reduced to a single nonlinear partial differential equa
tion of the second order on one holomorphic function. The 
crucial point in this reduction procedure is the existence of a 
null string foliation. The leaves of the foliation are null 
strings, i.e., totally null, geodesic two-dimensional complex 
surfaces. One can choose the local coordinates Xi, i = 1, ... ,4, 
so that the equations x3 = const, X4 = const define the null 
strings of the foliation and Xl, x 2 are coordinates along these 
null strings. Then we define the expansion form of the null 
string foliation to be a one-form 

(3.1 ) 

where ";" stands for the covariant derivative. 
As it has been demonstrated in Ref. 2, it is necessary to 

consider two essentially distinct cases: (i) the nonexpanding 
null string foliation, i.e., () = 0; (ii) the expanding null string 
foliation, i.e., () :;60. The equations obtained by Plebanski 
and Robinson are called the hyperheavenly equations. 

In the present section, we give the group theoretic analy
sis of these equations. It appears that the hyperh~avenly 
equations are speical cases of our generalized hyperheavenly 
equation. Consequently, all results of Sec. II remain valid for 
the hyperheavenly equations. But now we can do much bet
ter. Namely, we can considerably simplify Eqs. (2.16)
(2.18), and in most cases we are able to find the general 
solutions of these equations. The cases () = 0 or () :;60 are 
considered separately. Notation is the same as in Sec. II. 

A. Nonexpanding null string fOliation, 9=0 

1. The Petrov-Penrose-Plebanski type [111}-[anyj 

The hyperheavenly equation now takes the form of 
(2.1) with 
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f = 1, g =!. (X IX4 + X2X3) 2 + 3·(U lx
3 - U2X4) 

~ 2U llX
lX3 + 2U12 · (X IX4 - X2X3) + 2U2:zX2X4. 

(3.2) 

[Compare Refs. 4 and 5 for 

~=(=::), PA =(-::), 
~ = ( - ::), qA = e:) , 

and N A = 0, FA = 3~.] 

(3.3) 

Then, by long and tedious manipulations one finds that 
Eqs. (2.16)-(2.18) lead to the following results: 

O'(Xi) = 0'0 = const, 

a2
q; 1 _~ 

a l = ax 3 ax4 -"30'0' a 2 = a(x4f ' 
_ a 2q; _ a 2q; 1 

/31 - a(x3)2' /32 - - ax 3 ax4 -"30'0' 

a3 =..!. at/! +..!. t/!·x3 /33 =..!. at/! _..!. t/!.x4 
6ax4 2 ' 6ax3 2 ' 

aq; ~ = _ aq; 
r= ax4' ax3 ' 

r = - "!'.(XI ~ - X2 ~)3q; + "!'.(2x4/33 _ a/33). (XI)2 
6 ~3 a~ 2 ~3 

-"!'.(2x3a + aa3 ).(X2)2+"!'.(2x3/3 -2x4a 
2 3 ax4 2 3 3 

+ aa3 + a/33) XIX2 +x Xl +X-y2 + X (3.4) 
ax 3 ax4 I r , 

where x = X(x3,x4) is an arbitrary holomorphic function of 
X3,x4, and q; = q;(x\x4), t/! = t/!(X3,X4), XI = XI (X3,X4), 
X2 = X2(X3,X4) constitute the general solution of the follow
ing equations: 

X3 aq; + X4 aq; _ 2q; = 0, (3.5a) 
ax 3 ax4 

X3 at/! + X4 at/! + 4t/! = 0, (3.5b) 
ax 3 ax4 

aX2 + ax, + 3X3X _ 3x4X = o. (3.5c) 
ax 3 ax4 I 2 

The general solution of Eqs. (3.5a) and (3.5b) takes the 
form 

q; = (X3)2·q:;(X3/X4), t/! = (X3) -4~(X3 /X4), (3.6) 

where q7(x3 /X4), ~(X3 /X4) are arbitrary holomorphic func
tions of the variable X3 / X4. 

Thus we arrive at the conclusion that the general gener
ating function,u is now defined by the formulas (3.4), (3.6), 
and (3.5c). 

2. The type [Nj-[anyj 

In this case, 

f = 1, g = N(X3,X4). (XIX4 + X2X3) , (3.7) 

where N = N(X3,x4) is a nowhere vanishing holomorphic 
function of r,x4. (Compare Refs. 4 and 5 for N A = N·~, 
FA. = 0). With (3.7) assumed, Eqs. (2.16)-(2.18) yield 
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o"(XI) = 0"0 = const, 

a l = :; - 0"0 + ~ 00, a2 = - Z ' 
08 08 2 

PI = - ox3 ' P2 = ox4 - 0"0 + "'300, 00 = const, 

where x = X(X3,x4) is an arbitrary holomorphic function of 
x3, X4, and the functions r = r(x3,x4), 8 = 8(X3,X4), 
a3 = a 3(r ,x4), P3 = P3(X3,X4), XI = XI (X3,X4), 
X2 = X2(X3,X4) constitute the general solution of the follow
ing set of equations: 

Or 08 
OX3 + OX4 = 2· (0"0 - 00), (3.9a) 

~ [0a3 _ OP3 + 2N' (8X3 _ rx4)] 
OX3 OX3 OX4 

= - Cm8 + 2N' (0"0 - i 00)x4, (3.9b) 

~ [oa3 _ OP3 + 2N. (8X3 _ rx4)] 
OX4 OX3 OX4 

= C(l)r - 2N' (0"0 - i 00)x3, (3.9c) 

~ + ~ = N' (P X3 + a-y4) or OX4 3 Y" 
(3.9d) 

where 

Cm = 2C = _ 2' [0(Nx
3
) + 0(Nx4)]....L0 (3.10) 

2222 OX3 OX4 r 

and C2222 is the only nonvanishing component of the undot
ted (self-dual) Weyl spinor. 

Define 

oq. op 
",:= __ 3 --3+2N·(8x3-rx4 ). (3.11) 

or OX4 

Then from (3.9b), and (3.9c) one gets 

Consequentl.Y, (3.12) and (3.9a) lead to the equation on "': 

. -_r+ __ X4 - 30: --a '(Cm)2=0 (
OC

m 
Ocm) ( 8) 

OX3 OX4 0 3
0 , 

(3.13) 

and (3.11) with (3.12) gives 
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oa3 _OP3=",+2N'(C(l»-I.(0", X3+ 0", X4). 
OX3 OX4 OX3 OX4 

(3.14) 

Gathering, one concludes that the general generating func
tion J1- in the case of nonexpanding [N] ® [any] type is de
fined by the formulas (3.8), (3.9d), (3.12), (3.13), and 
(3.14). 

[Notice that ifCU) = const, then from (3.13) it follows 
that 30"0 - ~ 00 = 0 and '" is an arbitrary holomorphic func
tion of X3, X4.] 

3. The type [-]-[any] (=heaven) 

We now have 

/= 1, g=O, (3.15) 

and Eq. (2.1) takes the form of the "second heavenly equa
tion" obtained by Plebanski in his fundamental work on the 
heavenly spaces. 12 Symmetries of this equation have been 
examined by Boyer and Plebanski. 13 

In order to find these symmetries, we specialize the pre
ceding considerations concerning the type [N] ® [any] to 
the case N = N(X3,x4) = O. Consequently, Eqs. (3.9a)
(3.9d) yield 

r= :; + (0"0-00)'x3, 8= - :; + (O"o-oo)'x4, 

(3.16) 

a3 = Z + boX3, P3 = :~ - boX4, bo = const, 

(3.17) 

_ oX oX 
X2 - ox4 ' XI = - ox3 ' (3.18) 

where 0"0' 00 are constants defined as before [see (3.8)], and 
'" = ",(x\x4), t/J = t/J(X3,X4),X = X(x3 ,x4) are arbitrary ho
lomorphic f~nctions of the variables X3, X4. Then, from (3.8) 
with (3.16)-(3.18) one has 

( 
I 0 2 0) - x --x - X+x. 

OX3 OX4 
( 3.19) 

This ends our analysis of the hyperheavenly equations for 
Ricci-flat complex space-time admitting a nonexpanding 
null string foliation. In the next section, we consider the "ex
panding case." 

B. Expanding null string fOliation, 9 =1= 0 

In this case, the general form of the hyperheavenly equa
tion can be presented by (2.1) with 
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/= (Xl +r)-I, 

g = W(X3,X4) +! v(r ,x4). (X2 - Xl) - 3pou + lPo' (Xl + X2). (U I + U2) - [lPO' (Xl + r)2 + 2· (Xl + r)-I· U2 ] Ul1 

- UPO'(XI +X2)2 - 2'(xl +X2)-I'(UI + U2)]UI2 - [lPO'(XI +X2)2 + 2'(xl +X2)-IUI]U22, (3.20) 

where W= W(X3,x4), V = V(X3,X4) are some holomorphic 
functions of X3, X4 and Po is some constant. [To compare 
(3.20) with the corresponding formulas of Refs. 3 and 5 one 
should specialize JA. and KA. of those references to be 
Jj = Ji = - 1, K j = - Ki = - 1. The coordinates ~, 
PA., rI, qA. are defined by Xi according to (3.3).] Now the 
following cases must be considered. 

t. The Petrov-Penrose-Plebanskl types: [lIj-[anyj or 
[Dj-[anyj 

Here, 

Po i= 0, W = 0 = v. (3.21 ) 

Then, long and tedious calculations lead to the following 
result: 

at/J arp 
a l = ax3 ' a2= ax3-aO' a 3=x, 

{31 = - a~ - ao, {32 = - a~, {33 = - X,ao = const, 
ax ax 

r = ao' (X3 + x4) + rp, l> = ao' (x3 + x4) + t/J, 
a 

U= - 2 ax3(t/J - rp), (3.22) 

T = - ~o ~ (t/J + rp)' (Xl + X 2 )3. (Xl - x2 ) 
8 ax3 

1 a 2." 1 a2 
+ Ii. (Xl + X 2 )3 _ ___ 'f'_. (XI)2 ___ _ 

2 a(x3)2 2 a(x3)2 

1 a2m 1 av . (t/J + rp)XIX2 - - _T_. (X2)2 __ -""-' (Xl + x2) 
2 (X3)2 2 ar . 

+ ! '(Po)-la(~:)3(t/J-rp), 
where rp = rp(x3 - X4), t/J = t/J(x3 - X4), X = x(r - X4), 
Ii = li(x3 

- x4
) are arbitrary holomorphic functions ofthe 

variable x3 _ X4. 

2. The type [111}-[anyj 

This case is realized for (see Ref. 5) 

Po = 0, v = Vo = consti=O, 

W = w(x3 
- X4), i.e., w is a function ofx3 - X4. 

(3.23) 

With (3.23) assumed, one can integrate Eqs. (2.16)
(2.18). Thus one finds 

a =~ a 2
(t/J-rp) '(X3 +X4) +~ a(7t/J-3rp) -a 

I 4 a(x3)2 4 ax3 0' 

a =~ a 2
(t/J-rp) '(r +X4) _~ a(t/J- 5rp) -a 

2 4 a(x3)2 4 ax3 0' 

a = _ (v )-I.[~ a 3
(t/J-rp) +2w a(t/J-rp) 

3 0 2 a(x3 )3 ax3 

aw] + (t/J-rp)'ax3 ' 
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I 
{3 = - ~ a 2

(t/J - rp) . (x3 + x4) 
I 4 a(x3 )2 

1 a(5t/J-rp) -- -ao, 
4 ax3 

{3 = - ~ a 2
(t/J - rp) . (x3 + x4) 

2 4 a(r)2 

1 a(3t/J - 7rp) 
+"4 ax3 -ao, 

ao = const, 

{33 = - a3, 

r = [~a(t/J-rp) +a ]'(r+x4) +m 
4 ax3 0 T' 

l> = [~ a(t/J - rp) + ao]' (r + x4) + t/J, 
4 ar 

U = - 2- a(t/J - rp) + 20
0

, 

2 ax3 

T= _ {.!!L.[ 1 a
2
(t/J-rp) '(X3+ X4)2+ a(t/J+rp) 

12 4 a(x3)2 ar 
'(x3 +X4)] -Ii }'(Xl +r)3 _~~'(XI)2 

2 a(r)2 

+ 1 a
2
(l>+r) xlr_~~'(x2)2 

2 ar ax4 2 a(~)2 

_ ~ aa3 • (Xl + x2 ) + x 
2 ax3 ' 

(3.24) 

where rp = rp(r - X4), t/J = t/J(x3 
- X4), Ii = Ii(r - x4) 

are arbitrary holomorphic functions of the variable r - X4. 
and x = x(r, x4

) is an arbitrary holomorphic function of 
x 3, X4. The formulas (3.24), although rather involved, give 
explicitly the general solution ofEqs. (2.16)-(2.18). Pinal
ly, the next case is considered. 

3. The type [Nj-[anyj 

We now have (compare with Ref. 5) 

Po = ° = v, w = bo·(r +~) + @(r -~), (3.25) 

where bo = consti=O; @ = @(x3 
- x 4

) is an arbitrary holo
morphic function of the variable r - X4. With (3.25) as
sumed one finds: 

al> arp 
a l =-+2--ao, 

ax3 ax3 

j){j arp 
a2= - ax4 - ar' a 3=x, 

{31= - al>, /32= al> +3 arp -ao, 
ax3 ax4 ar 

/33 = - X,ao = const, 
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(3.26) 

where q; = q;(x3 - X4), A = A(X3 - x4) are arbitrary holo
morphic functions of x3 

- X4; X = X(X3,X4), x = x(x\x4) 
are arbitrary holomorphic functions of x 3

, X4. 

IV. CONCLUSIONS 

In this paper we have shown that every contact transfor
mation admitted by the generalized hyperheavenly equation 
appears to be the first prolongation of some point transfor
mation group. Then we are able to find the general solutions 
to the invariance equation (1.2) for all expanding cases and 
for heaven. In the case of nonexpanding [III] ® [any] or 
[N] ® [any] types we have reduced the problem to finding 
the general solution of one or three, respectively, linear par
tial differential equations of the first order for two or five, 
resp., holomorphic functions of two variables. 

Unfortunately, we have not succeeded in integrating the 
Lie equations for the groups of contact transformations ad
mitted by the hyperheavenly equations. Nevertheless, one 
can easily observe that these groups are too "poor" to gener
ate all solutions of the hyperheavenly equation from some 
given solution. Most likely the transformation of metric 
caused by the symmetry group is simply a composition of 
some coordinate transformation and the conformal transfor
mation with constant conformal factor (compare Ref. 1). 
Consequently, the general Lie-Backlund transformations 
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are expected to be more fruitful at this point. We intend to 
deal with this problem in the next paper. 

The results of the present paper can also be considered 
as the starting point for the problem of searching for group
invariant solutions to the hyperheavenly equations. 

Another problem of a great interest connected with our 
work is the relation between Killing vectors on hyperhea
venly space-times and the infinitesimal operators of symme
try groups admitted by the hyperheavenly equations. Com
paring the results of our paper with those of Refs. 4, 5, 13, 
and 14 one can formulate the following. 

Conjecture: Every Killing vector field on a hyperhea
venly space-time can be brought to the form ti(alaxi), 
where t i is defined by the infinitesimal operator (2.19) of 
some symmetry group admitted by the appropriate hyper
heavenly equation. • 

We have not succeeded in verifying the conjecture. The 
work on this problem is in progress. 
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Effects of the shear viscosity on the character of cosmological evolution 
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Bianchi type I cosmological models are studied that contain a stiff fluid with a shear viscosity 
that is a power function of the energy density, such as 11 = aE". These models are analyzed by 
describing the cosmological evolutions as the trajectories in the phase plane of Hubble 
functions. The simple and exact equations that determine these flows are obtained when 2n is 
an integer. In particular, it is proved that there is no Einstein initial singularity in the models of 
Oo;;;;n < 1. Cosmologies are found to begin with zero energy density and in the course of 
evolution the gravitational field will create matter. At the final stage, cosmologies are driven to 
the isotropic Friedmann universe. It is also pointed out that although the anisotropy will 
always be smoothed out asymptotically, there are solutions that simultaneously possess 
n?npos~tive and no?-negative Hubble functions for all time. This means that the cosmological 
dimenSIOnal reduction can work even on matter fluid having shear viscosity. These 
characteristics can also be found in any-dimensional models. 

I. INTRODUCTION 

The investigation of relativistic cosmological models 
usually has the energy momentum tensor of matter as that 
due to a perfect fluid. To consider a more realistic model one 
may take into account the dissipative processes that are 
caused by the viscosity and that have already attracted the 
attention of many investigators. Misner1 suggested that the 
anisotropy in an expanding universe would be smoothed out 
by the strong dissipative process due to the neutrino viscos
ity. Viscosity mechanisms in the cosmology can explain the 
anomalously high entropy of the present universe.2

•3 Bulk 
viscosity associated with the grand-unified-theory phase 
transition4 may lead to an inflationary scenario.5

,6 (The in
flationary cosmology invented by Guth 7 in 1981 is used to 
overcome several important problems arising in the stan
dard big bang cosmology.) 

Murphy8 obtained an exactly soluble isotropic cosmolo
gical model of the zero-curvature Friedmann model in the 
presence of bulk viscosity. The solutions Murphy found ex
hibit the interesting feature that the big bang type singularity 
appears in infinite past. Exact solutions of the isotropic ho
mogeneous cosmology for the open, closed, and flat universe 
were found by Santos et al.9 for when the bulk viscosity is the 
power function of energy density. However, in some solu
tions, the big bang singularity of infinite density occurs at 
finite past. It is thus shown that contrary to the conclusion of 
Murphy, the introduction of bulk viscosity cannot avoid the 
initial singularity in general. Anisotropic models with bulk 
viscosity, which is the power function of energy density, 
have been discussed in detail in our previous papers. 10,11 

Belinskii and Khalatnikov12 presented a qualitative 
analysis about Bianchi type I cosmological models under the 
influence of shear viscosity: They then found a remarkable 
property that near the initial singularity the gravitational 
field creates matter. Recently, Banetjee et al.13 obtained 
some Bianchi type I solutions for the case of stiff matter by 
using the assumption that shear viscosity (11) is the power 
function of the energy density (E), i.e., 11 = aE", where a isa 
constant. However, Banetjee et al. merely analyzed the be-

havior of the cosmological models for some values of n. 
In this paper we will investigate the cosmological mod

els again. Since we study these models by describing the evo
lution of cosmologies as the flow in the phase plane of Hub
ble functions, we can clarify the property of the models with 
any value of n. In particular, we prove that there is no Ein
stein initial singularity in the models with Oo;;;;n < I, The cos
mologies have zero energy density in the initial phase and 
then the shear viscosity causes the gravitational field to cre
ate matter during the evolution. At the final stage, cosmolo
gies are driven to the isotropic Friedmann universe. Al
though the anisotropy in the universe is smoothed out 
asymptotically, we point out that there are solutions that 
simultaneously possess oonpositive and non-negative Hub
ble functions for all time. In view of this fact, we then consid
er the higher-dimensional theory and show that the cosmo
logical dimensional reduction may work in cosmological 
models which have shear viscosity. The models extended to 
higher dimensions have also been analyzed according to the 
methods described in the present paper; the results show that 
they all share the same characters. 

The organization of this paper is as follows. In Sec. II 
the derivation of two dynamical evolution equations of ex
pansion and shear scalars, which was presented in Ref. 13, is 
summarized for a convenient reading. In Sec. III we consid
er the axially symmetric Bianchi type I models in which 
there are only two Hubble functions. The evolutions of the 
cosmology are described as the flows in the phase space of 
the Hubble functions. The characteristics of the evolutions 
of the cosmological models for any n are then clarified. The 
Bianchi type I models with three Hubble functions are dis
cussed in Sec. IV, where we also consider the higher-dimen
sional models. Section V is devoted to a summary. In the 
Appendix the solutions in the early stage for the n> 1 models, 
which explicitly show how the energy density approaches 
zero at the initial singularity, are given. 

II. THE EINSTEIN FIELD EQUATION 

We consider the (1 + D) -dimensional Bianchi type I 
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space-time with the line element 
D 

d~ = - dt 2 + L: a;(t) dx;. 
;=1 

(2.1 ) 

The energy-momentum tensor for a fluid with shear viscos
ity is 

Tl'v = (€+p)uI'UV +pgl'v -7JKI'V' (2.2) 

P=P+ (21D)7JuA;A' (2.3) 

Kl'v=UI';V + UV;I' + UI'UAUV;A + uVUAUI';A' (2.4) 

where € is the energy density, p is the pressure, and 71 is the 
shear viscosity, respectively. Choosing a comoving frame, 
where ul' = {jI' 0' the explicit form of the Einstein equations 
is 

Rl'v - ! gl'vR = Tl'v (2.5) 

for the metric (2.1) and the energy-momentum tensor (2.2) 
can be written as 

[(D - l)/2D] W 2 - cr = €, (2.6) 

dH; + H. W _ -.!.. [2 dW + (1 + -.!..) W 2 + 2cr] 
dt I 2 dt D 

= p + (~ 71) W - 27JH;. (2.7) 

where the Hubble functions H;, the expansion scalar W, and 
the shear scalar cr are defined by 

1 da; 1 
H.=--, W=L:H;. 2cr=L:H;-- W 2. (2.8) 

I a; dt ; ; D 

The trace part ofEq. (2.5) leads to 

2 dW +(1 +-.!..) W 2+2cr= 2 [E-Dp]. 
dt D (D - 1) 

(2.9) 

Using relation (2.6) to eliminate the cr in Eq. (2.9) we ob
tain 

dW + W 2=_D_(€_p). (2.10) 
dt D-l 

As a consequence of the Bianchi identity we have 

d€ + (€ + p) W _ 47Jcr = O. (2.11) 
dt 

Equation (2.6) can yield a relation 

d(cr/W2) d(€/W2) (2.12) 
dt dt 

After substituting the expressions dE! dt and d W / dt in Eqs. 
(2.10) and (2.11) into the rhs ofEq. (2.12) we finally obtain 
the evolutional equation of a shear scalar: 

d(cr/W
2

) = _(L) [~(€-P)+47J]' (2.13) 
dt W 2 D-l W 

When the universe is filled with stiff matter, i.e., € = p, 
we can, from Eq. (2.10), find the solution of an expansion 
scalar: 

W= 1/t. (2.14 ) 

Using relation (2.14), Eq. (2.13) can be written as 
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dy = -4at - 2n dt, y= cr2 . (2.15) 
y[(D-l)/2D-y]n W 

Equation (2.15) can be integrated exactly if the 2n is an 
integer, as has been shown by Banerjee et al. 13 However, one 
can only analyze the models for some values of n as a result of 
the fact that these integrated relations are too complex. To 
overcome these difficulties, in Sec. III we will analyze the 
cosmological evolutions by describing them as flows in the 
phase plane of Hubble functions. 

III. SOLUTIONS IN THE PHASE PLANE 

We first consider the axially symmetric Bianchi type I 
model in the 1 + 3 dimension; the Hubble functions therein 
are denoted as 

H1=h, H2=H3=H, (3.1) 

in terms of which one can, from Eqs. (2.6) and (2.8), obtain 

W=h + 2H, cr = j (h _H)2, €=H(2h +H). (3.2) 

We express hand H in terms of the variables rand e: 
h=rsine, H=rcose. (3.3) 

Thus 

. W = r(sin e + 2 cos e), 
y = j [(1 - tan e)2/(2 + tan e)2], 

and Eq. (2.15) can be written as 

J dy = - 4a J t - 2n dt 
y'! _ y)n 

=~tl-2n+c 
2n -1 

=~W2n-I+C 
2n -1 

(3.4) 

= ~rn-I(sin e + 2 cos e)2n-1 + C, 
2n -1 

(3.5) 

where C is an integration constant. Because y is the function 
of the variable e only, Eq. (3.5) tells us that we can express r 
as the function of the variable e. It is through this property 
that one can study the cosmological evolutions by analyzing 
these trajectories in the phase plane. 

A. Evolutions of the cosmologies 

1. Fixed point 

We only consider the plane where the trajectories are in 
the regions that satisfy the dominant energy condition, 14 i.e., 
€;;.O. The evolutions of the cosmology are therefore confined 
to the regions H;;.O and H + 2h;;.O, as Eq. (2.6) shows. The 
evolutions of the cosmology should start from a fixed point 
or infinity and then end in another fixed point or infinity in 
the phase plane. From Eq. (2.13) we know that the fixed 
points should be those with zero energy density, which are at 
H = 0 or H + 2h = O. 

Furthermore, from Eq. (2.13) we can obtain 

dcr/dt __ 2W- 4 --- 71· 
cr 

(3.6a) 

Wung-Hong Huang 660 



                                                                                                                                    

Since 1]>0 and W = 1/t, we then obtain a relation 

cr<t -2. (3.6b) 

Equation (3.6b) tells us that the shear scalar cr should be a 
decreasing function and that anisotropy will be smoothed 
out asymptotically. Therefore, the original point is an attrac
tive fixed point. 

2. Invariant lines 

Equation (2.15) can lead to 

dy = _ 4aW2"y (...!.. _ y)" • 
dt 3 

(3.7) 

Substituting relation (3.4) into Eq. (3.7) we then obtain 

d(J = 2a r"(cos (J _ sin (J)(2 cos (J + sin (J) 
dt 3 

x [(cos (J + 2 sin (J)cos (J In. (3.8) 

From the theory of nonlinear differential equations we know 
that the zeros ofEq. (3.8) give invariant lines in the phase 
plane of h XH. They are as follows. 

(i) The isotropic state is cos (J - sin (J = O. In practice, 
this shall only refer to the original point, resulting from the 
fact that there is no shear viscosity in the isotropic state. 
Furthermore, since the shear scalar is a decreasing function, 
the original point must be the attractive state. 

(ii) The states 2 cos (J + sin (J = 0 have negative energy 
density and are thus neglected. 

(iii) The states cos (J = 0 or cos (J + 2 sin (J = 0 have 
zero energy density. Because the shear scalar is a decreasing 
function, the vacuum states must be the initial states. 

Using results (i)-(iii) and the exact solution of the 
n = 0 model (note that we can obtain the exact solution for 
2n = integer models) we therefore conclude that the cosmo
logies should begin with zero energy density in the initial 
phase; then the shear viscosity causes the gravitational field 
to create matter during the evolution; and at the final stage, 
cosmologies are driven to the isotropic Friedmann universe. 

B. Singularity 

Equation (3.2) tells us that the energy density can be
come infinity only if Hand/or h are infinite. Equation (2.9) 
tells us that dW /dt can become infinity only if Hand/or h 
are infinite. Since the Riemann scalar curvature can be ex
pressed as 

R=2 dW + W2+2H2+h2 
dt 

(3.9) 

one then sees that R can become infinity only if Hand/or h 
are infinite. Therefore, the Einstein initial singularity can 
arise only if Hand/or h are infinity, i.e., r-- 00. 

From Eq. (3.5) we know that r can become infinity only 
if the integrated value on the lhs is infinity. Since in this 
section we have discussed that only those states with zero 
energy density may be the infinite value of r, we therefore 
need only to consider the vacuum states. 

When y--!, then 

f dy fJl
-

1I3 
dy 

y(j/3 _ y)n -- 3 (j _ y)" 
(3.10) 
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The integration (3.10) is infinite only if n> 1, as easily seen. 
Thus we have shown that models with O<n< I can avoid the 
Einstein initial singularity. 

C. Examples 

To give some examples we present the following explicit 
solutions. 

For n =!, 
[r(sin (J + 2 cos (J) ]4a;J3 

= C~3(1 + 2 tan (J) - (2 + tan (J) , 

~3(1 + 2 tan (J) + (2 + tan (J) 

(3.11 ) 

where C is an integration constant. Using Eq. (3.11) we can 
plot the trajectories in the phase plane; they then determine 
the cosmological evolutions. One see that r is finite when 
cos (J = 0 or 1 + 2 tan (J = 0; thus this model has no initial 
singularity. 

Forn = 1, 

(1 - tan (J)2 4a . 
In = - r(sm (J + 2 cos (J) + C, 

(1 + 2 tan (J) 3 
(3.12) 

where Cis an integration constant. Using Eq. (3.12) we can 
plot the trajectories in the phase plane; they then determine 
the cosmological evolutions. One see that r is infinite when 
cos (J = 0 or 1 + 2 tan (J = 0; thus this model begins with an 
initial singularity. 

IV. MORE GENERAL SOLUTIONS 

We now consider the Bianchi type I models with multi
ple Hubble functions. From Eq. (2.7) we can obtain 

dIn (H; -Hj ) dln(H; -Hk) 

dt dt 
(4.1 ) 

Equation (4.1) yields the solutions 

H; = (1- C;)HI + C;H2' i= 3, ... ,D, (4.2) 

where C; are the integration constants. Relation (4.2) tells 
us that one can express all other D-2 Hubble functions in 
terms of only two Hubble functions. Through the same pro
cedures as those described in Sec. III we find that the evolu
tions of the 1 + D-dimensional Bianchi type I cosmological 
models containing stiff fluid with shear viscosity as a power 
function of the energy can also be expressed as flows in the 
phase plane of HI XH2. One can also show that the charac
teristics of the cosmological evolutions are just those de
scribed in Sec. III, i.e., cosmologies will begin with zero ener
gy density; in the course of evolution the gravitational field 
will create matter; and finally, cosmologies are driven to the 
isotropic Friedmann universe. In the same way, we can also 
prove that there is no Einstein initial singularity in models 
with O<n < 1. 

To give an illustration we consider the (1 + 3 )-dimen
sional model with three Hubble functions. We now have the 
relations 

H3 = (1 - C)HI + CH2, W= (2 - C)HI + (1 + C)H2, 

a2 = [(1- C+ C 2)/3](HI -H2)2. (4.3) 

Expressing HI and H2 in terms of the variables rand (J, 
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HI = r cos (), H2 = r sin (). (4.4) 

Then Eq. (2.15) can lead to 

d() = 2a r2n(1 _ C + C2) 
dt 3 

X (cos () - sin () [(2 - C)cos () + (1 + C)sin ()] 

X [ (1 - C)cos2 
() + 2 sin () cos () + C sin2 () ] n. 

(4.5) 

The zeros ofEq. (4.5) give invariant lines in the phase plane. 
They are as follows. 

(i) The isotropic state is cos () - sin () = O. As discussed 
in Sec. III, this shall only refer to the original point, which 
corresponds to the final state. 

(ii) The states (2 - C)cos () + (1 + C)sin () = 0 can 
be shown to have negative energy density and are thus ne
glected. 

(iii) The states (1 - c)cos2 
() + 2 cos () sin () 

+ C X sin2 
() = 0 are the vacuum states. Because shear sca

lar is a decreasing function, these states must be the initial 
states. 

Results (i)-(iii) show that the cosmologies will begin 
with zero energy density and then end in the isotropic Fried
mann universe. One can also use the method described in 
Sec. III to prove that models with O,n < 1 have no Einstein 
initial singularity. 

Finally, we want to mention that although the anisotro
py is smoothed out asymptotically [as Eq. (3.6b) shows] 
and cosmologies will be driven to the isotropic Friedmann 
universe eventually, there indeed are solutions that possess 
both nonpositive and non-negative Hubble functions. This 
implies that the cosmological dimensional reduction can 
work in cosmological models which have shear viscosity. 
This property has been found in our previous paper. 15 Here 
we show an example in order to complete our discussions of 
cosmological models. 

Consider the n = 1 five-dimensional theory with two 
Hubble functions of hand H corresponding to those of three
space and extra space, respectively. Using Eqs. (2.14) and 
(2.15) we obtain 

W=t-t, a2=i(1/t2)[I+Ce-3aI2t]-I,- (4.6) 

where C is a positive constant. With the definitions of Wand 
a2 in Eq. (2.8) we then obtain 

h = (1I4t)(1 + [1 + C exp( - 3a/2t)] - 112), (4.7) 

H = (1I4t)(1 - 3[ 1 + C exp( - 3a/2t)] -1/2), 

h = (1I4t)(1 - [1 + C exp( - 3a/2t)] - 112), 

H = (1I4t)(1 + 3 [1 + C exp( _ 3a/2t)] - 112). (4.8) 

Solutio~ (4.7), in which h is positive while His negative for 
all time, can be found when C < 8. 

We have also checked that the simultaneous existence of 
nonpositive and non-negative Hubble functions is found in 
other (including 1 + 3) space-time models with other val
ues ofn. 

Thus we have clarified the effects of shear viscosity on 
the characteristics of cosmological evolution. 
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v. CONCLUSIONS 

In this paper we have discussed Bianchi type I cosmolo
gical models with a viscous fluid, assuming that the shear 
viscosity is a power function of the energy density, such as 
'T/ = aE" . We have presented a detailed study of these models 
by describing the evolutions of cosmologies as the flows in 
the phase plane of Hubble functions. We have clarified the 
property of these models with any value of n. In particular, 
we have proved that there are no Einstein initial singularities 
in models with O,n < 1. The cosmologies have been found to 
begin with zero energy density; then the shear viscosity 
causes the gravitational field to ~eate matter during the evo
lution. At the final stage, cosmologies are driven to the iso
tropic Friedmann universe. We have also pointed out that 
there are solutions that possess both nonpositive and non
negative Hubble functions for all time. In view of this fact, 
we then considered five-dimensional theory and gave a solu
tion that explicitly showed that the cosmological dimension
al reduction can work in cosmological models which have 
shear viscosity. Models extended to other dimensions can 
also be analyzed according to the procedures described in 
this paper; the results show that they all share the same char
acteristics. 

The models considered in this paper are only concerned 
with stiff matter. The same models with other matter fields 
are certainly of interest and remain to be studied. 

APPENDIX: SOLUTION IN THE EARLY STAGE 

Since the behavior of the vanishing energy density at the 
initial singularity, which is argued in Sec. III to be a common 
property belonging to n';P 1 models, seems unusual, we now 
give the solution in the early stage to explicitly show how the 
energy density approaches zero asymptotically. 

Let € = pandD = 3 in Eqs. (2.7) and (2.9). We obtain 

dHj 2 
-d +Hj W=-'T/W-2'T/Hj • (Al) 

t 3 

From the discussions given in Sec. III we know that n> 1 
models will begin along the invariant lines H = 0 or 
2h + H = O. Thus from Eq. (Al) we find the approximate 
solutionasH .... O. (Thecaseof2h + H .... Ocould be analyzed 
in the same way and will give the same conclusion.) 

To be consistent with Eq. (2.14), W = h + 2H = t -I, 

one can define 

h = t- I - {jh, 

H= {jh/2, 

(A2a) 

(A2b) 

where O,{jh ~ 1. Using the relation of Eq. (3.2), 
€ = H(2h + H), implies 

€r;;;;£t -I{jh. 

Let 'T/ = a€n; we then approximate Eq. (AI) as 

~ + t -I {jhr;;;;£ 4a t -I (~)n. 
~ 3 t 

The solution for the n = 1 model is 

l>hr;;;;£Ct -I exp( - 4a/3t) , 

€r;;;;£Ct -2 exp( - 4a/3t), 
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where C is an integration constant. Solution (A5) is consis
tent with the asymptotic form ofthe exact solution found in 
Eq. (3.9) of Ref. 13. The solution for the n > I model is 

t5had 4a(n - 1)/3(2n - 1)] 11(1 - n) (n/(n - I), (A6a) 

E~[4a(n -1)/3(2n _1)]'/(I-n) (lI(n-l). (A6b) 

Solutions (A5) and (A6) explicitly show that n>l 
models have vanishing energy density at the initial singular
ity. 
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Interaction of null dust clouds fronted by impulsive plane gravitational waves 
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This paper discusses the energy-momentum tensor T p.v in the region of interaction of a space
time in which two colliding plane impulsive gravitational waves, each followed by a null dust 
cloud, exist. It is shown that in the interaction region Tp.v is of three types: (i) that oftwo 
noninteracting null dusts; (ii) that ofa scalar field (equivalently an irrotational perfect fluid 
with energy density equal to pressure), and (iii) that of the sum oftwo independent non
interacting scalar fields [equivalently a complex scalar field or an anisotropic perfect fluid with 
energy density w and pressures (w, 1T, 1T) ] • 

I. INTRODUCTION 

The evolution of a space-time V containing two collid
ing plane impulsive gravitational waves whose leading edges 
are followed by distributions of null dust will be discussed 
under the following four assumptions: 

(i) V admits two commuting spacelike Killing vec
torsS~ (A = 1,2;Jl = 0,1,2,3). 

The coordinate system may be chosen so that S ~ = ~ 
and the metric of V may be put into the Rosen form I: 

ds'l = gij dxi dxi + gAB d~ dxB, (1.1) 

where 

a,.8=0,1,2,3, i,j=0,3, A,B= 1,2, (1.2) 

gap~r9j = gij = e"''T/ij = e"'(~ij - 2~~~J), (1.3) 

gaP~~~ = gAB = - e"'YAB' (1.4) 

YII = X-I, YI2 = - Q2X- I, Y22 = X + qUX, (1.5) 

- 4g = _ detllgaPll = e2
(",+p.). (1.6) 

The quantities 0), Jl, X, q2 are functions of XO and x 3 alone: 
They may also be considered as functions of the null coordi
nates 

u =xo _x3 , 

V =xo +x3• 

( 1.7) 

( 1.8) 

The null hypersurfaces u = 0 and v = 0 will be used to 
divide Vinto four subregions: region I, where u > 0 and v> 0; 
region II, where u > 0 and v < 0; region III, where u < 0 and 
v> 0; and region IV, where u < 0 and v < O. 

The hypersurface u = 0 (v = 0) will be interpreted as 
the wave front of a gravitational wave traveling in the 
x3 

( - x3
) direction. The variables 

2x0 = (v + u) (1.9) 

and 

2x3 = (v - u) ( 1.10) 

are measures of the time from (u = 0, v = 0) the instant of 
collision and the distance between the wave fronts, respec
tively. 

(ii) When gp.v (u,v) is an exact solution of the Ein
stein field equations holding in region I, the metric ten
sor in region II (III) is given by gp.v (u,O) (gp.v (O,v». 

The metric tensor in region IV is gp.v (0,0), so that re
gion IV is flat. 

This method of extending the solution of region I pro
duces metrics that are continuous across the hypersurfaces 
u = 0 and v = 0, but may have discontinuous first deriva
tives across these hypersurfaces. If so the curvature tensor 
derived from gaP will be distribution valued, i.e., it will con
tain delta functions with support on these null hypersur
faces. 

In addition, space-times with metrics obtained as above 
are said to contain impulsive gravitational waves only if the 
components of the Einstein tensor (equivalently the Ricci 
tensor) do not contain such delta functions. 

It is a consequence of assumption (ii) that in region II 
(III) the only nonvanishing component of the Ricci tensor 
can be Ruu (R uu )' Thus regions II and III are either vacuum 
regions or contain null dust, i.e., a medium with a stress
energy tensor of the form 

Tp.v = Eu,p. u,v (Ev,p. v,v) 

in region II (III),/p. = aj lax"'. In addition, we have 

RAB = Rp.v~~i = 0 (1.11) 

in regions II, III, and IV. 
(iii) It is assumed that RAB = 0 in region I, that is, 

Eq. (1.11) is assumed to hold everywhere in V. 
(iv) It is assumed that the components of Rp.v do not 

involve delta functions. 

It has been shown in an earlier paper1 that assumption 
(iv) implies that Jl,u = 0 (Jl,u = 0) on the hypersurface 
u=O(v=O). 

It is the purpose of this paper to determine the various 
possible energy-momentum tensors that can occur in region 
I, the interaction region, under assumptions (i)-(iv). We 
shall also discuss the relation between the media in regions II 
and III with the energy-momentum tensor in region I. 

II. THE RICCI TENSOR 

As a consequence of the fact that the coordinates of 
space-time may be chosen so that the vectors lYt and lYt are 
Killing vectors, the line element of space-time is given by Eq. 
( 1.1 ), where the gij need not satisfy Eq. (1.3). It is a further 
consequence that the components of the Ricci tensor are 
such that 
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R~=O 

and 

2R~ = (e-IJ/~ -g)(e!J~ _ggiigCBgCA,i)J 

when 

g=detllgijll· 

In case Eqs. (1.3) obtain 

_g= eOJ, 

Ruu = p.,uu + Yt~u - p.,uO),u - Suu, 

Ruv = p.,uv + Yt,u + p.,vvO),uv - Suv, 

R vv = p.,vv + Yt~v - p.,vO),v - Suv, 

where 

Sij = lr:1B
rAB,i 

= - (l12r)(X,iX,i + Q2,iq2,i)' 

rAB is given by Eq. (1.5) and yAB is such that 

yABrBc = /j~, 
that is 

rll = X + Q~/X' r l2 = Q21X, f2 = lIX' 

It follows from Eqs. (2.2) and (2.4) that 

(2.1 ) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

2R ~ = e- (IJ+OJ)(e!Jrl),ij ~ e-OJ(p.,ij + P..iP.,i)7Jij 
(2.11 ) 

and 

and 

2R ~ = 2R ~/j~ + e- (IJ+OJ)(e!JrCArBc,i7Jij)J' 

The equations RAB = 0 then imply that 

(e!J) ,uv = e!J(p.,uv + p.,up..v) = 0 

(e!Jr,ur-I),v + (e!Jr,vr-I),u = 0, 

where 

r= IlrABII· 

(2.12) 

(2.13) 

(2.14) 

(2.15 ) 

In view ofEqs. (1.5) and (2.10), Eq. (2.12) may be 
written as 

and 

(2.16) 

(e!JX,uIX).v + (e!JX,v IX),1l = - 2(e!Jlr)(Q2,uQ2,v)' 
(2.17) 

In the coordinate system in which Eqs. (1.1) and ( 1.3 ) 
hold, the Einstein field equations supplemented by the con
dition RAB = 0 consist of the system of equations (2.5)
(2.7) supplemented by Eqs. (2.13), (2.16), and (2.17): In 
these equations the Rij are assumed to be given as functions 
of u and v. These quantities must, of course, satisfy the inte
grability conditions for the determination of 0) from Eqs. 
(2.5)-(2.7). 

Note that if p. and the matrix r are solutions of Eqs. 
(2.13) and (2.14) [equivalently (2.13), (2.16), and 
(2.18)] and 0)0 is a solution of Eqs. (2.5)-(2.7) with 
R·· = 0 i.e., 0)0 is a solution of the vacuum equations, then I] , 

0)=0+0)0 (2.18) 
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satisfies the latter equations with Rij ;'=0 if ° is a solution of 

Ruu = - p.,uO,u' (2.19) 

R llv = O,uv' (2.20) 

Rvv = - p.,vO,v, (2.21 ) 

with 

e!J = 1 + U(u) + V(v). (2.22) 

Equations (2.19)-(2.22) have been shown to hold in 
the case of the subspace of V generated by the coordinates Xl 

and x2 and hence V admits the group of motions of a two
dimensional plane (cf. Ref. 3). 

When p., the matrix r, and 0) are determined as stated 
above, the line element in region I of Vis given by Eq. (1.1). 
When the line element is extended to regions II-IV as de
scribed in Sec. lone finds that Eqs. (2.19)-(2.22) reduce to 

R IIUU = - p..uO,u (u,O), 

R IIUV = R ~~ = 0, 

p.1I = In(l + U(u» 

in region II. 
In region III one finds 

R IIIUU = R II1uv = 0, 

R IIIVV = - p..vO,v (O,v), 

p.III = In(l + V(v». 

In region IV one finds 

(2.23a) 

(2.23b) 

(2.23c) 

(2.24a) 

(2.24b) 

(2.24c) 

R IVij = 0, (2.25a) 

p.IV = O. (2.25b) 

The integrability conditions of Eqs. (2.19 )-( 2.21) are 

«p.,u)-IRu"),v = {(p..v)-IRvv),u = -Ruv' (2.26) 

Equations (2.26) are equivalent to the equations T~: = 0, 
where '[1'V is the stress-energy tensor of the medium in re
gion I of V formed from the Ricci tensor RIJv. 

III. THE ENERGY-MOMENTUM TENSOR IN REGION I 

As was pointed out in Sec. I, regions II and III contain 
null dusts. If R ~I and R ~I are prescribed, then 0 1 (u,O) and 
0 1 (O,v) are determined. However, this information alone is 
not sufficient to determine 0 1 

(u,v) uniquely in the general 
case. In other words, just the specification of the energy den
sity in the null clouds that follow the colliding plane impul
sive gravitational waves is not sufficient information to de
termine uniquely the metric of the space-time in the 
interaction region (that is, the evolution of the space-time 
after the moment of collision) . 

In Refs. 4 and 5 Chandrasekhar and Xanthopolous de
termined two different exact solutions of the Einstein field 
equations, each of which described two different space
times. Each ofthese solutions contained colliding impulsive 
plane gravitational waves followed by distributions of null 
dust, but the two space-times differed in the properties of the 
energy-momentum tensor in their interaction regions, re
gions I. 
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In this section we shall determine the algebraic structure 
of the Einstein tensor of a space-time with a metric given by 
Eq. (1.1) and for which assumptions (i)-(iv) inclusive ob
tain. Let 

-Ruu =El' 

- Rvv = E2, 

- Ruv = - Rvu = C. 

Then since R AB = 0, 

(3.la) 

(3.lb) 

(3.lc) 

KTij = - Gij = - (Rij - !Rgij) = E1U.iUJ + E2V,iV,j' 
(3.2a) 

KTAB = - GAB = - (R AB - !RgAB ) = - 2Ce- WgAB , 
(3.2b) 

as follows from the fact that 

U,iV,j + U,jV,i = gij (UkV,k)' 

UkV,k = 2e - W, 

(3.3a) 

(3.3b) 

The notation used above and subsequently in this section is 
that of Ref. 2. 

It may be verified that Eqs. (3.2) may be written as 

KTl'v = (w + 1T) UI'UV + (p -1T)ZI'Zv _1Tg"v, 
(3.4 ) 

where 

g"V = UI'UV _ ZI'ZV + gAB~£5~, 
UI'UI' = - ZI'ZI' = 1, 

U I' = a ( .,fE; ul' + ,f€; if) , 

Z I' = a ( .,fE; ul' - ,f€; if) , 

P = w = 2e-w~E1E2 

1T = 2e - wc = - R /2, 

a- 2 = 2w. 

Equation (3.4) may be written as 

(3.Sa) 

(3.Sb) 

(3.Sc) 

(3.Sd) 

(3.Se) 

(3.Sf) 

( 3,Sg) 

KTI'V = wUI'UV + pZI'ZV - 1TgAB~£5~, (3.6) 

as follows fromEq. (3.Sa). ThUSKpv is the energy-momen
tum tensor of an anisotropic fluid. Multiplying Eq. (3.6) by 
gl'v and summing we have 

KT= (w - p) - 21T; 

hence 

- R I'V = K[ TI'V - (T /2)g"V] 

= wUI'UV + pZI'ZV _ !(w _ p)g"v. 

Since UA = ZA = 0 and RAB = 0, we must have 

w =p. (3.7) 

It follows from Eq. (3.6) that the proper values of KT~ are 
(W,W,1T,1T), corresponding to the proper vectors if, ZI', J'I', 
J(P- , where if is the velocity vector of the medium and the 
vectors ZI', J'I', J(P- are an orthonormal triad spanning the 
three-space orthogonal to if. One may classify the various 
types of media in region I, the interaction region, as follows. 

(i) Type A, forwhich1T = 0 = KT(andR uv = 0). Then 

KTl'v=w(UI'Uv+ZI'ZV). (3.8a) 
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In view of Eqs. (3.S) we have 

KTij = E1U,iUJ + E2V,iV,j' 

KTAB =0. 

(ii) Type B, for which 1T = w> O. Then 

(3.8b) 

( 3.8e) 

KTI'V = 2wUI'UV - wg"v, (3.9a) 

that is, the medium in the interaction region is a perfect fluid 
with energy density equal to the pressure. Iffollows from Eq. 
(3.9a) that 

- Rl'v = 2wUI' Uv, 

that is, 

(3.9b) 

(3.9c) 

(3.9d) 

(iii) Type C, for which the energy-momentum tensor 
given by Eqs. (3.6) and (3.7) is such that 

(3.10) 

This requirement is equivalent to the requirement that for 
any timelike vector WI" pv Wv WI' :;;00 and JIll = pv Wv is 
a nonspacelike vector, that is, pv satisfies the dominant 
energy condition.6 

Such energy-momentum tensors have been represented 
by Letelier7 as the sum of two energy-momentum tensors of 
type B. This is done as follows. Let 

AI' = ¢I" + it/JI', 

¢I" = ~w + 1TUI' cos B + ~w - 1TZI' sin B, 

t/JI' = - ~w + 1TUI' sin B + ~w - 1TZI' cos B. 

Then 

(3.lla) 

(3.llb) 

(3.llc) 

¢l"tAv + t/J1't/Jv = (w + 1T) UI'Uv + (w -1T)ZI'ZV, 
(3.l2a) 

¢l"ifJl' + t/J1't/J1' = 21T = AI'AI" (3.l2b) 

¢l"ifJ I' - t/J1't/J I' = 2w cos 2B, 

ifJl't/J1' = - w sin 2B, 

that is, 

2w = IAI'AI' I, 

Re(AI'AI' )tan 2B = - 1m (AI'AI' ). 

It follows from Eqs. (3.4) and (3.7) that 

-Rl'v =K[Tl'v - (T12)gl'v] 

= (w + 1T) UI' Uv + (w - 1T)ZI'Zv' 

Hence 

- Rl'v = ifJl'ifJv + t/Jvt/Jv, 

as follows from Eq. (3.12a). 

IV. Tr-."=O FOR TYPE-A MEDIA 

(3.l2c) 

(3.l2d) 

(3.l2e) 

(3.l2f) 

(3.13 ) 

As shown in Ref. 2 there are only two independent equa
tions among the four equations T t: when T I'V is the energy
momentum tensor iii region I, the interaction region: When 
P" is given by Eqs. (3.2) these equations are 
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2(EIU
V );v - KTp,u = 0, 

2(E2V
V);v - KTp,v = 0, 

where 

U,.. = I!!'vu;v, vi-' = I!!'vv;v' 

( 4.1a) 

( 4.1b) 

Equations (4.1) are equivalent to Eqs. (2.19)-(2.21). 
When the medium in region I is of type A, then equa

tions T~: = 0 imply that 

(EIUV);v = (E2V
V);v = 0 (4.2) 

since u~vuv = u~vv = 0, or equivalently that 

{(p,u) -IEI),v = ((p,v) -IE2),u = 0, (4.3) 

as follows from Eq. (2.22). 
Thus when the medium in the interaction region is of 

type A, the energy-momentum tensor of this medium is that 
of the sum of two noninteracting dusts. Each dust satisfies 
the conservation equation given by one of Eqs. (4.2). Since 
Ruv = 0 in this case it follows from Eq. (2.20) that 

nl(u,v) = F(u) + G(v). 

Equation (4.3) enables one to determine F(u) and G(v) 
such that F(O) = G(O) = O. Then nI (u,v) is determined 
from nI (O,v) and nI (u,O). The latter two quantities are 
determined from R II andR ~II. 

1J IJ 

In Ref. 5 Chandrasekhar and Xanthopolous treated the 
case for which the medium in region I, the interaction re
gion, is of type A. However, the physical nature of the null 
dusts in regions II and III was not discussed. It is expected 
that these dusts differ from those that are involved in the 
discussion of Ref. 4, where the interaction is assumed to be of 
type B. The discussion of Sec. V leads to the interpretation of 
the latter incoming null dusts as being due to scalar fields 
propagating with the velocity of light. 

It will be shown below that the incoming dust involved 
in the problem treated in Ref. 5 cannot be null scalar fields 
unless p is constant: Neither can they be null Maxwell fields, 
as has been shown in Ref. 8. This fact follows from the fact 
that assumption (iii) of Sec. I cannot be satisfied in an elec
trovac space-time admitting two commuting mutually or
thogonal space like Killing vectors. Reference 5 does assume 
that assumption (iii) holds. 

(ei't/J,u ) ,v + (ei't/J,v) ,u = O. (5.2c) 

Type B is characterized by an energy-momentum tensor 
of a perfect fluid with energy density w equal to the pressure 
1r. Equation (5.1) states that the fluid is irrotational; Eqs. 
(5.2) state that the velocity potential t/J satisfies a wave equa
tion. The function t/J also describes a real scalar massless 
field. The energy-momentum tensor of such a field is 

KT,..v = t/J,,..t/J,v - Yt,..vt/J,pt/J,ulr 
since 

(5.3) 

(5.4) 

The collision problem discussed by Chandrasekhar and 
Xanthopolous in Ref. 4 assumes that the interaction region 
is of type B. The problem may be interpreted as describing 
the collision of two plane impulsive gravitational waves, 
each followed by a dust cloud consisting of a massless scalar 
field depending on the null coordinate u or valone. 

VI. Trvv=O FOR TYPE-C MEDIA 

These equations for type-C media may be evaluated by 
the same method as used for type-B media. Namely, one 
substitutes Eq. (3.13) into Eq. (2.26) and obtains 

t/J,u [2t/J,uv + p,vt/J,u + p,ut/J,v] 

+ tP,u [2tP,uv + P,v tP,u + P.u tP.v] = 0, 

t/J,v [2t/J,vu + P.vt/J,u + P.ut/J.v] 

+ tP,v [2tP.vu + /l-,v tP,u + /l-,u tP.v] = O. 

Since t/J,,.. and tP,,.. are linearly independent vectors we must 
have 

2t/J.,..v + /l-,vt/J,u + /l-.ut/J,v = 0, 

2tP.uv + /l-.v tP.u + /l-,u tP,v = O. 
(6.1a) 

In other words, t/J and tP are each massless scalar fields satis
fying 

I!!'vt/J;,..v = gl-'vtP;,..v = O. (6.1b) 

The complex scalar 

(6.2) 

aslo satisfies the wave equation. The vector A,.. defined in 
Sec. III is given by 

(6.3 ) 

V. Trvv=O FOR TYPE-B MEDIA The energy-momentum tensor of the medium is 

It has been shown in Ref. 2 that the equations T~: are KT,..v = t/J.,..t/J.v + tP,,..tP,v - Yt,..v(t/J.pt/J.u + tP,ptP.u)lr. (6.4a) 
equivalentto Eq. (2.26). When Eq. (3. 9c) is substituted into 
Eqs. (2.26) and use is made ofEq. (2.22) one obtains The energy density is given by 

2'Tu,v = 2'Tv.u = - (/l-.u'Tv +/l-.v'Tu)· 

Therefore, there exists a function t/J(u,v) such that 

'1',.. = t/J,,.. 

and 

2t/J.uv + p,ut/J,v + /l-,vt/J,u = O. 

Equation (5.2a) is equivalent to 

t/J;,..vl!!'v = 0 

or 
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(5.1 ) 

(5.2a) 

(5.2b) 

2w = IgPuA,pA,ul (6.4b) 

and the pressure is given by 

21r = Ap AugPu. (6.4c) 

The timelike and spacelike proper vectors of the energy-mo
mentum tensor in the two-dimensional space spanned by the 
null coordinates u and v, that is, the vectors U,.. and Z,.., are 
given by 

~w + 1TU,.. = Re(eioA,..), (6.5) 

(6.6) 
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VII. CONCLUSIONS 

The various possible interaction regions arising when 
two null dust clouds fronted by plane impulsive gravitational 
waves collide have been classified by means of the energy
momentum tensors occurring in this region. For a type-C 
medium this tensor may be taken to be given by Eq. (6.4a) , 
where r/J and 1/1 are two independent solutions of the scalar 
wave equation. Equation (6.4a) is algebraically equivalent 
to Eqs. (3.6) and (3.7). The latter equations are those of an 
anisotropic perfect fluid with energy wand pressures 
(w,'IT,'IT). Knowledge of the two functions r/J and 1/1, each of 
which satisfies the wave equation, enables one to determine 
the motion of the anisotropic fluid. The two independent 
equations T':: = 0, without additional conditions on wand 
'IT, are not sufficient to determine this motion. 

Note that if 1/1 ~ 0 (orr/J = O)PV ofEq. (6.4a) becomes 
the same as that given by (6.3). In this sense media of type B 
are special cases of those of type C. 

If gl'v r/J,I-' r/J,v = gl'v 1/1,1-' 1/I,v = 0, then pv of Eq. (6.4a) 
becomes that of Eqs. (3.Sb) and (3.Sc) ifinadditiononehas 
r/J = r/J (u) and 1/1 = 1/1( u). However, in such a case we must 
have It = const in order that T':: = o. Thus media of type A 
are special cases of media of type C under the additional 
assumption that It = const. 
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When the space-time V satisfies assumptions (i)-(iv) 
the collision of two impulsive plane waves, each followed by 
a dust cloud, must have an interaction region of type C 
(which includes type B) or type A. In the former case the 
motion of the medium in the interaction region is deter
mined by a complex function A(u,v), which is a solution of 
the complex scalar wave equation. This function is in tum 
determined by the functions A(O,v) and A(u,O). The latter 
two functions are determined by the null dusts in regions III 
and II, respectively. These in tum are determined by setting 
u = 0 or v = 0 in pv of region I, respectively. 
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Vacuum metric perturbation two-point functions are found for maximally symmetric 
backgrounds of arbitrary dimension n, using tensor mode functions on the n-sphere and a 
general gauge-fixing term. The gauge-invariant part of the resulting graviton propagator is 
isolated, and is fully evaluated for de Sitter spaces in terms of functions of the geodesic 
separation. 

I. INTRODUCTION 

A.Overview 

Maximally symmetric spaces fill a special niche in the 
theory of quantum fields in curved space-times. Though 
maximal symmetry simplifies calculation enormously, mak
ing it an ideal arena in which to develop the theoretical and 
computational machinery of curved-background QFf, non
trivial curvature effects still manifest themselves. An easily 
obtained Minkowski space limit at zero scalar curvature 
provides for simple checks of all results against standard flat
space results. 

Given the somewhat abstract nature of the above advan
tages, it is gratifying that an understanding of the behavior of 
the quantum field in a maximally symmetric background 
should prove to be of some practical use, most notably in the 
study of the inflationary cosmologies that have been pro
posed to explain the large-scale structure of the universe. 1 

For example, questions as to the n = 4 de Sitter universe's 
stability2.3 raise the spectre of an inflationary phase too 
short-lived to address the very concerns (the flatness, iso
tropy, and horizon problems) inflation was intended to ad
dress. 

The graviton propagator for a maximally symmetric 
space of arbitrary dimension is of interest for several reasons. 
The problem of finding it has the appeal of any general case 
that can be handled using the lessons of the specific. There 
may be situations in which one might need the propagator 
for spaces other than dS\ in which case having the general 
solution available would be of use. Sometimes the high sym
metry of de Sitter space allows certain expressions to be eval
uated using a reduction scheme, in which case one might 
need to have an expression for the propagator that can be 
continued away from n = 4. 

B. Structure 

The second-order variation in the graviton action will be 
found for a maximally symmetric space of arbitrary dimen
sion and curvature, using a general two-parameter gauge
fixing term. This will be used to find a very general expres
sion for the graviton propagator in terms of sums of tensor 
eigenfunctions of the d' Alembertian operator 0 on the hy
persphere, which is the Euclidean section of de Sitter space. 
It is then possible to continue the results so obtained off the 
sphere in a well-defined way4 to obtain the full space. Flat 
and anti-de Sitter spaces are considered by allowing infinite 

and imaginary radii of curvature, respectively. Attention 
will be paid to the isolation of that part of the propagator 
relevant to gauge-independent objects, and the result related 
to a particular choice of gauge-fixing parameters. 

All results will be expressed in a coordinate-indepen
dent fashion using the mode functions. Using the previously 
obtained de Sitter space vector and scalar propagators,4 the 
graviton propagator there will be obtained in terms of maxi
mally symmetric bitensors; these are functions of the geodes
ic separation fL alone. There is some question as to the cor
rect set of boundary conditions for anti-de Sitter space (adS) 
or its covering space (CadS). 5 In Ref. 4, a choice corre
sponding to the reflection of the scalar and vector fields at 
timelike infinity was made, but only one of two independent 
solutions was used. The slower of the two solutions was 
thrown out in each case. A compelling case for reflective 
boundary conditions to control the flow of information at 
infinity has been made in Ref. 5. However, the "fastest fall
off" condition is more arbitrary, especially when experience 
with the de Sitter space graviton propagator has forced us to 
deal with an object that does not fall off at all at infinity. 

Other possiblities exist. For example, it has been pro
posed that a set of conditions on the behavior of the Weyl 
tensor at timelike infinity picks out one reflecting boundary 
condition for the n = 4 graviton propagator.6 Work in prog
ress 7 addresses these considerations with the aid of evalua
tions of the various curvature tensors' fluctuation expecta
tion values,8 using the most general solutions for the scalar 
and vector propagators obeying reflecting boundary condi
tions. Pending these results, we will not evaluate the adS 
graviton two-point function further; the points at which we 
specialize to de Sitter space will be duly noted. 

The complete expression for the de Sitter space propaga
tor can be found at the end of Sec. IV [expressions (4.27)
( 4. 31) ], where it is expressed using several functions defined 
in Sec. III. In Sec. V the long-distance behavior of the propa
gator and the extension of the n-sphere results to the full 
space are discussed. 

II. BACKGROUND, ACTION, AND PROPAGATOR 

A. The background and the action 

An n-dimensional de Sitter space can be realized in the 
Lorentzian embedding space {Rn+ 1,'17ab} as the hyperbo
loid made up of points with coordinates {X} satisfying 

'17ab xaxb = a2, 
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where a is real. Here 'TJab is the Minkowski ( - + ... + ) 
metric in n + 1 dimensions. The Euclidean section of the 
space is obtained by taking xo-+ixo and 'TJab -+8ab .9 The hy
persurface becomes an n-sphere of radius a in the now Eu
clidean embedding space. The proper extension of the Eu
clidean results to the full hypersurface will be discussed in 
the final section ofthis paper. 

Flat space can be obtained as the limit a2 
-+ 00. Results 

for anti-de Sitter space (adS) can be obtained by taking 
a2 = - 1 a 12

, as examination of the first coordinateslline ele
ments used for de Sitter and anti-de Sitter spaces in Ref. 10 
will show. The embedding used for de Sitter space will no 
longer be valid; rather, adS is embeddable as the surface 

tab yayb = a2, 

where t = diag ( - - + ... + ). 
The Euclideanized second-order variation in the action 

for a maximally symmetric space can be written in a simple 
form. If one represents the lower components of a perturba
tion 8g of the space's background metric g by hab' one has l1 

$-2)SE = - ~p r hab wabcdhcd dV, 
2 Jv 

(2.1 ) 

where p = (3211'G) -I, and 

W abcd = [ _ 0 + 2a-2]ga(cg")b 

+ [0 + (n - 3)a-2]~bg<d 

_ (~~CVd + g<~avb) + 2v(agh)(cvd). 

(2.2) 

Here, as in the rest of this paper, the derivatives are covariant 
with respect to the background metric g, which will be used 
to raise and lower indices. The volume Vis that of the full n
sphere, the default range of integration in this paper. 

To obtain an invertible expression for the propagator, 
one can add to the second-order variation in the action (2.2) 
the two-parameter gauge-breaking term 

SOP = -p L ao[Va (h ab - alh \~b>]2 dV. (2.3) 

To obtain the gauge-fixed second-order action, one then re
places the gauge-invariant wave operator W abcd appearing in 
(2.1) with the gauge-fixed 

W:;:d = [ _ 0 + 2a-2]~(cg")b 
+ [(1- 2aoa I

2 )0 + (n - 3)a-2]~bg<d 

+ (2aoa I - 1 )(~~CVd + g<~avb) 
+ 2(1 - ao)v(agh)(cvd). (2.4) 

The action used in Ref. 12 can be recovered by setting 
a o = 1, a l =!, and n = 4. It will be noticed immediately 
that for a maximally symmetric manifold of any dimension, 
these same choices for ao and a I give a "wave operator" W y 

consisting solely of the d'Alembertian 0 and constants that 
vanish in flat space (a2 

-+ 00 ). This is the generalization to n 
dimensions of the propagator found in Ref. 12 for n = 4. 
However, a much simpler result can be obtained by using the 
Landau gauge conditions ao-+ 00, a l -+ lin. 
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B. Maximally symmetric bltensors 

We are looking for the two-point function 

Gabc'd'(x,x') = (OElhab(x)hc'd'(x')IOE)' (2.5) 

where the states' continuations to Lorentzian de Sitter space 
are the Gibbons-Hawking vacuum states of Refs. 13 and 14; 
the recovery of the full Lorentzian space theory by the rota
tion Xo-+ - ixo will be an in-out propagation amplitude. 15 

This two-point function is a maximally symmetric bitensor. 
A bitensor T a 

... b • .. · c ... d .... (x,x') is any function oftwo 
points x and x' that transforms as a tensor under coordinate 
transformations at either point. Here, a prime on an index 
indicates that the index belongs to x"s tangent space, and 
unprimed indices to x's. A maximally symmetric bitensor is 
a bitensor that remains invariant under all isometries of the 
manifold.4 The amplitude (2.5) is an example of such an 
object, as the vacuum chosen is maximally symmetric and 
the operator inside does not break the maximal symmetry 
(such as if it were to pick out a preferred spatial axis). One 
further restricts the set of possible maximally symmetric bi
tensors making up the propagator (2.5) by noting that they 
must possess the index symmetries 

a++b, c'++d', [(ab)++(c'd') &x++x']. 

For any maximally symmetric space, there are but five dis
tinct maximally symmetric objects with these index symme
tries. The propagator is therefore expressible as a sum of the 
form 

010 ~bc'd' + 020 ~bc'd' + 030 ~bc'd' + 040 :bc'd' + 050 ;bc'd', 

where {o ~bc'd', ... ,O ;bc'd} is a basis set of five bitensors with 
the requisite symmetries, and {Ol (p) , ... ,05 (p)} are undeter
mined coefficient functions of the geodesic separation p. 
When no geodesic connects x and x', these functions can be 
continued in a well-defined and consistent way in the Lor
entzian embedding space. This last point will be considered 
in greater detail in Sec. V. When we wish to present an object 
with the propagator's symmetries, we will use a capital letter 
for the object, and the equivalent small letter for its coeffi
cient functions. For example, we will say "GT is given by 

1 1....s ..5 " • 
gT = C ,,">lST = C-, meamng 

Exactly as in Ref. 12, our five basis bitensors can be built 
up from the metric and three simple objects. These objects 
are ( 1) the metric tensor ~b; (2) the unit tangents at x and 
x', na = vap and na' = Va'p; and (3) the parallel propagator 
~e', which has the following properties: 

~e'na = - ne' and~e'ne' = _ n°, 

~e'ge'b =~b' ~e'gab =g"b' ~e'ge'f' =~f" 

Rules for the manipulation of these fundamental objects can 
be found in Table I. More complicated identities can be 
found in Appendix A. In this paper, we will denote the basis 
bitensors by {Ok: k = 1, ... ,5}, defining them as 

O~bc'd' =~bg<'d', 

O~bc'd' = nanbnc'nd', 

O~bc'd' = 2~(c'g"')b, 

Michael Turyn 
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TABLE I. Bitensor manipulation rules. 

vanb = A (g"b _ nanb) 

vane = C(g"e + nane) 

vagi'<' = _ (A + C) (g"bne + g"e nb) 

where 

A = a-I cot(ll/a) 

C= - a-I csc(ll/a) 

Note that 

C 2 _A2= a-2 

dA = _ C 2 

dll 

dC = -AC 
dll 

(2.6d) 

(2.6e) 

Note that O:bc'd' cannot be reproduced by the separate 
symmetrization of the primed and unprimed indices of a 
single bitensor term, as can the others. This makes it conven
ient for us to define an auxiliary object 0 6 to be 

o :bc'd' = [f'bnc'nd' - nanb!t'd'. (2.6f) 

No object with our propagator's index symmetries can have 
a nonzero 0 6 term. Since this is so, we will not give an 0 6 

coefficient for most of the objects found in this paper-it can 
be assumed to be 0 unless otherwise noted. In general, an 
expression of the form DOl will have an 0 6 term because it 
does not have the x+-+x' symmetry that (D + D') 0 1 has. 

c. Equation of motion and mode-sum inversion 

The Euclideanized propagator G defined in (2.5) obeys 
the equation of motion9,!6 

W~dGcd e'/" = !03 abe'f'Dn(X,X') =Dabe'f'. (2.7) 

The factor of p has been set equal to 1, and will be resurrected 
in the final results. Using a set of tensor mode functions 
defined in the n-sphere (2.7) can be inverted, and the invert
ed expression evaluated using the vector and scalar propaga
tors found in Ref. 4. We will obtain the propagator for a 
general choice of gauge as a sum of five tensor mode-sum 
pieces in this section, and then isolate that part of the propa
gator (present for any gauge choice) which can contribute to 
gauge-invariant physical observables. Examination of the 
mode-sum expression for this part of the propagator will 
show it to be the propagator obtained from the Landau 
gauge choice. The rest of this paper will be concerned with 
the evaluation of the Landau gauge propagator as a function 
of the geodesic separation Jl (x,x'). In Appendix B, the or
thonormal mode functions Ukb}, {Wkb}, {Vkb}, and 
{h kb

} are introduced (a degeneracy index has been su
pressed in each case). These span the two-tensors on the n
sphere. One can therefore write 

671 J. Math. Phys., Vol. 31, No.3, March 1990 

Dabc'd' = f h kbh ~d' + f VkbV~d' 
k=O k=! 

00 00 

+ L WkbW~d' + L XkbX~d'. (2.8) 
k=2 k=O 

The result of performing a functional integral over the met
ric perturbations I3 shows that the graviton propagator takes 
the following form: 

00 00 

G abc'd' = L ad h kbh ~d'] + L hd VkbV~d'] 
k=O k= 1 

+ f Ck [WkbW~d'] + f dk [XkbX~d'] 
k=2 k=O 

00 

+ L ek [XkbW~d' + WkbX~d']. (2.9) 
k=2 

The general form for the propagator must contain the mixed 
wabX'd' + Xabwc'd' terms found in the last part of (2.9) 
because the general wave operator contains term mix W k 

and X k modes. The effect of the wave operator on the propa
gator can be expressed in terms of the tensor eigenfunctions 
and the eigenvalues A is) of the spin-s mode functions (for 
s = 0,1,2). Using the results of Appendix B, we find 

W~dh~d = (-Ai2
) + 2a-2)h k

b, fork;;;.O, (2.10) 

W~dV~d = ao( - A k1
) - (n - 1)a-2)Vkb, for k;;;.l, 

(2.11) 

and 

f!lJ k) (Wkb) 
r;;, ab' 
=k Xk 

(2.12) 

where a matrix/vector notation has been used to show the 
mode-mixing nature of W 7 . For {k = 0, 1}, .!iff k = f!lJ k 
= C(j k = 0, but, for k;;;'2, 

and 

.!iffk(aO) = - [1 +(2(ao-l)(n-1)/n)] 

(2.13a) 

f!lJ k (ao,a!) = C(J k (ao,a!) 

= {(n - I)A kO)(A iO) + na-2)}112 

X [(2aoa! - 1) + (2/n) (1 - ao)]' 

(2.13b) 

For all k;;;.O, 

g dao,a!) = [(1 - 2aoa!2)n + (4aoa 1 - 3) 

+ (2/n) (1 - ao)]A kO) 

+ (n - l)(n - 2)a-2. (2.13c) 

We now substitute the mode-function forms for the pro
pagator G (2.9) and the tensor D function (2.8) into the 
equation of motion (2.7). The orthonormality of the modes 
(C3) can then be used to pick out the following eigenvalue 
equations: 

( - A i2
) + 2a-2 )ak = 1, 
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dkCk + ~ kek = 1, 

f!jJ kek + ~ kdk = 1, 

d kek + ~ kdk = f!jJ kCk + ~ kek = O. 

(2.16a) 

(2.16b) 

(2.16c) 

Solving these equations for {ak,bk, ... }, we find that the pro
pagator can be expressed as the sum of five terms: 

G=GIT +GT +GL +GPT +GM , (2.17) 

where 
co h abh c'd' 

Gabc'd' _ ~ k k 
IT - ~ 2 (2) + 2a-2' k=O -/I,k 

(2.18) 

1 co yabyc'd' 
Gabc'd' =_ ~ k .k , 

T ~ 2(1) "C· 1)-2 ao k= I - /I, k - n - a 
(2.19) 

co WabWc'd' 
G abc'd' _ ~ k k 

L - ~ , 
k="2 - ~k/~k 

(2.20) 

co wabXc'd' + ."obwc'd' 
G abc'd' _ ~ k k Ak k 

M - ~ , 
k=2 ~klf!jJk 

(2.21) 

and 

(2.22) 

where 

~ k = f!jJ k 2 - d k~ k' 

We will call these terms the transverse-traceless, transverse, 
longitudinal, mixed, and pure-trace parts of the propagator; 
note that the transverse-traceless term is completely inde
pendent of the choice of gauge-term parameters. This gen
eral result for the propagator agrees with the equivalent spe
cial cases discussed in Refs. 2 and 12, and can be evaluated 
using the techniques employed in those two papers. 

D. Source terms for physical observables 

Since one would like to use the propagator to find corre
lation functions for physical observables, it is useful to exam
ine quantities formed from the propagator that are left un
changed by the usual gauge transformation 

h/J.v -h/J.v + 2k(/J.;v)t 

where k/J. is a vector. 
The vector and scalar eigenfunctions of 0 are represent

ed by S % and lpk' respectively, The shear tensor modes {V k} 
are proportional to V( as Z), and so cannot contribute at all to 
gauge-invariant quantities. A part ofthe W:b mode propor
tional to Vavblpk will also not contribute. In addition to these 
explicitly noncontributing terms, one also finds in the propa
gator an expression of the form 

ct> Ig"b g<' d ' , 

where 
a2 n+ I. . 

ct>1(X,X') = 2 L lp~ (X)lp~ (x'). 
2ao(l - nal) ;= I 

(2.23) 

We can evaluate this sum over degenerate k = 1 scalar 
modes using expression (C6). We find that ct>1 ex: (1 - 2z), 
where z = cos2 (p.I2a), and obeys the conformal Killing 
equation 
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(2.24) 

Terms of the form g"bct> I are therefore also pure gauge, and 
should be dropped from the physically relevant propagator. 

For any initial choice of gauge, subtracting all the pure
gauge modes' contributions from the propagator leaves a 
"reduced" propagator Gred which is independent of the 
gauge-fixing parameters ao and al' One obtains 

G'::fd' = G'¢;'d' + Gf!!t'd', (2.25 ) 
red 

where 

G;'?f'd' = - [Y (o)/(n - 2)(n - 1) ] g"bg<'d '. (2.26) 
red 

Here, the finite Y (0) is a modified scalar propagator given 
by 

Y _ Y (z) _ lpo(x)lpo(x') ~ lpk (X)lpk (x') 
(0) - (0) - 2 (0) -2 ~ _ 2 k(O) _ na-2' -/1,0 -na k=2 /I, 

(2.27) 

This is the scalar propagator for a field with m2 = - na-2
, 

less the k = 1 modes' contribution of ct> •• With that term 
removed, this modified propagator is finite for separated 
points x and X'. 

This is exactly the same form for the propagator as one 
would obtain using the Landau gauge choice {ao - 00 , 

a.-n- I} if ao and a l approach their limiting values as 
lim,_o {~-3,~ + n- I}. Other limiting behaviors can pro
duce an infinite term proportional to ct> 12; this term is a non
contributing gauge artifact, and can be of no physical signifi
cance,13 As well as picking out the physically significant 
parts of the propagator, the Landau-gauge solution is also 
comparatively simple in form and use. For example, con
tracting this form for the propagator with the metric tensor 
or taking its divergence leaves only the pure-trace piece. 

III. THE PURE-TRACE PROPAGATOR 

In Sec. II, the PT piece of the propagator was found to 
be 

be'd' (A b 'd' G;T (x,x') = - [lI(n - 2)(n - 1)] J (O)g" gc , 
red 

(3,1) 

where Y (0) is a modified scalar propagator on the n-sphere, 
Using the scalar propagator of one finds that 

Y (0) (z) = lim [ G( [E - n ]a- 2,z) 
£_0 

(3.2) 

is indeed regular. Here we have used Eq. (C6) for the piece 
to be removed from the full propagator. 

In de Sitter space, one can take the limit (3.2) to find 17 

Yo(z) = 7o f f' f( n + 2,1; ~ + 2;z" )dZ" dz' 

_~[I +~+ [~+_1_ 
Yn n n n + 1 

+ "'o(n) + c] (2z - 1) ]. (3.3 ) 
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where '1/10 is the digamma function, Cis the Euler-Mascher
oni constant, and Vn is the volume of the n-sphere [see Eq. 
(A3)]. We have introduced 

J(a,b;c;z) == [r(a)r(b)/r(c)] 2F)(a,b;c;z), (3.4) 

which is easier to manipulate toward our ends than the stan
dard hypergeometric function. The spatially constant 

ro(n)=2-n1T-n/2a2-n (3.5) 

gives the scalar propagator the correct short-distance 
(p./a-+O) behavior. In practice, the term proportional to 
(2z - I) can be ignored. Exactly like <1» in Sec. II, its contri
bution to the propagator will be a pure gauge term of no 
physical relevance. 

Equation (2.27) is valid for any maximally symmetric 
space, but evaluation of it for anti-de Sitter space would be 
dependent on the specific form of the scalar propagator 
there. As mentioned in the Introduction, this lies somewhat 
out of the scope of the present work, and will be taken up in 
work to come. 

IV. THE TRANSVERSE-TRACELESS PART OF THE 
PROPAGATOR 

We evaluate Grr , the transverse-traceless part of the 
propagator, using the methods of Ref. 12. We know that it 
can be expressed as 

Grr = a(,u)OI + P(,u)02 + 'I/I(,u)03 

(4.1 ) 

We will use the equation of motion for Grr , and its traceless
ness and transverseness, to solve for the undetermined coef
ficient functions {a,/3, 'I/I,8,e}. 

A. Transverse-tracelessness 

We require that GJ!!{d' be traceless on both sets of in
dices-primed and unprimed. Tracing on the primed in
dices, one finds that tracelessness requires 

(na + 2'1/1 + 8)g"b + (P + n8 - 4E)nanb = 0, (4.2) 

and so 

na + 2'1/1 + 8 = 0, 

P +n8-4e=0, 

(4.3a) 

(4.3b) 

Thus there are only three independent coefficient functions, 
One can define three traceless bitensor objects, in terms of 
which any traceless objects with the propagator's symme
tries can be written. If one calls the three traceless objects 
{T1,T2,T3} and writes Grr as 

Grr =X(,u)T1 + Y(,u)T2 + Z(,u)T3, (4.4) 

then the conditions of (4.3a) and (4.3b) are satisfied auto
matically. We choose the traceless objects to be 

TI = (lln2 )01 + O 2 - (lIn)04' 

T2 = 0 3 - (2In)OI' 

T3 =Os+402• 

Equating (4.4) and (4.l), one finds 
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(4.5) 

a= (lIn2)X- (2In)Y, P=X +4Z, 

(4.6) 

'I/I=Y, 8= -(lIn)X, E=Z. 

We will work with the functions X, Y, and Z for now. 
Grr is also transverse; that is, it obeys 

(4.7) 

Substituting in the form for Grr of (4.4) into (4.7), one 
obtains three equations in the propagator's coefficient func
tions. However, only two of these three equations are inde
pendent in our case, as any two of them and the tracelessness 
conditions can produce the third. Two independent equa
tions so obtained are 

2n2CZ - 2n[ Y' + n(A + C) y] 

- (n - 1) [X' + nAX] = 0 

and (4.8) 
Z' + nAZ - [Y' + n(A + C)y] - (Cln)X=O, 

where f' == dJ I d,u, and A and C are the functions defined in 
Table I. 

B. The TT source term 

From the definition of the transverse-traceless mode 
functions (Blc), and the definition of the transverse-trace
less part of the propagator (2.18), one can see that Grr 
obeys the equation of motion 

00 

(- 0 + 2a- 2 ) Grr abc'd' = I hTfkbhTf~d'==eabc'd'. 
k=O 

(4.9) 

The source term appearing on the right-hand side of (4.9) is 
not proportional to a delta function, but can be evaluatt'tl in 
terms of the modified scalar and vector propagators of Ap
pendix C. 

Defining the operator V"Vb to be the traceless part of 
V"Vb

, 

V"Vb ==(V"Vb 
- (lIn)g"bO), 

relation (2.8) and the results of Appendices A and C [see 
especially (A8) and (All) and (Cll )-(CI6)] give us 8 in 
terms of the traceless part of the tensorial delta function of 
(2.7) and modified vector and scalar propagators: 

e ab I £n( ') Tab 2 U2 (a;b) 
"c'd' = - 2 X,X 2c'd' - J (I)(c';d') 

(4,10) 

As explained in Appendix C, ~~I)c' comes from an incom
plete sum over the vector modes used to obtain the spin-I 
propagator. The fdll spin-I propagator with mass-squared 
m2 has a pole at m2 = - 2R In, and is obtained using a sca
lar function y(m2,z) with a pole at the same mass value. We 
obtain the finite ~(I)C' from Yo, the finite portion ofy(m2,z) 
at that pole. 

C. Solution of the equation of motion 

One can now find the equation of motion for the coeffi
cient functions introduced earlier by examining the indepen-
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dent components of the wave equation 

(V - K)G~d' = - eabc'd'(Z) (4.11 ) 

(for the moment we will use an arbitrary mass-squared K). 
The evaluation of OGrr is simplified because 

0((0,) = (0j)0, + f(OO,), (4.12) 

for 0, any of our basis objects, andf(IJ.) any well-behaved 
function of IJ.. The expressions for DO, can be found in Ap
pendix A, and one can easily express Of as a function of z or 

IJ.: 

Of= [~+ (n-1)A~]r 
dIJ.2 dIJ. 

=a-2[z(1-Z)~+~(1_2z)~1~ 
dr 2 dzY' 

(4.13) 

One can then find the five coefficient functions for 
K= (0 - K)Grr . An 06 term vanishes identically because 
of one of the tracelessness conditions (4.3b). 

The five objects 0 1, ... ,05 are linearly independent with 
respect to contraction. The equation of motion (4.11 ) there
fore implies that the bitensor coefficient functions that deter
mine K and 9 satisfy k; + {}; = 0, for i = 1, ... ,5. Because of 
the tracelessness conditions of (4.3a) and (4.3b), there are 
three independent equations; we will use 

k2+{}2=0, (4.14a) 

k3+{}3=0, (4. 14b) 

ks + {}s = O. (4.14c) 

This means that 

4(Z" + (n -l)AZ' - [K+ (n + 2)(A - C)2]Z) 

+X" + (n -1)AX' 

- [K+ 2n(C 2 +A 2) - 8AC]X= - {}2' (4.15) 

Y" + (n - 1)AY' - [K + 2(A + C)2] Y 

+ 4ACZ = - {}3' 

Z" + (n-1)AZ'- [K+ (n+2)(C 2 +A2) -4AC]Z 

+n(C+A)2Y+2ACX= -{}s' 

Introducing the functions W(IJ.) and U(IJ.), defined by 

W=X+[2n!(n-1)]Y, (4.16) 

U= Y-Z, ( 4.17) 

one can decouple the five equations (4.8) and (4.15), ob
taining 

W" + (n + 3)A W' - (2na- 2 + K) W 

= - {}2 - [2nl(n - 1) ]{}3 + 4{}s, (4.18) 

U = [(n - 1 )/2(n - 1)2C]( W' + nAW), (4.19) 

Y= - [(n-1)ln(n-2)(n+ 1)] 

X [W + (nIC)( U ' + nAU)], (4.20) 

where we have used C 2 
- A 2 = a-2

• These last three equa
tions, and (4.16) and (4.17) above, completely determine 
the functions {X, Y,Z} in terms of W. 

Setting K = 2a-2
, and performing a change of variable 

to z = cos2 (IJ.12a ), we obtain 
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z(1_z)d
2
W +(~+2)(1_2z)dW 

dr 2 dz 

- 2(n + 1) W = a2S(z). (4.21 ) 

This can be expressed using the usual hypergeometric opera
torH= 2HI as 

H(a2,b2;c2;Z) W = a2S(z), 

for a2 = n + 1, b2 = 2, and C2 = nl2 + 2. The source term 
S (z) appearing on the right-hand side of ( 4. 21) is 

S(z) = - {}2 - [2nl(n - 1) ]{}3 + 4{}s' 

For separated points x and x' this source term can be 
written as a sum of two pieces, 

S(z) =a-2[So(z) +SI(Z)], (4.22) 

which are obtained from spin-O and spin-1 propagators. 
These pieces of the source can be found using (4.10) and 
expressions (A5), (A6), (AlO), and (All). One obtains 

SI (z) = [ni I2(n - 1 )2J[2(z - 1)za;yo + (2Z 
- 1)az Yo] 

(4.23) 

and 

So(z) = [lI(n -1)] ([z(1-z)a;]2 

+ [nI2(n - 1) ]a;} ~ o' 

(4.24) 

Equation ( 4.21 ) is an inhomogeneous hypergeometric equa
tion for W. Its general solution is of the form 

W(z) = Wp(z) + rWI(z) +sW2(z), (4.25) 

where WI and W2 are linearly independent solutions of the 
homogeneous equation 

H(a2,b2;c2;Z) W = 0 

and Wp is a particular solution of ( 4.21 ). 
At this point we will specialize to de Sitter space. In 

order to evaluate the source term further, one needs expres
sions for the scalar and vector propagators appropriate to 
the space in question; the attendant difficulties in the case of 
anti-de Sitter space have already been touched upon in the 
Introduction. We will proceed no further for adS, pending 
further investigation. 

The case of de Sitter space is much easier: the scalar and 
vector propagators are all fixed by the requirements that the 
solutions be de Sitter invariant, have only one pole in the 
complex z plane, and have the same short distance (IJ.I a ..... 0) 
behaviors as the equivalent flat-space propagators.4 We will 
therefore be able to evaluate the source term further; these 
same conditions will also be enough to fix the graviton pro
pagator in de Sitter space. 

Using the definition of y found in Ref. 4 and of Yo found 
in Appendix C, one obtains 

Yo = ! az ~ (0) + const, 
where the constant in question will not matter, as examina
tion of (4.24) will show. Using the result for ~ (0) given in 
Sec. II, one obtains [using ro from Eq. (3.5)] 
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SdS (Z) = [ - na-2rol4(n - 1 )2] 

X {2(z - 1)z[2(n - 1)z - 2n + 1] 

Xaz /(a2 + 1,b2 - 1;c2;Z) 

- [4(n-1)r-2(3n-2)z+n-2] 

X/(a2 + 1,b2 - 1;c2;Z)}, (4.26) 

where liberal use of the hypergeometric equation satisfied by 
/( a2 + 1,b2 - 1 ;c2;Z) has been made. 

One can then find a particular solution to (4.21); this 
can be done easily with the aid of results in Appendix D. 
Using these, we find 

Wp(z) = - nro 2 {- r(n) [3n - 1 - 2(n -1)z] + [en - l)r - (2n -1)z- n - 2Jr(n + 2,1,.!!..+ 2;Z) 
4(n - 1) r(n/2) 2 2 

+ n(n + 1) [/(n,l, ; + l;Z) -H-~(n + 1,2, ; + 2;Z)] + : (5n
2 

+ n - lO)/(n,l, ; + 2;Z)} ,(4.27) 

where H -1 is an inverse hypergeometric operator defined in 
(D1). 

Two independent solutions to the homogeneous equa
tion obtained from (4.21), 

H(a2,b2;c2;Z)W = 0, 

are I( a2,b2;c2;Z) and I( a2,b2;c2; 1 - z). The second solution 
has a pole at z = 0, and neither our particular solution nor 
the first solution has one to cancel it. We know then that it 
cannot contribute, and are left only with finding r 2 (n) for 
which 

W = Wp + rJ(n + 1,2;n/2 + 2;z) (4.28) 

has the correct short-distance behavior. This is done by ex
amining the behavior of the propagator as /lja-+O. In this 
limit, 

a2(l - z) -+/l.2/4. 

In n dimensions, the traceless part ofthe flat-space graviton 
propagator goes asp,2 - n (see Ref. 11). Moreover, an analy
sis of the expressions for the IT coefficient functions as func
tions of W shows that their limiting behaviors in this regime 
mirror that of W, which may therefore be regarded as a "gen
eric" coefficient function. Use oflimiting expressions for the 
hypergeometric functions near z = 1 then lets us fix 

r2(n) = [ - nrol(n - 1)2](n + i). (4.29) 

The resulting expression for the full solution Wobeying de 
Sitter boundary conditions matches that found for previous
lyn =4.12 

D. The propagator coefficient functions 

Expressed as functions of W(z) and the hypergeometric 
operator, the original five coefficient functions for the IT 
part of the propagator of (4.1) are given by 

a= -6-[(n-1)/n2]W, 

/3= [4(n -1)/n](l -z) 

X{[lIn(n+ l)]zH(n+ 1,n;2(n+ 1);Z)+ Ow, 
'" = [(n - 1 )/2](6 + (lIn) W), (4.30) 

6 = [4(n - 1 )/n2(n - 2) (n + I) ]z( 1 - z) 

XH(n + I,n;n + 1;Z) W, 

E = !(/3 + n6). 
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I 
These· functions completely determine the IT part of the 
propagator with the bitensor objects of (2.6a)-(2.6e). 

The full propagator can now be obtained by merely add
ing the contribution of the PT part of the propagator to a (z) 
as given above: 

a Full =aTT - [1I(n-l)(n-2)][9(op (4.31) 

where [9 (0) is given by (3.2). Recall that we have been 
working in units for which 

321TG= 1, 

which should be made explicit to restore the constant factor 
ignored since the beginning of Sec. II. 

We have found the propagator for a de Sitter space of 
arbitrary dimension. Preliminary work indicates that the 
transverse-traceless part of the anti-de Sitter space propaga
tor will be of the form 

G~dS (z) = }2 [G:~ (z) + al(n)G:~ (l - z) ]. 
1=0.1 

The G:~ 's will be obtained using the So and SI pieces of the de 
Sitter space source term, and the factors ai will be set by 
constraints on the long-distance behavior of the propagator 
and curvature fluctuation expectation values. 

V. PROPAGATOR BEHAVIOR AND IMPLICATIONS 

The limit z(x,x') -+ - 00 corresponds to large spatial 
separations of the two points x and x', and z(x,x') -+ 00 to 
large timelike separations. This is most easily seen by writing 
z(x,x') in terms of the separation between the equivalent two 
points X and X' in the Lorentzian embedding space. Work
ing from a result in Ref. 4, we find that, for 
d 2 -=nQb (X - X')Q(X - X,)b, one has 

Z= 1- (d/2a)2. (5.1) 

This expression for z matches z = cos2 (p,/2a) for p, real, and 
also when we pick out a time coordinate by letting 
Xo -+ - ixo• It extends z to the case of spacelike-separated x 

and x' that are not connected by a geodesic. The various 
Green's functions are obtainable from the behavior of the 
two-point function in the complex z plane.3.4 

As z -+ ± 00, the PT piece of the propagator diverges 
like z In 14 and the IT piece like In 14 However, the long
distance behavior of the propagator is not in itself sufficient 
grounds to characterize de Sitter space as unstable. The pro-
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pagator is not itself observable. When physical observables 
are found using the propagator, the results need not have the 
same long-range behavior as the propagator. 

For example, in Refs. 8 and 18, the two-pomt functions 
for perturbations of various curvature tensors in perturbed 
maximally symmetric spaces are discussed. They are found 
to be identically 0 or to drop offvery quickly for large Izl. For 
any maximally symmetric space, 

«(I)R a b (I)R e'r) = «1)R (I)R ') = O. 

For an n = 4 de Sitter space and large 14 

«(I)R ab (J)R e'!' ) -lzl- 2 
cd r's' 

and 

«(I)R aO cO (I)R e'O'ro') -lzl-3• 

Since this last object determines the geodesic deviations of 
test particles near our two points, observers anchored to dis
tant points see only de Sitter-like motion in test part,icles. A 
similar result will hold for anti-de Sitter space; its general 
form will be used to establish appropriate boundary condi
tions for adS.4 

In any event, the propagator is well behaved for points 
within one horizon length of each other. This has been used 
for n = 4 to argue that observers always see a locally undis
torted de Sitter space, though the long-range divergence will 
show up if there is a transition to a space lacking the de Sitter 
particle horizon. 19 Note as well that the divergence of the 
propagator for large separations is not pathological for cos
mologies with a de Sitter-like phase of finite duration. 
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APPENDIX A: CURVATURE AND BITENSOR 
IDENTITIES 

1. Curvature Identities 

In a maximally symmetric space with curvature param
eter a2

, the background curvature tensors are20 

R abed = (1/ a2) [g"cgI'<' - ~r], 

Rac= [(n _1)/a2]g"c, 

R = n(n - 1)/a2
• 

(A1) 

It follows that the cosmological constant A obeying the Ein
stein equation is given by 

A = n - 2 R = (n - 2)(n - 1) . (A2) 
2n 2a2, 

The n-sphere volume is given by 

21T(" + 1)12a" r(n/2) 
V = = (41Ta2) "12. (A3) 

" r«n + 1)/2) r(n) 
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2. Bltensor Identities 

All the identities given here can be derived from the 
formulas in Table I. Other helpful relations can be found in 
Appendix C of Ref. 4. In n dimensions, we find, for the ob
jects defined in (2.6a)-(2.6f), 

001 =0, 

DOl = - a-20 6 + 2ACOs 

+ (C 2 + A 2)04 + 2(4AC - n(A 2 + C 2)}Ol' 

003 = n(C +A)20s + 4(C +A)204 - 2(C +A)203, 

004 = - na-20 6 - n( C 2 + A 2)04 + 2( C 2 + A 2)01, 

(A4) 

DOs = 40-20 6 - (n(C 2 + A 2) + 2(C + A)2)OS 

- 4(C +A)204 + 4AC03 

+4(n-2)(C+A)20 l , 

006 = - n(C 2 +A 2)06 + 2a-20 1 - na-20 4. 

We now give a formula for 

rbe'd' = a4(V"Vb _ (1/n)g"bO) 

X (VC'Vd ' - (1/n)g"'d'D')G, (A5) 

where G is any function of z. The five coefficient functions 
for J are given by 

p = (1/n 2
) [G(4) (z - 1)2r - ~G(2) (- 4r + 4z+ n) 

+ 2G(3) (z - l)z(2z - 1)], 

f = G(4) (z - 1 )2r + 4G(3) (z - 1 )2Z + 2G(2) (z - 1 )2, 

f = !G(2)' (A6) 

l = - (lin) [G(4) (z - 1 )2r + 2G(3) (z - 1 )z(2z - 1) 

+2G(2)(z-l)z], 

!= -HG(3)(z-l)z+G(2)(z-1)], 

where~i) =.d 1/di. 
The coefficient functions of 

K abe'd' = a4V"V~c'Vd' G 

are given by 

k 1 = l(2z - 1) 2G(2) + !(2z - 1)G(1» 

k 2 = (Z - 1 )2rG(4) + 4(z - 1 )2zG(3) 

+ 2(z - 1 )2G(2) , 

k
3 

= lG(2)' 

e=!(z-1)z(2z-1)G(3) +2(z-1)zG(2)' 

k 5 = -!(z-l)zG(3) -!(z-1)G(2)' 

(A7) 

(A8) 

If two biscalars a and /3 can be written as functions of 
y(z) by 

a(y) = [ __ 2_ Z(1-Z) ~+ (2z-1)] y, 
n -1 az 

/3(y) = a(y) - y, (A9) 

then the components of 

pabe'd' = a2V(d'V(b [ag")C') + /3na)nC')] (AlO) 
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are given by 

I 2z-1 ar 
p = - 2(n - 1) a;' 
p2= _2 z2(z-I)2 a3r -2 (n+2)z(z-I)2 a 2r 

n-l az3 n-l az2 
_ 2 n(z-l)2 ar 

n-l aZ' 

3 Z(Z-l) a2r n(2z-1) ar 
p = 2(n - 1) az2 + 4(n - 1) aZ' 

4 Z(Z - 1) a2r 
p=- n-l az2' 

z2(z - 1)2 a3r 
p5= 

2(n - 1) az3 
z(z-I)(2(n+2)z-(4+n» a 2r 

4(n-l) az2 
n(z-I)2ar 
2(n - 1) az 

For the case of general a and /3, see Ref. 12. 

APPENDIX B: A MODE-FUNCTION COOKBOOK 

1. The mode functions 

(All) 

We start with {cp D, {S- ~1, and {h ~1, the spin-O, spin-
1, and spin-2 eigenfunctions of 0 on then-sphere.21 They are 
defined, for k = 0,1,2, ... , by 

(Bla) 

(BIb) 

Oh~' = .. .q2lh ~', (Blc) 

h l"'-V hl"'-V hI'" gab k - a k - b k 

= VaS- ~. = 0, for all allowed k,i. 

(BId) 

For s = 0,1,2, the spin-s modes' eigenValUes are given by21 

A. iSl = - [k 2 + (n + 2s - l)k + s(s + n - 2) ]a- 2
• 

(B2) 

The general multiplicities of these modes can be found in 
Ref. 22; those used in the paper are given as needed. The 
modes are orthogonal in the following senses: 

f cp~(x)cp~(x)dV= f 5~(x)5~a(x)dV 

=fh~'(X)h~ (x)dV=c5 jic5mk , (B3) a' 

where the integrals are taken over the entire n-sphere (as are 
all integrals in this paper involving mode f~nctions). We will 
usually drop the degeneracy index i used above; all summa
tions over the spectral index (k = 0,1,2,3, ... above) will then 
include an implicit sum over the degenerate modes. 

Starting with the scalar and vector eigenfunctions, one 
can obtain tensor mode functions using the gradient opera
tor and the background metric tensor g and Ricci scalar R. 
They are defined by 
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xkb=n-1/2~bcpk' k=0,1,2,3, ... , (B4) 

W%b = Wk(V"Vb - (1/n)~bO)<pk, k = 2,3,4, ... , 

for 

and 

nb = [ - ~(A. iIl + R /n» -1/2v(a5~l, n = 1,2,3, .... 
(B6) 

The X's will be referred to as the "pure-trace" tensor 
modes; the traceless Wand V modes will be called the longi
tudinal and shear tensor modes. These modes are orthonor

mal in the same sense as the h r"s, that is, 

f X;;"(x)Xka.(x)dV 

=f WC(x)W~ (x)dV a' 

(B7) 

The four types of modes X, W, V, and h are orthogonal to 
each other in this same sense. 

2. The cookbook 

It will be necessary to calculate OV k and OW k, as the 
eigenvalues of these modes are shifted away from those of the 
eigenfunctions from which they were constructed. One finds 

OV k = (A. ill + (n + l)a-2)V k, (BS) 

and 

DWk = (A. iO) + 2na- 2 )Wk. (B9) 

We now look at expressions of the form 

(~~"Vd + ~~"Vb) Ted' 

where T will be the various tensor mode functions. One finds 

(~~"Vd + ~~"Vb)h ~d 
= (~~"Vd + ~~"Vb) V~d = ° (BlO) 

and 

(~~"Vd + ~~"Vb)(Wk~) 
Xed 

( ° n
l/2

wk- 1)(W%b) - (Bll) 
- n1/2w;: I U iOl X%b' 

where a simple vector/matrix notation has been introduced 
to exhibit better the W -X mixing present. 

The remaining interesting expressions are 

v(a~)("Vd)h:b = 0, 

v(a~)("VdlV~d =!(A. iIl + (n - 1)a-2)V%b, 
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and (B 14) are symmetric; this will allow the graviton action 
to be inverted in terms of our mode functions even when it 
includes W-x mixing terms. 

APPENDIX C: VARIANTS OF THE SCALAR AND 
VECTOR PROPAGATORS 

1. The scalar propagator 

In Ref. 4, the scalar propagator G(m2;x,x') was found 
for de Sitter and anti-de Sitter spaces as a function of 
p,(x,x'). As it obeys the equation of motion 

( - 0 + m2)G(m2;x,x') = c5n (x,x') , (CI) 

it can also easily be found in terms of the scalar eigenfunc
tions of D. One obtains 

G( 
2. ') _ ~ tpk (X)tpk (x') 

m ,X,X - ~ . 
k = ° - A. kG) + m2 

(C2) 

The equivalence of the mode-sum and function-of-p, forms of 
the scalar and vector propagators is crucial to the calcula
tions in this paper. The mode sums arise naturally from 
Gaussian functional integrals,13 but evaluation of them as 
functions of the geodesic separation here only proceeds us
ing this equivalence. 

At different points we will need different incomplete 
sums over scalar modes. We therefore introduce 

G
-(l 2 )=~ tpk (X)tpk (x') ,m,z -~ . 

k = I - A. kG) + m2 
(C3) 

We will need the second term appearing in the full mode 
sum, which can be written as 

2 n+ltp~(x)tpl(x') 
¢I(m ,p,) = ;~I -A. \0) + m 2 • (C4) 

Since the (n + 1) modes {tp ~ (x)} correspond to the coordi
nates of the n-sphere in the embedding space Rn + 1,13.22 one 
obtains 

n+1 
L tp~ (x)tp~ (x') a:x·x' = a2cos(p,la) 
;=1 

= a2 (2z - 1). (CS) 

Using the orthonormality of the modes, one then obtains 

¢1(m2,z(p,» = [(n + 1) V n- I/(m2 + na-2>] (2z - 1), 

(C6) 

where Vn is the n-sphere volume given in Appendix A. 

2. The vector propagator 

The vector propagator G.P1n•1 obeys the equation of mo
tion 

( _ Og"b + R ab + V"Vb + m2g"b)G"t,!0-1 = c5n(x,x')g"c" 
(C7) 

One can invert (C7) to obtain a mode-sum expression for 
Gopln.l (see Ref. 12): 
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Gae'. (m2.x ') = ~ Sk(X)S~(x') 
aptn-I ,,x ~ , (I) RI 2 

k=O -Ak + n+m 

+ (_I_)V"Vc' f tpk (X)tpk (X') 
m2 

n = 1 - A. kG) 
(C8) 

This solution exhibits the well-known divergence of the 
massless vector propagator in the absence of a gauge-fixing 
term.9 

We now define 

Qac'( 2 )= ~ 'k(X)S~(X') m,z -~ _ 
k-O -..1.kl )+Rln+m2 

= G:~n.1 (m2;x,x') - (lIm2 )V"Vc'0(1,0,z). 

(C9) 

In Ref. 4, an expression for the vector propagator 
G :;;0.1 (m2,z) in a maximally symmetric space was found. It 
has the form 

G:;;n.1 (m2,z) = a(r)g"c' + {3(r)nanc', (ClO) 

where the coefficient functions are as given in (A9), and 
r(m 2,z) obeys 

Z(1-Z)~J +(~ + 1)(1-2z)~~ +(m2+ ~)r=o. 
The de Sitter and anti-de Sitter forms for rwill, in general, be 
different, as they will obey different boundary conditions. 
Here we need only note that r has a simple pole at 
m2 = - 2R In in both cases. 

In the text, we need to evaluate the mode sum 

Q
-ac'( 2. ')_~ Sk(X)S~(X') 

m ,X,X - ~ . 
k = 1 - A. kl) + R In + m2 

(Cll) 

We can relate this incomplete sum over vector modes to a 
term in an expansion of r( - 2R In,z). Near the mass
squared value 

m~ = A. ~I) - R In = - 2R In, (C12) 

the k = 0 term Q - ij diverges as a simple pole. Since this is 
away from m2 = 0, examination of (C9) reveals that this 
pole must come from the G.P1D•1 contribution to Q. There
fore, we expand G :~0.1 in powers of E = m2 

- m~. For small 
E, one has 

00 

G:;;o_dE + m~,z) = L KtE}; (C13) 
}= -I 

one also has 
00 

r(E+m~,z)= L rl(Z)~. (CI4) 
l~ -I 

Our expression for the spin-l propagator [ (A9) and (C 10) ] 
then implies that 

Kt = a( r} )g"c' + P(r} )nanc' = G:;;O.I (r}). (CIS) 

Removing a pole in r removes an equivalent pole in Gopln.l' 

This means that 
- ac' 2 CA c' 2 c'-Q (mo,z) = J ~I) - (limo )V"V G(1;O,z), (C16) 

where 

Y~f) =G:;;D.I (ro) = a (ro)g"c' + {3(ro)nanc'. 
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APPENDIX D: USEFUL HYPERGEOMETRIC IDENTITIES 

We need to find a particular solution to (4.21). It is 
possible to rewrite this equation as 

HWp = H{[Ar + Bz + Clf(a2 + l,b2 - l;c2;Z)} 

+ [Dr + Ezlf(a2 + l,b2 - l;c2;Z), 

whereH = H(a2,b2;c2;Z), and A, B, C,D, and Eare nonzero 
constants. We therefore need to find 

H-I{[Dr + Ezl{(a2 + l,b2 - l;c2;z)}, 

for 

(Dl) 

We first notice that b2 ~ 1 = 1; this allows us to write 
the remaining piece of the source term in terms of our modi
fied hypergeometric function defined in (3.4) using 

u- I r(a - 0' + I) 
f/(a,l;c;z) =/(a - O',I;c - o-,z) - L Zl, 

1=0 r(c-O'+ 1) 
(D2) 

which holds if a,c > 0'. 

The rest of the source term can then be found using the 
contiguous relations for hypergeometric functions and the 
following identities: 

H- 1{z/(a2 + l,b2 - l;c2;Z)} 

and 

= ! [H -1j(a2,b2;c2;Z) - /(a2 - l,b2 - l;c2 - l;z)] 

+ (a2 - c2)H -1j(a2 - l,b2 - l;c2 - l;z) 

- r(a2 )/r(c2 -1)]H- 1l, 
(D3) 

H- I{r/(a2 + l,b2 - l;c2;z)} 

= ~ [H -1j(a2,b2;c2;Z) - /(a2 - l,b2 - l;c2 - l;z)] 

- H -1/(a2 - l,b2 - l;c2 - I;z) 

_ r (a2 - 1) H - I [1 + a2 - 1 z]. 
r (c2 - 2) C2 - 2 

(D4) 

Again, these are valid because our b2 = 2; they can be simpli
fied using the more general results below. 

Generalizing H -I to 

H(a,b;c;z)H-1j(z) =/(z), 

we find 

H-II = - 1/ab, (D5) 

H -I z = [ - 1/ (a + b + 1)][ z + c/ ab ], 

for a,b,(a+b+l)#O. (D6) 

Note that any function J(z) specified by 

J(z) = H -I (a,b;c;z)j(z) 

is defined uniquely only up to solutions of the homogeneous 
equation H(a,b;c;z)k(z) = O. We will drop these solutions 
when apparent. 
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For o#b, one finds 

H -1j( a,b;c;z) 

= [1/(b - a) 1[ aa' - abo V(a',b ';c;Z) la' = a . (D7) 
b'=b 

When a,b are integers and a > b (as is the case for o2,b2 when 
n is an integer) we can write 

H -1j( a,b;c;z) 

= L Z yb+I-1j(a,b;c;y)dy. 
a-b-I -(b+/Jiz 

1=0 b-a 0 

(D8) 

H - 1/( a,b;c;z) 

= L Z yb+ 1-1j(a,b;c;y)dy. 
a-b-I -(b+/) iZ 

1=0 b-a 0 

(D8) 

Finally, we have 

H-I/(a - I,b - I;c - I;z) = - ~/(a - l,b - l;c;z), 
(D9) 

if a + b + I = 2c, a condition met by most of the hypergeo
metric functions used in this paper. This is so because the 
differential operator 

A(/-l)a/J. = (1/2a)(I-2z)az 

appears in every equation of motion used here. 
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Following the work of P. Bona [J. Math. Phys. 29, 2223 (1988)], a class of infinite mean-field 
quantum lattice systems is considered within the framework of algebraic quantum mechanics, 
and the following question is discussed: Which are the possible dynamical descriptions of the 
system, i.e., in which representations 1T of the system's quasilocal c* -algebra d do the local 
time evolutions converge in the thermodynamic limit to an automorphism group of a certain 
enlarged c* -algebra 'it" fT containing 1T( d) and (some of) the classical observables of the 
system in 1T. To this end we associate a "classical state space" EfT to any representation 1T 

(which is a subset of the phase-space Ec;;, RL defined by Bona for the largest possible 
representation), and show how it is characterized by the 1T-normal states, thereby obtaining a 
way to determine EfT explicitly in many cases. The answer to the question posed then reads: 
The limiting (Heisenberg) dynamics exists in 1T on 'it" fT if and only if the set EfT is invariant 
under the flow rp ? on E which describes the time evolution of classical observables. 
Conversely, to any invariant, closed subset B of E, there exists a dynamical description ofthe 
quantum system with classical state space B. 

I. INTRODUCTION 

The rigorous formulation of the dynamics of infinite 
quantum (lattice) systems in the presence oflong range in
teractions has been a long-standing problem in operator-al
gebraic quantum mechanics. The physical relevance of such 
models is assured by the fact that long range forces and the 
corresponding mean-field Hamiltonians have proven to be 
excellent approximations to the real many-body systems in a 
number of situations, notably in the case of superconductivi
ty. Moreover, these models are of interst from a fundamental 
point of view due to the occurrence of so-called "classical 
observables," and thus of superselection rules. I 

In the theoretical efforts to deal with quantum mean
field systems it was realized long ag02

-4 that-in contrast to 
the situation for short range forces5-the dynamics in the 
thermodynamic limit cannot be formulated as a * -automor
phism group of the algebra of quasilocal observables d; i.e., 
that the description of this time evolution is representation 
dependent. 

While this problem was successfully dealt with in the 
case of thermal equilibrium,2.3.6-12 the task of obtaining a 
general dynamical description of the system is more diffi
cult. Hepp and Lieb l3 first succeeded in establishing a pic
ture of the dynamics of certain macroscopic (intensive) 
quantities, which they described as a Hamiltonian flow on a 
"phase-space" RL. In their ingenious approach, the problem 
of representation dependence is in a sense circumvented by 
taking all limits in terms of certain expectation values for a 
suitable large class of states. A while ago, the problem of 
defining the limiting dynamics as a group of automorphisms 
in suitable representations was discussed rather thoroughly 

by Morchio and Strocchi,14 but it IS only very recently that 
Bona IS and independently Duffner and Rieckers 16 have been 
able to actually prove the existence of the limit of the local 
time evolutions for a class of models in a certain representa
tion 1T ~ of d (a partially universal representation belonging 
to a folium l7 F~ of states). 18 In Ref. 15, Bona determined 
explicitly the minimal c* -algebra 'rff c;;, Jl fT." : = 1T ~ (d)" 
generally necessary to define this limiting Heisenberg dy
namics as an automorphism group 'T'Q on 'rff. Moreover, he 
developed very elegantly Hepp and Lieb's ideas by con
structing a classical (generalized) p~-space E as a com
pact convex subset ofRL

, and a flow rp? on E, with the help 
of which the dynamics of the classical observables of the 
system (in the center of the von Neumann algebra JI,,[# ) 
can be described. Let us say that we C9nsider Bona's work a 
milestone in the field, since it completely clarifies the general 
structure of the mean-field dynamics in the above class of 
infinite quantum systems. 

In the present article, our purpose is to supplement this 
work by investigating possible dynamical subdescriptions of 
the models under consideration. The description Bona de
velops is maximal in the sense that he works with the largest 
representation 1T ~ in which the limiting dynamics can (in 
general) possibly be defined; it is therefore natural to ask 
which representations quasicontained in 1T ~ also allow the 
definition of the (Heisenberg) time evolution of the infinite 
system. An answer to this question is interesting for two 
reasons: First, often one is interested in studying the system 
under well-defined environmental conditions (e.g., a range 
of temperatures) that reduce its possible states, so that a 
correspondingly smaller representation is desirable from a 
pragmatic point of view. 19 Second, there are conceptual 
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problems that call for smaller representations: e.g., one can 
show (compare Ref. 16) that in the maximal representation 
1T'[§ the implementation (Ref. 5, Def. 3.2.54) of the gener
ator of rQ by a self-adjoint operator-which could then be 
considered the global energy operator of the system in a cer
tain sense-is not possible. This is due to lacking continuity 
properties. Thus, for the purpose of defining a global Hamil
tonian, one is force to look at substructures of 1T' [§ • 

The answer we give to the problem of dynamical subde
scriptions essentially has two ingredients. After a brief 
sketch of Bona's theory we associate a classical state space 
EfT ~E to each representation 1T'<.1T'.'# (<. is the ordering of 
quasi-equivalence classes of representations) as the state
space of the algebra of macroscopic, classical observables 
JV fT in 1T', and we characterize it with the help of the states in 
FfT (the folium associated to 1T'), FfT ~F.'#. We show that, in 
many important cases, this characterization allows the ex
plicit determination of EfT' It also enables us to derive a con
ceptUally interesting description of the subfolium structure 
of the folium F[§: the map FfT -EfT is a surjective, order
preserving V -homomorphism between complete distribu
tive lattices.20 In other words, F [§ is naturally classified in 
terms of the closed subsets of E, i.e., in terms of possible 
"classical structures." These connections also imply that in 
each such class there is a unique maximal element. 

As a second step, we show that the existence of the limit
ing Heisenberg dynamics in a representation 1T' with the 
property that it acts [besides on 1T'(d)] also on the macro
scopic observables JV fT' depends solely on EfT: it exists if and 
only if EfT is invariant under the classical flow tp? 

While the question of possible dynamical descriptions is 
thus answered quite comprehensively, in the sense that one 
knows in principle all representations which allow the defin
ition of the time evolution of the infinite system with "mac
roscopic part," it needs to be emphasized that this result is 
restricted to the Heisenberg picture in which we work 
throughout. Hence, as we indicate at the end of the paper, 
one important further question is left open here: the exis
tence of Schrodinger dynamics in a given representation 
( compare Refs. 14, 21 ). This problem will be addressed else
where.22 

II. THE DYNAMICS OF A CLASS OF QUANTUM MEAN· 
FIELD SYSTEMS 

Before we start with the discussion, let us briefly agree 
on some notation. Of central importance in our reasoning is 
the one-to-one correspondence between folia in S(d) (the 
state space of d), quasi-equivalence classes of representa
tions of d, and central projections in the universal von Neu
mann algebra JI u' which preserves the partial ordering in 
these three sets. 17 Thus, to any representation 1T' we associate 
a folium FfT and a central projection c( 1T'), and, conversely, 
to any folium F a representation 1T'F [up to quasi-equiv
alence; we have 1T' F: = ED weF1T' "" where 1T' '" is the GNS-repre
sentation (the canonical cyclic representation) of CdES( d) ] 

and a_central projection c( 1T' F)' Furthermore, for a represen
tation 1T' we define the von Neumann algebra 
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JlfT: = 1T(.!d)" = c(1T')JI u with center .fr fT = c(1T').fr u' 

and the Hilbert spaceKfT: = ED weF"K", = c(1T')Ku ' Here, 
.fr u is the center of JI u' and K u is the Hilbert space of the 
universal representation 1T'u of d. We note also the one-to
one correspondence between the normal states on Jl fT , and 
the folium FfT' 

To make the paper self-contained, we shall now sketch 
the theory developed in Ref. 15 to the extent necessary for 
our present purposes; for more information and additional 
references, we refer the reader to the original paper. 

The models under consideration are defined by three 
elements: 

( 1) The c* -algebra 

d: = ® d n, d n =B(Cm) =Mm VnEN, 
neN 

which can be defined as the c* -inductive limit of the local 
algebras 

d(A): = ® d n , Ae.!f: = {A~N:IAI < oo}. 
neA 

Here, M m denotes the complex m X m matrices, and I A I the 
cardinality of A. d is simple and antiliminary,23 yielding a 
very rich structure of the state space S(d). 

(2) A real Lie algebra [J of dimension L (taken to be 
the Lie algebra of a compact Lie group G), which is repre
sented on Cm by anti-Hermitian operators 

(1/i)X([3), where X([3)e( Mm ) •. 8. V{3e [J. 

This Lie algebra is chosen as the smallest Lie algebra, giving 
all elements of (Mm ) •. 8. which occur in the local Hamilto
nians below. It can always be taken as [J ~Lie(SU(m», 
since Lie(SU (m» and (M m ) •. 8. differ only by leM m' 

( 3) Local Hamiltonians 

HA: = IAIQ(XA ([3I),,,,,XA (P L», 
where Q: JIlL _ R is an arbitrary, nonlinear polynomial. The 
density observables 

1 X A ([3 k): = - L Xn ([3 k), k = 1, .. ;,L, 
IAI neA 

Xn ([3 k) = 1 ® ... ® 1 ®X([3 k) ® 1 ® ... ® 1 ed(A) 
-...-
position n 

are defined by means of the elements 

X([3 k)e(Mm ) •. 8.; 

pi , ... ,p L is a suitably chosen basis of the vectorspace 
[J ~RL. In this situation, one is looking for a suitable limit 
A - 00 of the local time evolutions 

It is shown in Ref. 15 (compare Ref. 14) that such limits 
always involve limits, 

lim XA (P k), ke{I, ... ,L}, 
A 

that do not exist in the norm topology of d. 
Therefore, one defines the largest representation 1T' [§ of 

d in which all such limits exist. This can be done by means 
of the folium 
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F~: = {wES(d): stop -lim 1T,,(XA (/3» 
A 

= ex. V/3E .o/}; 

the corresponding central projection c ( 1T ~ ) in JI u can be 
defined as 

C(1T~): = sup{PEg' u,P projection: stop 

-lim 1Tu (XA (/3»P = ex. V/3E .o/}. 
A 

The "kinematical structure"S,IS in which the dynamical the
ory is defined is thus 

(d ~ )1T.'9 (d) ~1T;9 (d)" = :JI.'9 ~ @ (JY.'9 ), 

JY.'9: = C(1T;9 )JYu = E9 JY.,. 
weF.1-

In this setting, one defines 

X;9 (/3) : = stop - lim 1T.'9 (X A (/3) )Eg' ;9 
A 

and 

ff: = c*-alg. hull{X.'9 (/3), /3E .o/}~g'.'9' 
Note thatff is obviously the smallest c* -algebra containing 
all macroscopic observables X;9 (/3); it can be looked at as 
the classical part of the description, I due to its being part of 
the center of JI ;9 • 

One of the important ideas in Ref. 15 is to use the 
SNAG-theorem to obtain from the representation 

U2 a' /3 iX .• ({3) 
lY~.;z:9' --+e 

of the additive group .0/ a unique, projection-valued measure 

W~: @(.o/*)-+&,(g'.'9)' 

where @ ( .0/ *) is the Borel CT-algebra of .0/ *, the vector 
space dual of .0/ , such that 

X~ (/3) = L.f{3 (F)dW f§ (F) V/3E.o/ (1) 

holds in the wop-topology (weak operator topology) on 
JY ;9' In (1), f{3 is the element of the bidual .0/ ** corre
sponding to /3E.o/ via the canonical isomorphism, i.e., 
f{3 (F): = F(/3) VFE.o/*. 

If one lets E: = supp W.'9 ~ .0/ *, which is compact, and 
denotes with C(E) the c* -algebra of continuous functions 
on E, one has the following result. 

Theorem 1: (1) ff ~ C(E) via the * -isomorphism 

W ~: C(E) -+ff, 

f-+ L f(F)dW ~ (F), 

f{3-+X~ (/3). 

(2) For~: = c*-alg. hull{1T.'9 (d),.#'} it holds 

~ = 1T.'9 (d) ®ff ~d ® C(E). • 
The Gelfand representation theorem shows that E can be 
considered to be the pure states on ff, the algebra of classi
cal observables. It is therefore justified to call E the (general
ized) classical phase-space of the system. It depends on .0/ as 
well as on the representation 1T ~ . Note that E can be charac
terized further: from Prop. 2.4 in Ref. 24 it follows that 
[S(Mm) denotes the state-space of Mm]: 
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E = {FE.o/*: 3pES(Mm) 

with p(X (/3) ) = F(/3) V /3E .0/ } . (2) 

In particular, in the case .0/ = Lie(SU(m», one has 
E~S(Mm)' 

Turning now to the description of the dynamics, one 
observes that the polynomial Q: RL -+ R can be considered 
an element of C '" ( .0/ * ), since .0/ ~ .0/ * ~ .0/ * * ~ RL as vec
tor spaces. It induces a flow {ep?} IER on E ~ .0/ * via the 
vector field 

(AQ(FI, ... ,FL»k = ± aQ (FI, ... ,FL)( ± C~jFI), 
j=la~ 1=1 

where C ~j are the Lie structure constants of .0/ with respect 
to the basis /3 1

, ... ,/3 L, and F I, .... FL the coordinates with 
respect to the corresponding dual basis of .0/ * . 

We denote with (ep?) * the induced * -automorphism 
group of C(E): (ep?) * (f): = fOep ?, fEC(E). 

The main result of Ref. 15 is then the following. 
Theorem 2: There is a unique * -automorphism group 

1'?: ~ -+~, 
such that for "sufficiently small" tER: 

(1) 1'?(x) =stop-lim1T~(r;"'(x» VXEd(A), 
A' 

VAE.!L', 

(2) 1'?(X.'9 (/3) ) = stop - lim 1T ~ (~(X A (/3) » 
A 

V/3E.o/ . 

In addition, it holds 

(3) 1'?I.r = W ~O(ep?)*oW~l, 

( 4) 1'? is strongly continuous in t on ~. • 
Our aim in this paper is to find all representations 1T<.1T ~ 

such that Theorem 2 holds in 1T. 

III. KINEMATICAL SUBDESCRIPTIONS 

In this section, we consider an arbitrary subrepresenta
tion 1T<.1T f§ , or, equivalently, a subfolium F" ~F ~ ; we have 
then C(1T)Eg'~, and 1T(X)=C(1T)1T~(X) VXEd. All 
structures of the previous section can be developed for 1T in 
an analogous way. We define 

X 17 (/3) : = stop - lim 1T(X A (/3) ) Eg' 1T' /3E .0/ , 
A 

and ff 17 ~ g'1T' the c* algebra generated by these operators. 
The SNAG measure belonging to this representation, W", 
and its support E1T ~.o/* give rise to the relation 

X" «(J) = f f{3 (F)dW 1T (F), 
JE~ 

and to the * -isomorphism 
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If,,.: C(E".)-+J1f"., 

/-+ L" /(F)dlf ".(F), 

l-+lf".(E".) =e(1T). 

The connection of these structures, which will henceforth be 
called a "kinematical subdescription" of the system, to the 
objects of Sec. II is established in the following easy lemma. 

Lemma 3: One has 
(i) If,,. =e(1T)·lf.'9 as a (projection-valued) measure 

on [§*, 

(ii) E". C,E, 

(iii)J1f". = e(1T)J1f, Cff".: = 1T(d) ®J1f". = e(1T)Cff. 

Prool We have, due to 1T = e( 1T)1T:§, 

x". ({3) = X:9' ({3)' e( 1T) 

= [L/p(F)dlf.'9 (F) ]'e(1T) 

and, due to the continuity of multiplication in the wop topol
ogy, 

Xtr ({3) = L/p (F)(dlf,'§ (F) 'e(1T» 'tf{3E[§. 

Uniqueness of the SNAG measure now gives the desired 
result. 

Part (ii) follows immediately from (i) and the defini
tion of the support, since 

Part (iii) follows again from 1T = e( 1T)1T;~ . • 
Note that part (i) also implies e(1T)lf;~ (Etr ) 

= If rr (Err) = e( 1T), hence 

e(1T),.;;lf;~ (E".). (3) 

The "classical state space" E". associated to the representa
tion 1T plays a crucial role in the subsequent analysis 

IV. CHARACTERIZATION OF E .. 

Our first aim is to obtain more information about the 
space E".; this will be done by deriving a connection between 
states in the folium Frr defining the representation 1T, and E".. 

Any UJEFrr can be considered as a normal state on vll'rr' 
which will be denoted by the same symbol. The state UJ can be 
restricted to J1f rr c,.ff "., and thus defines-via the isomor
phism If ".-a state,u", on C(E".), and hence a probability 
measure on E"., again denoted by,u",. 
. As a first step, consider the GNS-representation 

1T '" ,.;; 1T";; 1T.'ff . One then gets the following. 
Proposition 4: It holds for UJEF"., 
(i) ,u",(A) = UJ(lf".(A» = UJ(lftr" (A» 'tfAE!!lJ(E".), 

(ii) supp,u", = E".,": = supp If ".," C,E"., 
(iii) if UJ is a factor state on ..0"", ,u", = 8p", the Dirac 

measure of a point F",EErr , 
(iv) one has 
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lim UJ(P(X,.. ({31 ), ... ,X,.. ({3 L») ,.. 

for all polynomials P on RL. 
Prool (i) Wehave'tf/C,C(E): 

i f(F)d,u., (F) =,u., (j) 
E" 

= UJ(lf ". (j) 

= L/(F)UJ(dlf". (F», 

so that 'tf AE!!lJ (E". ), 

,u.,(A) =UJ(lf rr(A» 

= UJ(e( 1T., ) If ". (A» 

! 

= UJ(lf ".," (A», 

(4) 

(5) 

since e( 1T.,) is the central cover of UJ. Note that (!) follows 
from Lemma 3, part (i). 

(ii) From (5) it is clear that supp,u.,C,E".w' Assume 
supp 1T., 1'E".,", There is then an open set A C,Errw ,\supp,u", 
such that ,u., (A) = O. Let e: = If ".," (A) ,.;;e( 1T., ); for the 
central projection 0 # CEvII' .,: = 1T., (A )" on K., one has 

,u.,(A) =UJ(e) = (n."en.,) 

= (en., ,en.,) = 0 ::::} en., = O. 

But then ( - 11'11 denotes norm closure) 

eK., = e{xn",: XEd}-II'1I = {eXn.,: XEd}-II'1I 

= {xen",: XEd}-II'1I = 0, 

so e = 0, which is a contradiction. 
(iii) Let UJ be a factor state on ..0""; one has 

e( 1T.,) = If ".)Err). 

If Err," consisted of more than one point, one would have a set 

A C,Err" with 

O1'E".)A) <e(1T",); 

this is a contradiction, since e( 1T., ) is an atomic central pro
jection.23 Hence, E".w = {F.,} for a F",EE"., and thus due to 
(ii), 

,u., = 8pw ' 

(iv) Due to the continuity of multiplication in the stop 
topology, one has 

stop -lim P(X,.. ({31 ), ... ,X,.. ({3 L» ,.. 
= P(X.'9 ({3 I) , ... ,X.'9 ({3 L» 
= If rr(P(F1, ... ,FL ». 

On bounded sets, the stop and the u-weak topology coincide, 
and since P(X,.. ({31 ), ... ,X,.. ({3 L» is uniformly bounded in 
A, it holds 
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= m(u - w -lim p(XA ({:J ·)"",XA ({:J L») 
A 

= m( ~ 1/"(P(FI, ... ,FL ») 
= J-LO) (P). • 

Remarks: (a) It should be noted that J-LO) is not depen-
dent on the representation 1T; mEF1/" e;;.F.,§, so m is also a nor
mal state on J( ~ , inducing a measure jiO) on E. But accord
ing to the representation-independent relation (4) (and the 
fact thatJ-LO) is uniquely determined on the norm-dense poly
nomials), one has ji 0) = J-L 0) . 

(b) The inverse of (iii), the statement that each point in 
E1/" corresponds to a factor state in F1/"' is false in general. 
Indeed, F 1/" need not contain any factor states at all. Compare 
also Prop. 2.3 in Ref. 24. 

(c) It is well possible that two disjoint factor states m., 
m2 have FO), = F0)2; this is due to the fact that, in general, 
ff; =1= 5 1/"' and disjointness is equivalent to having different 
values on only one ZE51/"' 

(d) Part (iv) should be compared with Ref. 13, where 
this relation is the starting point of the analysis. In the ter
minology introduced there, factor states belong to the "pure 
classical states." 

We now proceed to the main result of this section. 
Theorem 5: (i) The set E 1/" e;;. [1 * can be characterized in 

the following way (overbar denotes closure) : 

E1T = U supp J-Lw . 
WEF" 

(ii) If Qe;;.S(..c1') is a generating set for F1T , it holds 

E1T = U supp J-Lw . 
WEQ 

Proof' (i) It is clear that B: = U WEF" sUpPJ-LO) e;;.E1/"' 
We assume B =l=E1T , so that there is an open A e;;.E1T '\B with 

J-Lw(A) =0 'tfmEF1T =:}m(~1T(A»=O 'tfmEF1T ; 

but since F 1T is separating for J( 1/"' this implies ~ 1/" (A) = 0, 
which is a contradiction to the definition of E1/" as the support 
of~1/"' 

(ii) Q is a generating set for F 1T , i.e., 

F1T = convhull{QJII'II, 

where 

Qe: = {t/IES(..c1'):3meS(..c1'), 3ce..c1', m(c*c) = 1, 

such that", = me: = m(c* ·c)}. 

We denote B: = U WEQ supp J-LO) and show 
supp J-L", e;;.B 'tff/!EF1T' 

(a) Let first f/JEQe; =:} '" = me' aJEQ; =:} f/!EFO), and 
Prop. 4 now implies supp J-L", e;;.E1/"w = supp J-LO) e;;.B. 

(b) Let now f/!Econvhull{Qe}' i.e., '" = ~?= .A;m;, 
m;EQe' But that implies 

n n 

J-L", = L A;J-Lw
i 

=:} supp J-L", e;;. U supp J-Lwi e;;.B. 
i=1 1=1 

(c) Finally, consider mEF1T arbitrary. It exists a se
quence mn -+m in the norm topology of ..c1'*, where 
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mnEconvhull{QJ 'tfnEN. The normal extensions of these 
states on J( 1T satisfy mn -+m in the u(J( :,J(". )-topology 
(because Imn(x) -m(x)I<lIxlillivn -mil 'fIxEJI1/") and 
thereforeJ-Lw

n 
-+J-Lw in u(C(E1T )*,C(E1/"»' 

Now allJ-LO)n have sUPPJ-LO)n e;;.B as shown in (b), and if 
one had supp J-LO) rt,B, one could find a function /EC(E".) 
with supple;;. supp J-LO) '\B and J-Lw (j) =1=0, the first property 
implying J-LO) (j) = 0 'fInEN. This contradicts 
u(C(E1/") * ,C(Ej )-convergence. Hence, we must have 
supp J-LO) e;;.B. • 

With this last theorem, we are in a position to determine, 
at least in principle, the classical state space of any kinemati
cal subdescription of the system. In particular, consider 
S p(..c1'), the permutation invariant states25 on ..c1'. Due to the 
fact that they exhibit the same symmetry as the local Hamil
tonians (which is just the one defining mean-field models!), 
they are most important for the description of the system: 
e.g., all equilibrium states are in S P (..c1'). 

The classical state space of any folium generated by a 
subset Qe;;.SP(..c1') can be explicitly determined. To see this, 
recall that every meS P (..c1') is defined by a measure PO) on the 
extremal boundary, aS P(..c1'), which in turns is in one-to
one correspondence to S(Mm). [For every tpEaS P(..c1') 
there exists apeS(Mm) such that q; = ® neNP'] Hence, ev
ery meS P(..c1') is given by a measure onS(Mm), which, due 
to Eq. (2), determines a measure,ow on E.1t can be shown22 

that it holds,ow = J-LO). In this way, one can calculateJ-LO), and 

consequently U WEQ supp J-Lw = E1/"F' where F is the folium 
generated by Q (see Ref. 22 for a more detailed discussion) . 

v. THE STRUCTURE OF F~ 

We have seen that any subfolium Fe;;.F ~ determines via 
its representation 1T F a kinematical subdescription and, in 
particular, a state space E1/"F e;;.E. It is tempting to formalize 
this relation. Let 
.'7: = {Fe;;. F ~: F folium}, the set of all subfolia of F ~ , 

and 
~: = {Be;;.E: B closed}, thesetofallclosedsubsetsofE. 

With the operations F. V F2: = F, F the folium generated by 
F. andF2, andF. /\F2: = F.nF2,.'7becomesalatticewhich 
is isomorphic to the lattice of central projections in 
J( ~ , f!lJ (5 ~ ). Hence, .'7 is a complete distributive lattice. 
The same is of course true for ~. 

We define the map 

j: .'7 -+~, 

F -+E1/"F = U supp J-LO). 
WEF 

It is obvious thatjis order-preserving; additional properties 
are contained in the following. 

Theorem 6:jis a surjective (but not injective), complete 
V -homomorphism, i.e., 

j( V F;) = V j(F; ) 
ieI ieI 
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for an arbitrary family {F;: iel} ~ Y of folia. 
Proof (1) First, we show thatj is a complete V -homo

morphism. Let {F;: iel} ~ Y be an arbitrary family offolia. 
( 1.1 ) In order to prove j( V ieIF;) ~ V ieJ(F;): 

= U ieJ(F;) = : B, we have to show that 

supp /lw ~ U ieJ(F; ) for all (C)E V iEIF; 
= convhull{F;: iel}-II'II, since 

j( V F;) = U supp /l",. 
iEI rue V iE/F; 

Consider first the case Cc.IEConvhull{F;: iel}, i.e., 
n 

(c) = ~ Am(c)m, with ~ Am = 1, lUme{F;: iel}. 
m= 1 m 

supp /lw ~ U SUpp /l"'m ~B, 
m 

since supp /lw
m 
0(F;) ~B for some i. 

The case where lU is in the norm closure of 
convhull{F;: iel} can be treated as in Theorem 5, part (ii). 

(1.2) We have 

j( V F,. ) ;). U supp /l", . 
iel weUiE1Fi 

U U sUPP/l", 
iel (/JEFi 

U U sUPP/l,u 
iel rueFi 

= Uj(F,.). 
iEl 

The result j( V iEIF;) = V iEJ(F) follows from 0.1) and 
( 1.2). 

(2) Second, we show thatjis surjective. Let B~Ebe a 
closed set. We need to find a folium Fwithj(F) = B. To any 
FEB there exists apFES(Mm ) withpF(X(P» = F(P) [Eq. 
(2) ]. For the state ({JF = ® nENPF' which is a factor state, 
one has 

/ltpF = !>F' the Dirac measure on F. 

This follows from Prop. 4, (iii) and (iv), since 
! 

lim ({JF(XA (P» = PF(X(P» = F(P) V/3E ~. 
A 

Here, the equality (I) can be directly verified. 
According to Theorem 6, one then has 

j(Ftr"",) = supp JLtpp = {F}. 

Hence, with F: = V FEBF tr we get with the help of part ( 1 ): 
"'" 

j(F) = j( V Ftr ) = V j(Ftr ) 
FEB "'" FEB "'" 

= U{F} =B. 
FEB 

(3) The missing injectivity ofj is already clear from the 
remark (c) below Prop. 4: if (c) l' (c)2 are disjoint factor states 
with /lw, = /lw, = !>F' FEE, one has j(Fw, ) = j(F w,) = F 
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while Fw , nF w, = 0. This example also shows thatj'cannot 
be a 1\ homomorphism. • 

This theorem is interesting from a conceptual point of 
view: it makes more concrete the idea 1 that the lattice struc
ture of Y [of &J (,q ~ ), respectively] should be interpreted 
in the way that folia represent classical properties of the sys
tem. Note thatj gives, one might say, a "coarse grained" 
picture of these properties. The surjectivity ofj shows-and 
this might not have been expected-that every closed subset 
of E appears as a classical state space (as the set of pure states 
on JV'tr) of some representation 1T. 

The fact that j is not injective is not only due to the fact 
that, deliberately, not all macroobservables are included in 
the framework set by ~ , it also has other reasons. Indeed, it 
follows from the remarks at the end of Sec. IV that it holds 
j(FP) = j(F.~ ) = E, F P being the folium generated by 
SPed), whileFP~F~, FP#F~. 

Another way oflooking at Theorem 6 is that the set Y is 
classified in terms of the closed subsets of E. If we define 
accordingly for every closed B~E the set 

Y(B): = {FEY: j(F) = B}, 

we get the following. 
Lemma 7: Let B~Ebe a closed set. Then it holds: 
(i) Y (B) is not empty and contains a unique maximal 

element, the set 

FB: = V {FeY: j(F) =B}. 

(ii) FB = {Cc.IEF~: sUPP/lw ~B}. 

(iii) 'B.'9 (B) = C(1TB ), where 1TB denotes the represen
tation corresponding to F B' 

(iv) There is a state Cc.IEFw such that FweY(B) (Fw is 
the folium generated by (c). 

Proof (i) This is clear from Theorem 6. (ii) For any 
Cc.IEF.'1' supp /lw ~B, one has [Prop. 4, part (ii)] 

j(Ftr) = Etrw = supp /lw ~B, 

so per definition F" '" ~ F B' hence Cc.IEF B' The other inclusion, 
FB ~ {Cc.IEF.~: supp /lw ~B}, is clear fromj(FB) = B. 

(iii) From Eq. (3) one knows that 
C(1TB )';;;C: = 'B ~ (B). In order to prove C';;;C(1TB ), we show 
Fe ~FB' where Fe is the foliu~ corresponding to the central 
projection c. Let Cc.IEFe • Then 

1 = (c)(c) = lU('B ~ (B» = /l", (B) 

according to Prop. 4, (i). Hence, supp /l ... ~B, and, due to 
part (ii), Cc.IEF B • 

(iv) Take a countable, dense subset T of B, and define 
the measure 

co 

1J: = ~ A;!>x" ~ A; = 1, A; #0 V:EN 
;=1 i 

where {x;: iEN} is a denumeration of T. Then there are 
states ({J;eaSP(d) with/ltp, = 8"1 (seethe proof of Theorem 
6), and thus for the state lU: = l:;A,.({J; it holds /l., = 1J and 
hence [Prop. 4 (ii)] 

j(F",) = supp /l ... = supp 1J = B. • 
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VI. DYNAMICAL SUBDESCRIPTIONS 

In this last section we consider the question, which of 
the possible kinematical subdescriptions are also dynamical 
ones in the sense of Theorem 2, i.e.: in which representations 
'IT do the local time evolutions r:- converge to a * -automor
phism group of the c* -algebra Crf ".: = 'IT( d) ® JV" ? 

The answer is quite simple: 
Theorem 8: Let 'IT<'lTi§, E".: = j(F".) c;;:,E. Then the fol

lowing conditions are equivalent. 
(i) r:- converges (in the sense of Theorem 2) to a 

* -automorphism group on Crf ". = 'IT(d) ® ~ ".(C(E".». 
(ii) E". is invariant under the classical flow ffJ ~ on E. 
Proof (ii) => (i): This proof is identical to the original 

proof in Ref. 15 of our Theorem 2. 
(i) => (ii): Assume that (ii) is false. With the conver

gence ofr:- on JV" = ~ ".(C(E".» we mean that (at least 
for small tER, say It I<r, rER+) 

r?(X".({3» = stop -lim r~(1T(XA ({3») 
A 

[ = stop - li~ 'IT( r:-(x A ({3) » ] 
'tf{3E f§. 

As shown in Ref. 15, this implies the relation 

rF(p(X". ({31 ), ... ,X". ({3 L))) 

= ~,,[(ffJF)*(P(FI, ... ,FL»IE"] (6) 

for all polynomials on RL. But if ffJF(E")¥=E,,, Eq. (6) 
means that rF cannot be norm continuous: It exists by as
sumption an Fof£Etr such that ffJ ~ t (Fo)EE". for a t,r (ob
serve the group property of ffJ F). Also, we can find f., 
hEC(E) with 

f.IE"=hk, lfl(Fo)-h(Fo)I>2. 

Now take polynomials PI' P2 with , 
IIPi - .t:llc(E) < (E/2), i = 1,2, 

so that we have 

IIP I - P211C(E") < E, IPI (Fo) - P2(Fo) I> 1 

for E sufficiently small. But then one has on the one hand 

IIPI(Xtr ({31 ), ... ,X". ({3 L» - P2(Xrr ({31 ), ... ,X". ({3 L»II 

= II~ ". (PI IE) - ~ ".(P2IE) II 

= IIPIIE" - P2IEJC(E") 

<E, 
since ~ ". is an isomorphism, and on the other hand, 

IlrF(P1(X". ({31 ),,,,,Xrr ({3 L») 

- rF(P2(X". ({31 ), ... ,X". ({3 L))) II 
= lI(ffJF)*(P1)k - (ffJ~)*(P2)IEJC(E") 

= II(P10(ffJ F»IE" - (P20(ffJ ~»kllc(E") 

= sup{IP1(ffJ F(F» - P2(ffJ F(F»I: FEE".} 

;> IPI (Fo) - P2(Fo) I> 1; 

hence, rF is not norm continuous (for the above t) on the 
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polynomials and can therefore not exist as a * -automor
phism on Crf tr or any bigger c* -algebra. 

Remark: In the case where there exist polynomials 
PI ¥=P2 with PIlE" = P2 IE"' similar arguments show that, 
due to (6), rF cannot even be well defined. • 

Theorem 8 says, in particular, that ifin a representation 
'IT the r:- converge to an automorphism group which includes 
the dynamics of the algebra of macroscopic observables JV 7r' 

this dynamics is necessarily given by the flow ffJ ~ on the 
spaceE".. 

In general, however, a limiting automorphism group ex
ists already on a subalgebra of Crf ". of the form 'IT( d) ® JV~, 
where JV~ c;;:,JV". is a subalgebra. 

To see this, it is necessary to look at the classical flow ffJ F 
in more detail. The nonlinear polynomial Q: RL ..... RL con

tains a certain number of variables Fh, ... ,Fj
" jkE{I, ... ,L}, 

corresponding to basis elements {3 j', ... ,{3 I, of Lie(SU (m ) ). 
Let f c;;:, f§ denote the vector space spanned by these 

elements (recall that f§ was defined as the smallest Lie-alge
bra containing f), and /c;;:,fc;;:,f§ the vector space 
spanned by those elements such that the corresponding vari
ables occur nonlinearly in Q. We also define the space 

%:=linR{/, [f,/], [f, [f,/]], ... }c;;:,f§, 

where [ . , . ] denotes the Lie bracket and [f,/] the space of 
all vectors [x,y], Xd,YE/ (which is spanned by the basis 
elements {3 I occurring on the right-hand side of all brackets 
[{3 i,{3j] = ~/CY{3 I, {3id, {3jE/). Note that the se
quence /, [f,/], ... gives no new elements after at most 
L - 1 steps, since [f, [f,/]] = [f,/] implies [f, [f, 
[f,/]]] = [f,/], etc. We note that % does not neces
sarily contain f. 

Lemma 9: It holds 
(i) [f,%] c;;:,%. 
(ii) % is a Lie subalgebra of f§. 
(iii) % = f§ ¢}fc;;:,%. 
Proof: (i) is obvious. (ii): One has 

I 

[%,/] c;;:,%; [%,[f,/]] c;;:, linR{[f,[%,/]], 

[/,[f,%] ]}c;;:,%, 

where (!) follows from the Jacobi identity. Similarly, one has 
[%,[f,[f,/]]] c;;:,% etc., hence [%,%] c;;:,%. Part 
(iii) is clear from (ii) and the definition of f§ . • 

It is clear that % is spanned by certain basis elements 

{3 \ ... ,/3 \ k iE{l, ... ,L}, which can without loss of genera
lity be assumed to be the first K ones, K <L. 

Proposition 10: The variables F i , ... ,F Kin RL are dynam
ically decoupled from FK + i , ... ,FL for the flow ffJ F, i.e., 

ffJ FIRK: RK ..... RK, 

(Fi, ... ,FK) ..... p(ffJ F(Fi, ... ,FL» 

is well defined; here, p is the projection RL -+ RK onto the first 
K coordinates. 

Proof We have to show that the first K components of 
the vector field A. Q, which are again polynomials, depend 
only on F I, ... ,FK. Let k<.K. Recall that 
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(A Q(PI, ... ,PL»k 

= .± aQ{pl, ... ,PL)(± C~jPI). 
J=laFj 1=1 

Note that (aQ!aFj)(pt, ... ,PL) contains only variables cor
responding to the basis elements of / r;;..Jt. The pi also 
belong to RK: they correspond to the p I occurring in 
[P k,,8 j ] = ~IC~jp lr;;. [.Jt,f] r;;..Jt. Here, we have as
sumed p j~; this is justified, since, if p jf$f, one has per 
definition aQ / aFj = O. Thus, only variables in RK occur in 
(A Q(PI, ... ,PL»k and the proposition is proved. • 

The proposition shows that the Lie subalgebra .Jt has a 
profound dynamical significance. 

Remark: We note that the definitions of /, f,.Jt, f§ 
are dependent on the originally chosen operators 
X(P I), ... ,X(P L) with the help of which HA was expressed 
(equivalently, on the coordinates pt, ... ,pL in RL): a 
change of coordinates will in general lead to different spaces 
/' f, .Jt, f§ . One may therefore impose the following min
imality condition: 

LetX( p I), ... ,x{ /3') be operators such thatH A can be 
expressed with the corresponding X A ( /3 I) •...• X A ( P S) and 
such that /.f • .Jt,f§ are minimal; i.e., f( /) is the 
smallest space such that (the nonlinear part of) H A can be 
expressed with operators XA (P). P~( /). 

It is not trivial that such minimal /,f and hence mini
mal .Jt and f§ do exist. This can be shown, but here we 
contend ourselves with noting that in the (physically most 
important) case of quadratic Q (corresponding to two-parti
cle interactions), such existence follows easily from the fact 
that for such Q, H A can always be expressed in the form 

HA = IAI Ct: AjXA (13 j)2 + :t: JljXA (13 j) 

+ 1JXA ( 13 S») 

(Aj#O Vj) with linear independent elements pI, ... , ps of 
Lie(SU(m» and 17 possibly O. 

Turning now to our original purpose, we can define the 
objects JY';,'li';,E;,ce;, just as the JY'1f''li' 1f,E11"'ce 11" 
with f§ replaced by .Jt. All stated properties of the latter 
objects are also true for the former ones, and one has p(E11") 
= E':, as well asJY'; r;;.JY'1T' If now we introduce the map 
(with obvious notations) 

j"ff: Y ..... 'li'."ff 

the following holds. 
Theorem 11: For every representation 1T<,1T[1' the fol

lowing conditions are equivalent: 
(i) r:- converges (in the sense of Theorem 2) to a 

* -automorphism group of ce;. 
(ii) ?,"(P1T) E;r;;.E.'Y is invariant under the dy-

namics of q:> ?I RK (defined in Prop. 10). 
Proof: (ii) =i> (i): .Jt was constructed in such a way 

that only the operatorsX11" ( Pk), pke.Jt, get involved in the 
limiting dynamics, as can be seen from Eq. 3.12 in Ref. 15: in 
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stop -lim 1T{ [H\x]m), VmeN, 
A 

X1f{ Pk), pke/, occur for m = 1 

X11"( Pk),Pke[f,/], occur for m = 2, etc. 

Therefore, the proof of existence of the limiting dynamics on 
ce; goes through as before. 

(0 =i> (ii) This is proved as in Theorem 8. • 
Remark: In general, it seems possible that there exist 

even smaller algebras [possibly not of the type 
1T{.Pf) ® C(D)] on which a limiting dynamics exists; such 
dynamics would then not be defined on a specified set of 
macroscopic observables X" ( p>. 

VII. CONCLUSION 

Theorem 8 (resp. 11), together with Theorem 6. means 
that one knows in principle all representations in which the 
limiting dynamics exists and has a "macroscopic part" [i.e., 
is defined on a set of macroscopic observables X ... ( P) of the 
representation]. It is interesting to note that these possibili
ties are determined solely by the "classical part" of the sys
tem. This, however. is less surprising than it might seem, 
because the work of Bona shows that, in fact, the whole dy
namics is essentially determined by its classical part already. 

We also observe here that, according to Theorem 6, to 
every "classical subdescription," i.e., every closed q:> ?-invar
iant set B r;;. E, there exists a dynamical description of the 
quantum system with classical state spaceB. It can be chosen 
maximal (in the sense of the ordering <, of representations) . 

Finally, let us emphasize that one important question in 
this context is still open. We agree with Morchio and Stroc
chi in Ref. 14 that one should really require more of a dy
namical description than we have required so far: 

(i) the permissible representations should belong tofull 
(w*-dense) folia; 

(ii) the dynamical automorphism r? in 1T should be q

weakly continuous for all t. i.e., rQ should be extendable to a 
group of w* -automorphisms of vii' .... Only then can one de
fine Schrooinger dynamics on (vii' 11' ) *. + .1 , and in particular 
on the Hilbert space K"7T; only then is p ... a physical folium in 
the sense of Ref. 21. Arepresentation which does not allow 
for this cannot qualify as a full-blooded dynamical descrip
tion of the system. 

In our context, (i) is taken care of by the well-known 
fact that the folia of faithful representations are full; since the 
c* -algebra .Pf is simple, all folia in S(.Pf) are full. 

The second requirement, however, presents a more diffi
cult problem. We therefore leave a discussion of this issue to 
anotheroccasion,22 where we shall show that (ii) is not true 
in general. Here we contend ourselves with noting that the 
question of (ii) cannot be settled by looking at the classical 
dynamics alone, in contrast to the question of existence of 
the limiting (Heisenberg) dynamics itself. 
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The real and imaginary parts of the dynamic susceptibility of a free electron gas at T = 0 are 
obtained as a function of wave vector k, frequency (c), and space dimensionality D. The real 
part of the dynamic susceptibility is shown to be simply related to the static susceptibility. For 
odd-numbered dimensions there exists a general dimensional relationship for the dynamic 
susceptibility, originating from a similar relationship for the static susceptibility. For even
numbered dimensions there is no such general relationship, but instead a restricted one. 

I. INTRODUCTION 

The dynamic susceptibility of a free or ideal electron gas 
at T = 0 has played an important role in the development of 
quantum many-body theory. The real and imaginary parts 
of this quantity in three dimensions are found in nearly all 
standard texts on many-body theory.) The dynamic suscep
tibility is also known in one and two dimensions.2

-
5 These 

solutions show a certain similarity. To our knowledge, no 
one has given a unified picture. Such a picture would be 
possible if one had an expression for the dynamic susceptibil
ity as a function of the spatial dimensionality D. 

The dynamic susceptibility of an ideal electron gas is 
still a useful quantity: It appears in the current formulation 
of the dynamic susceptibility of a nonideal electron gas. ) The 
dynamic local field, which expresses the dynamic correla
tion absent in mean field theory, is defined in reference to the 
dynamic susceptibility of an ideal electron gas. In the treat
ment of Hong and Lee,6 for example, the ideal dynamic sus
ceptibility is intimately involved in the formal expression for 
the nonideal dynamic susceptibility. Perhaps much more in
teresting is the following: According to linear response theo
ry,7 the static limit ofthe dynamic susceptibility is the static 
susceptibility, i.e., X(k,(c) = 0) = X(k), where k and (c) are, 
respectively, wave vector and frequency. In view of this rela
tionship, one might ask whether the properties of the static 
susceptibility are factorable from the dynamic susceptibility: 
If they are not an integral part ofit, one might scale them out. 
Such an idea would not be useful if some static properties are 
somehow a basis of the dynamic susceptibility as the fre
quency is "turned on." 

In this connection, we shall first briefly look at the static 
susceptibility and examine its salient properties. Recently, 
Sharma and Lee8 have given an analytic expression for the 
static susceptibility in any spatial dimension by a technique 
of dimensional regularization.9 It is thus now possible to 
regard D and k as two independent variables of static suscep
tibility, i.e., X(D,k). According to this work viewed in the 
plane of D and k, there is a singularity at D = 1 and k = 2kF, 
where kF is the Fermi wave vector. The singularity is a sim
ple pole if approached along D at k = 2kF and it is logarith
mic if approached along kat D = 1. This plane of D and k is 
divided into two regions, the low- and high-k sides, by a line 
of k = 2kF. The behavior of the static susceptibility on one 
side is generally different from that on the other side. If D is 

an odd number, the structure of the static susceptibility on 
one side is an analytic continuation of that on the other side. 
If D is an even number, there is no such relationship. There is 
thus a marked "even-odd" effect in the behavior of the static 
susceptibility.8 

The dynamic susceptibility introduces a third variable (c) 
into this picture. How does it, if at all, affect the above de
scribed properties? Does it introduce anything new? That 
the dynamic susceptibility has two parts is of no partiCUlar 
concern. Since one part is related to the other by a Hilbert 
transform (the Kramers-Kronig relation 1), it is sufficient to 
focus on one part, say Re x(Dk(c). We are able to provide 
simple, but complete answers to these questions. Our solu
tion is a unified one, from which all specialized cases can be 
simply and directly obtained. 

It might be helpful to point out in advance some of our 
main results. The D dependence in the dynamic susceptibil
ity is exactly the same as the D dependence in the static 
susceptibility. That is, the D coordinate is orthogonal to the 
(c) coordinate, just as it is to the k coordinate. However, the (c) 
coordinate is not orthogonal to the k coordinate: It is a kind 
of translation of the k coordinate. As a result, there is noth
ing intrinsically new in the dynamic susceptibility beyond 
what already exists in the static susceptibility. The singular
ity of the static susceptibility at D = 1 and k = 2kF, for ex
ample, is also a singularity of the dynamic susceptibility, 
albeit in a more intricate way. The unifying picture of the 
static susceptibility also unifies the dynamic susceptibility. 
One can thus have a complete unified picture of the suscepti
bility. 

II. STATIC SUSCEPTIBILITY IN D DIMENSIONS 

. We begin with a brief summary of the static susceptibil
ity in D dimensions. One defines the static susceptibility as8 

X(D,k) = 2L n(p) - n(p + k) , (1) 
P (c)pk 

where (c)pk = cp+ k - cP ' cp = p2/2m, m is the mass ofthe 
electron, and n (p) = n ( !P I ) is the Fermi function. At T = 0, 
n(p) = O(kF - !PI), a step function, where kF is the Fermi 
wave vector. Henceforth, all our wave vectors are scaled by 
k F • We shall further normalize the susceptibility by its value 
atk = O,X(D,k = 0) = Dp/2cF' wherep is the number den-
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sity and EF is the Fermi energy. (See Appendix A.) The 
normalized susceptibility X(D,k) =X(D,k)!X(D,O) is con
venientforshowingD dependence since X (D,k) = 1 ifk = 0 
for every D. Strictly speaking, our susceptibility is the sus
ceptibility per unit volume. 

Sharma and Lees have shown that at T = 0 

X(D,k) =XI(D,k) =F(l,I-DI2,~,z), if z<l, (2a) 

X(D,k) = X2(D,k) = D -lz-IF(l,p + DI2,z-1), 

if z> 1, (2b) 

where z = (k 12) 2. Here F is the hypergeometric function 
(hgf) defined as 

. ~ anbn n 
F(a,b,c,t) = £. -- t, It 1< 1, 

n=O cnn! 
(3) 

where an = r(n + a)/r(a), etc.; c1'O, - 1, - 2, ... , i.e., 
D # - 2, - 4, - 6, .... Properties of the hgfprove to be use
ful in bringing out D dependence. 

For example, the contiguity property gives the follow
ing relationship: If D is a positive-odd integer, 

X(D + 2,k) = [lI(D + 1)][ 1 + (1 - z)DX(D,k»), 

(4) 

where z = (k 12)2; it is valid for any k. Exactly the same 
relationship holds for a positive-even integer D if z> 1 
(k> 2). If z < 1, there is no such relationship. In this case, 
the susceptibility is a polynomial of z. See Appendix B for the 
derivation of ( 4). One sees immediately from (4) that 

X(D,k = 2) = lI(D - 1), D> 1. (5) 

Relationship (4) indicates that the susceptibility is of 
two families, one composed of even-numbered dimensions 
and the other composed of odd-numbered dimensions. Now, 
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X(D = l,k) = k -11nl (1 + kI2)/(1 - kI2)1. (6) 

Thus (4) implies that the logarithmic singularity is con
tained in the susceptibility of all odd-numbered dimensions. 
Also, 

X(D = 2,k) = 1 - (1- Z-I)1/2, if z> 1, (7) 

where z = (k 12)2. Thus the square root singularity is con
tained in the susceptibility of all even-numbered dimensions 
if k > 2. The D- and k-dependent behavior is perhaps most 
clearly illustrated in Fig. 1, reproduced from the work of 
Sharma and Lee.8 The k = 2kF line, referred to in Fig. 1 as a 
ridge, serves to demarcate the Dk plane: It turns out to play 
an important role as a boundary in the dynamic susceptibil
ity. 

III. DYNAMIC SUSCEPTIBILITY IN D DIMENSIONS 

The dynamic susceptibility is defined as (suppressing D 
dependence ) 

X(k,llI) = - 2 L n(p) - n(p ~ k), 7J-0 +. (8) 
p III - IlIpk + 17J 

We have inserted a negative sign (opposite to the usual con
vention), so that X(k,1lI = 0) = X(k). Now, expressing III in 
units of the Fermi energy EF = k ~/2m with Ii = 1, one can 
write (8) as follows: 

X(k,llI) = - (llkEF)[Q(kI2+ u') + Q(kI2- u'»), (9) 

where u' = u + i7J, u = 1lI/2k, and 

(.!5...± u') - L n(p) 
Q 2 - p po k + k 12 ± u' , 

(10) 

-----z 

FIG. 1. The normalized static sus
ceptibility illustrated as a surface of 
the volume of iDk, reproduced from 
Ref. 8. Here,z= (k/2)2, wherekis 
in units of the Fenni wave vector kp 
and D is space dimensionality. The 
line of small circles depicts a ridge on 
this surface separating the high-k 
side from the low-k side. 
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where k = k/lk I. 
Now, 

X(k,CLI = 0) = X(k) = - (2/kEF )Q(kI2). (11) 

Hence, 

Q(kI2) = - (kEF/2)X(k). 

Functionally, it then follows that 

Q(k 12 ± u') = - (EF12) (k ± 2u)X(k ± 2u'). 

Substituting (13) into (9), we obtain 

2kX(k,CLI) = (k + 2u)X(k + 2u') 

+ (k - 2u)X(k - 2u'), 

(12) 

(13) 

(14) 

that is, the CLI coordinate acts as a translation of the k coordi
nate. Hence, the frequency cannot produce wholly new 
properties. Since this translation has no effect on the D coor
dinate, the CLI coordinate remains orthogonal to it. 

One can immediately obtain the real part of the dynamic 
susceptibility as follows: 

kReX(kCLI) =s+X(2s+) + LX(2s_), (15) 

where s ± = k 12 ± u = (k ± CLllk)/2. One can obtain the 
imaginary part similarly. However, it is somewhat more 
practical to use the following expression for analysis: 

- kEF ImX(kCLI) = 1m Q(s+ + i7]) + 1m Q(L - i7]). 
(16) 

It is perhaps worth noting here that relations (15) and (16) 
are valid for any T since our derivation does not depend on 
the form of the Fermi function n (p) other than for its iso
tropy, i.e., n(p) = n( IPI). 

IV. REAL PART AT T=O 

The real part of the normalized dynamic susceptibility is 
thus 

kReX(k,CLI) =s+X(2s+) + LX(2s_)· (17) 

Here, X(2s ± ) is in effect a static susceptibility, as already 
given by Sharma and Lees [see (2a) and (2b) J. Also, recall 

w 
w 

5.-,,1 5.-1 5.--1 5.-1 

FlO. 2. Translatedlinesofk /2 in the planeofk41. Here,s± = k /2 ± {J)/2k, 
where k is given in units of the Fermi wave vector kF and {J)is given in units 
of the Fermi energy £F' 
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FlO. 3. Areas of the physical domain of k4I formed by boundary lines of s ± . 

Along the lineofL = 0 (dotted line), k Re X(k4I) = s+X(2s+) only. See 
Eq. (17). 

that the static susceptibility X(k) is characterized by a 
boundary line of k 12 = 1 in the Dk plane (see Fig. 1). Thus 
the real part of the dynamic susceptibility is similarly bor
dered by a line of Is ± I = 1, where Is ± I < 1 corresponds to 
the "low-k" side and Is ± I > 1 to the "high-k" side. These 
new boundary lines are illustrated in Fig. 2. 

In Fig. 3, we have put the above boundary lines together, 
but restricted them to the physical region, i.e., k;;;.O and CLI;;;'O. 
There are four different areas marked a-d (see, also, Table 
I). Area b corresponds to the low-k side and areas c and d to 
the high-k side. Area a is mixed. The boundary lines marking 
these distinct areas are lines of a singularity. Consider the 
point k = 2 and CLI = 0 (see Fig. 3), which is a confluence 
point of areas band d. This point is a point of the logarithmic 
singularity if D = 1. If we lift CLI from CLI = 0, it draws out two 
branches, each of which is a line of the logarithmic singular
ity. These lines separate areas a, b, and d. Other lines are also 
lines of the same singularity. 

Since the D coordinate remains orthogonal as noted, 
these boundary lines are also lines of singularities of X (D,k) 
for a given D, as illustrated in Fig. 1. If D = 2, for example, 
the corresponding boundary lines of Re X (k,CLI) are lines of a 
discontinuity in the slope of X(D = 2,k) with respect to k. 

We shall now use (17) to obtain the real part of the 
dynamic susceptibility in different dimensions. In Table II, 
we have indicated the applicable "low and high" forms of the 
static susceptibility for a given area. Consider D = 1. It fol
lows from (6) that 

TABLE I. Areas of the physical domain defined by lines of s ± • See, also, 
Fig. 1. 

a 
b 
c,d 

ILld 
ILI<I 
ILI>I 
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TABLE II. Applicable forms of the static susceptibility in different physical 
areas. Here, XI means the low-k form and X2 means the high-k form. See, 
also, Eq. (17). 

Area 

a 
b 
c,d 

s±X(D= 1,2s±) =pnl(1 +s± )/(1-s± )I=!L±. 
(18) 

Hence, 

ReX(D= l,w) = (!k)'(L+ +L_), (19) 

which is a well-known result. 2-4 In a similar manner one can 
thus obtain the real part of the dynamic susceptibility for any 
D. Instead, we shall use the property that the real part of 
dynamic susceptibility is expressible in terms of the static 
susceptibility in order to obtain a relationship between dif
ferent dimensions. 

A.Dodd 

Relationship (4) is valid for both the low- and high-k 
sides and, hence, is applicable to any areas of Fig. 3. For odd
numbered dimensions, from (17) we thus obtain 

k Re X(D + 2,kw) 

=k/(D+ 1) + [D/(D+ 1)1[(1-~+) 

Xs+X(D,2s+) + (1-s2_ )s_X(D,2L)]. (20) 

Hence, with (18), one can simply and directly obtain the 
dynamic susceptibility in any odd-numbered dimension. As 
an illustration we show the susceptibility when D = 3 and 5: 

Re X(D = 3,w) 

= ! + (1/4k) [ (1 - ~+ )L+ + (1 - r_ )L_], (21) 

Re X(D = 5,w) 

=1+ (3/8k)[(1-r+ )s+ + (1-r_ )s_ 

+!(1 - r+ )2L+ +!(1 - r_ )2L_]. (22) 

One may recognize the well-known three-dimensional result 
(21).10 

B.Deven 
If D is an even number and k 12 < 1, then the dimension

al relation (4) does not apply. Hence, (4) may not be used 
in, e.g., area b (see Table II). However, one may still use the 
original relation (17) to obtain the dynamic susceptibility. 
Let D = 2, for example. Then from (2a) and (2b), 

X(D=2,k) = 1, ifkI2<1, 

X(D=2,k)=I-(1-z-I)1/2, ifkI2>I, 

where z = (k 12)2. 
Referring to Table II, we obtain 
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(23a) 

(23b) 

Re X(D = 2,w) 

= 1-k-l[c+(r+ _1)1/2] in a, 

= 1 in b, 

=1-k-l[c+(~+ _1)1/2+C(~ _ _ 1)1/2] 

in c and d, (24) 

where c ± = S ± lis ± I. One may recognize the above as the 
well-known result due to Stern.5 

To find D = 4, we begin with 

X(D = 4,k) = 1 - 2z/3, if z < 1, 

= 1- 2z/3(1-z-I)3I2, if z> I, 

(25a) 

(25b) 

where z = (k 12) 2. See (2a) and (2b) and Sharma and LeeS 
(their Table I). Using (25a) and (25b) with Table II, we 
obtain ' 

Rex(D= 4,w) 

= 1 - (2/3k) (S3+ + ~_ ) 
+k-I[c+(r __ 1)3/2] in a, 

= 1 - (2/3k) (~+ + S3_) in b, 

= 1- (2/3k)(~+ +~_) +k-I[c+(r+ -1) 

+ c(r_ - 1)] in c and d. (26) 

A comparison of our results for D = 2 and 4 shows that 
in region c, for example, there is a certain obvious connec
tion: It is, of course, because ofthe dimensional relationship 
( 4) which is applicable in that region. 

V.IMAGINARY PART AT T=O 

The imaginary part of the dynamic susceptibility is in 
principle known given the real part of it. To obtain it via 
Hilbert transforms is, however, not so trivial generally. It is 
much simpler to obtain the imaginary part directly from 
( 16) by evaluating the imaginary part of Q defined by ( 10). 
In fact, one can thereby provide information on Hilbert 
transforms. 

Using (10), we obtain 

Q(s± ±i11> =A f dppD-I Sa
1T 

dO(sinO)D-2 

X(pcosO +s± ±i1J}-I, (27) 

where A = (kF /21T)D2(r(!»D- I/r«D - 1)/2). Hence, 

1m Q(s ± ± ;1/) 

= :; 1TA II dp pD-2 II dp(1 _ p2)<D- 3)/2 
o -I 

(28) 

Clearly, both 1m Q vanish in areas c and d (see Fig. 3); they 
do not vanish in area b or on its boundary line. In area a, 
1m Q(s+) vanishes, but 1m Q(s_) does not. Integrating the 
angle variable first, we obtain the following for the nonvan
ishing 1m Q(s_): 
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TABLE III. Coefficients accompanying the imaginary part of i( kw), tabu
lated for even- and odd-numbered dimensions. 

D B(D) D B(D) 

1 11'/2 2 1 
3 11'/4 4 i 
5 311'/16 6 -& 
7 511'/32 8 ~ 

1m Q(s ± ± i1]) 

= :; 1TA t dp pD- 2(1 _ ~~ )(D- 3)/2 

J1s±1 P 

=:; ~(I_~±)(D-I)/2. (29) 
D-l 

Substituting result (29) in (16) and after normalizing 
as before by X(D,k = 0), we obtain the imaginary part of the 
dynamical susceptibility 

ImX(kw) 

= - k -IB(1- ~_ )(D-I)/2 in a, 

= k -IB [(1 _ ~+ )(D- 1)/2 

- (1-~_ )(D-1)/2] in b, 

=0 in candd, (30) 

where B = r(!)r(D /2)/2r«D + 1 )/2), as tabulated in 
Table III. 

Observe that the imaginary part has an unusual proper
ty: When D = 1, 1m x(km):fO only in area a. Area a is bor
dered on all sides by a line of the logarithmic singularity, 
across which one may not continue. Recall that the static 
susceptibility is not continuous at k /2 = 1 if D = 1. One can 
further show that this particular result for the imaginary 
part in D = 1 is already implied by Eq. (19) via a Hilbert 
transform. J 1 

In Table IV, a few examples of the imaginary part are 
shown, separately for even- and odd-numbered dimensions. 
The different behavior of the two families can be traced to 
the static susceptibility. Within the same family there is a 
dimensional relationship, although it is sometimes hidden. 

TABLE IV. Imaginary part of i(kw) in the physical areas (a) and (b), 
tabulated for even- and odd-numbered dimensions. 

D 

1 
3 
5 

2 
4 
6 

693 

Imi(kw)/k-IB 
(a) (b) 

-1 
- (1-r_) 
_ (1-r_)2 

o 
(l-r+ ) - (l-r_) 
(1-r+ )2_ (1-r_)2 

_ (1-r_ )1/2 (1-r+ )1/2_ (1-r_ )1/2 

- (1 - r_ )3/2 (1 - r+ )3/2 - (1 _ r_ )3/2 

- (1 - r_ )5/2 (1 _ r+ )512 _ (1 _ r_ )512 
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For the family of odd-numbered dimensions, the same di
mensional relation (20) for the real part is also implied for 
the imaginary part via Hilbert transforms. Referring to Ta
ble IV again, wenotethatlmx(kw)/k -IB = - 1 in area a 
if s_ = 0, i.e., D independent. Along the line of s_ = 0 (see 
Fig. 3), where m = k 2, this quantity is also at its minimum. 
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APPENDIX A: X(D,k=O)=Dp/2EF 

From (1) it follows that 

X(D,k=O) 

= -2limL n(p+k) -n(p) = -2L iJn(p) 
k_O p Ep+k - Ep p iJEp 

= (~r 2m uD Loo dp~-2c5(IPI- kp ), (Al) 

where UD =2(r(!»D/r(D/2). Hence, X(D,k 
= O)/L D = 2m uDk~-2/(21T)D. Now the number density 
in D dimensions isp = (kp/21T)D2uD/D. Hence, 

X(D,k = O)/L D = Dp/2Ep. 

APPENDIX B: DERIVATION OF Eq. (4) 

(A2) 

Q.E.D. 

The static susceptibility is expressible in terms of the hgf 
[see (2a) and (2b»). Of the three parameters a, b, c of the 
hgf [see (3») only parameter b is variable (i.e., D depen
dent) if k /2 < 1. Then we use the following contiguity prop
erty: 

Fb _ J = B - (1 - b) (1 - t)Fb ]/(~ - b), (Bl) 

where Fb = F( l,b,~,t). Let b = 1 - D /2 and t = z 
= (k/2)2. Also, identify F J _ D/2 (z) = X(D,k). Then (Bl) 
becomes 

X(D+2,k) = [l/(D+ 1)][1 + (1-z)DX(D,k»). 
(B2) 

If k /2 < 1, parameter c is variable. Then we use the fol
lowing contiguity property: 

Fe+ J = [c/«c-!)t)] [1- (1-t)Fe ], (B3) 

where Fe = F(1,~,c,t). Now let c = 1 + D /2 
and t=Z-l = (k/2)-2. Also, identify 
F1+ DI2 (Z-1) =zDX(D,k). Then (B3) becomes (B2). 
Hence, the dimensional relation is valid for any value of k. 
Note that the contiguity property (B 1 ) does not hold if b is a 
negative integer. Hence, the dimensional relation does not 
apply if D is an even integer and k /2 < 1. It is valid, however, 
if k /2> 1. Relationship (B2) shows that the susceptibility 
of, e.g., odd-numbered dimensions is related to the suscepti
bility of other odd-numbered dimensions. There is no "mix
ing" of the two families. 

The dimensional relation (B2) contains some useful 
properties. Let z = (k /2) 2 = 1 and D ..... D - 2. Then we ob
tain 
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X(D,k = 2) = lI(D - 1). (B4) 

Property (B4) was previously obtained by Sharma and Lees 
by directly evaluating the hgf. Also, since X (D + 2,k) ;;;.0, we 
obtain the inequality for D> 0: 

1 + (1 - z)DX(D,k);;;.O. (B5) 

For z = (k 12) 2> 1, we obtain the bounds 

O<X(D,k)<lI{(z - 1) D). (B6) 

For the large-kbehaviorofx(k) and Re X(kw), see Appen
dixe. 

APPENDIX C: LARGE-k BEHAVIOR OF X(k,w) 

The knowledge of large-k behavior of the dynamical 
susceptibility is necessary when evaluating asymptotic prop
ertiesof, e.g., thedynamiclocal field. For Re X(k,w), we use 
relation (15): 

ReX(k,w) =k- 1 [s+X(2s+) +s_X(2s_)]. (el) 

Hence, it is sufficient to know the large-k behavior of 
X(2s± ). Sharma and Lees have shown that 

X(k ..... 00) = C{k -2 + O(k -4», (e2) 

where C = 2p1 EF • 

Hence, 

lim X(2s± ) = C [k -2(1 ± wlk2)-2 + "']. (e3) 
k-oo 

Thus 
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lim Re X(kw)/X(k) = I + w21k 4 + O(k -6). 
k- 00 

(C4) 

If k ..... 00 while w is fixed, one moves out of areas a or b 
into area d (see Fig. 3). Hence, 

lim ImX(kw)/X(k) = O. 
k-oo 

(e5) 

Also, observe that because of the relationship between k 
and w, i.e., 2s ± = k ± wlk, the k ..... 00 limit is formally 
equivalent to the w ..... O limit. This kind of dependent proper
ty follows from the fact that the w coordinate has been made 
into a translation of the k coordinate. 
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Exact time-independent spherically symmetric black hole solutions of the (4 + 3)-dimensional 
Kaluza-Klein theory are obtained by imposing the isometry group ~ on the unified metric. 
The solutions include the five-dimensional Dobiasch-Maison-Lee solutions as a special case. 
The physical implication of the solutions is discussed. 

I. INTRODUCTION 

Recently some authors l
•
2 have obtained the most gen

eral static spherically symmetric black hole solutions of the 
five-dimensional Kaluza-Klein theory. What makes the s0-

lutions so interesting is that some of them can exert a repul
sive fifth force3

•
4 which is generated by the Kaluza-Klein 

dilaton. The antigravity constitutes the first example that 
demonstrates how drastically the internal gravit~·6 can 
modify gravitational attraction in a higher-dimensional uni
fication. The purpose of this paper is to present the most 
general spherically symmetric black hole solutions in a sev
en-dimensional Kaluza-Klein unification that has ~ as the 
internal isometry, and to establish the existence of a universal 
fifth force that can he attractive as well as repulsive in the 
unification. In particular, we show that the long-range na
ture of the fifth force is characterized by "the dilatonic 
charge of the black hole" that can be non vanishing even 
when it is neutral. The existence of the novel dilatonic charge 
demonstrates that the conventional wisdom of the Birkoff 
theorem is no longer valid for the ''black holes" of the high
er-dimensional unification. 

II. SOLUTIONS 

A best way to construct a spherically symmetric Ka
luza-Klein black hole solution is to impose a proper internal 
isometry7.8 to the unified metric and reduce the higher-di
mensional equation of motion to a set of four-dimensional 
ones. In this dimensional reduction by isometry the higher
dimensional metric is decomposed into the four-dimensional 
metric, the internal metric, and a well-defined set of non
Abelian gauge fields, whose internal-dependence is com
pletely fixed by the isometry. Consider a (4 + n)-dimen
sional unified space P endowed with a metric gAB 
(A,B = 1,2, ... ,4 + n) which has a freely acting isometry G 

.!L'Sa gAB = 0, 

[Sa,Sb] = (11K) fab cSc (a,h,c = 1,2, ... ,n) 
(1) 

where Sa are the Killing vector fields and K is the scale pa
rameter that characterizes the size of the internal space. 7.8 
With M = P /G as the four-dimensional space-time one can 
identify P as a principal fiber bundle P(M,G) on which G 
acts as the structure group. On the bundle the metric gAB 
defines a connection and thus a horizontal-lift basis (D!, ,Sa) 
in a natural way, where Il, v(ll, v = 1,2,3,4) and a,h are 

space-time and the internal indices. In this basis the remain
ing part of the metric always has the block-diagonal form 
gAB = Y!'v ® t/Jab' where the internal metric t/Jab becomes 
gauge covariant. 

Now suppose G = ~ which can be obtained with the 
Wigner contraction of SU (2). The reason why we consider 
the isometry ~ in this paper is that it naturally appears as a 
spontaneous contraction9 of SU(2) which breaks the sym
metry further down to U ( 1 ). In this case choosing a proper 
gauge one can always diagonalize the internal metric t/Jab' 
(a,h = 1,2,3) 

A, A,1/3 A,1/3d· ( - I - I ) 'f'ab = 'f' Pab = 'f' lag PI ,p2 ,PIP2' (2) 

where t/J = Idet t/Jab I is the Kaluza-Klein dilaton field. This 
tells us that the internal metric has three physical degrees of 
freedom, the dilaton and two additional scalar fields PI and 
P2' In this gauge, the seven-dimensional line element takes 
the form 

d~ = t/J-1/2g!'v dxl' dxv + Kt/J1/3PI-I(W I + eB ~ dX!')2 

+ Kt/J I 13p2- I (w2 + eB! dxl')2 

+ Kt/JI/3PIP2 (W3 + eB ! dxl') 2, (3) 

where g!'v = #Y!'v is the Einstein part of the unified met
ric,S.6 wa are the left-invariant one-forms of the internal iso
metry E2 [with w3 as the one-form of the U ( 1) subgroup], 
and B; are the corresponding gauge potentials. 

The vacuum solution of the seven-dimensional Einstein 
equation with the flat g!'v and the vanishing B; is given by9 

~ab = diag (1,1,1), (4) 

so that at the vacuum the internal space becomes flat. The 
vacuum breaks the gauge symmetry E2 down spontaneously 
to U (1) so that the firsttwo bosons (B ~ and B! ) acquire a 
mass while the third one (B!) remains massless.9 

With the above preliminaries we now proceed to obtain 
the desired solutions. For this we choose the ansatz 

PI =P2 =p, B; =A!,8~, (5) 

and obtain the following equations of motion: 
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where Fl'v is the field strength of the U ( 1) subgroup. To 
obtain a static spherically symmetric solution we further as
sume 

d~ = -A(r)dt 2 + B(r)(dr + r dO?), 

{

CI>(r), I' = t, 
AI' = m(1 - cos 8), I' = qJ, 

0, otherwise, 

(7) 

; = ;(r), p = per), 

where m is the magnetic charge of the U ( 1) subgroup. With 
this the equations of motion are reduced to 

(8) 

where the primes denote the derivative with respect to rand 
q is an integration constant which we will later identify as the 
electric charge of the U ( 1) subgroup. From these we obtain 
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(9) 

and 

;1/3p -1 = «r _ p,)/(r + p,» 6cII', ( 10) 

where 1'2 and c are integration constants. To simplify (8) we 
put 

1:3± = A -3; ± SI6p ± 2 

and 

f' = 41TG q2 1:_, g' = 41TG m
2 

1:+ 
r 2 _ p,2 1:2+ r 2 _ p,2 1:2_ 

The remaining equations then become 

2 2 1:'+ 
(r -p, )T= -4J, 

+ 

2 2 1:'_ 
(r - p, ) T = - 4g, 

(r 2 - p,2)( f' + g') = 4(f2 - fg + g2 + 15c - p,2), 

1 
CI> = 41TGq (flr_ 00 -f)· 

(11) 

(12) 

(13 ) 

With this we now present the solutions by the values of q 
andm. 

(i) q = m = O. In this case f and g become constants, 
f = a and g = b. So from (13) we have 

_ (r - 1') - 2alft _ (r - p,) - 2blft 
1:+ - , 1:_ - , 

r+p, r+p, 
a2 _ ab + b 2 + 15c2 = p,2. 

Introducing the new parameters a, /3, r by 

a=a+b, /3= -2(a-b-4c), 

r = - j(a - b + 5c), 

we obtain the following solution: 

(14) 

A = (r - p,)all', ; = (r - p,)fJII', P = (r - p,)YII', (15) 
r+p, r+p, r+p, 

where a2 + -&/3 2 + 3y2 = 4p,2. So one can always assume 
p, > 0 in this case. Notice that when r = /3 13 the above solu
tions reduce to the five-dimensional solutions. 1,2 In particu
lar, when 2a = /3 = 3r = 2p, and a = K/8 the solution rep
resents the five-dimensional regular soliton.3 All of these 
solutions except the Schwarzschild solution (/3 = r = 0 
and a = 2p,) have a four-dimensional naked point singular
ity at r = p,. 

(ii) q = O. In this case f becomes constant, f = a. So 
from (13) we have 

1:+ = «r - p,)/(r + 1'» -2a/1', 

2g = a + D {[ (2b - a + D) + (2b - a - D) 

X«r - p,)/(r + p,)fDII'] 

where 

X [(2b - a + D) - (2b - a - D) 

x«r - p,)/(r + p,)fDII'] -I}, 

D2 = 4p,2 - 3a2 
- 6Qc2, b =glr-oo' 

Using this we find 
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l:_ = {2b-a+D _ 2b-a-D (r_p,)2DIp} 
2D 2D r+p, 

X«r-p,)/(r+p,»-(a+D)lp. 

Inserting l: ± and g in (12) we have 

(2b - a)2 - D 2 = 41TGm2; 

thus we obtain the following solution: 

A = 'I'-1/2«r_p,)/(r+p,»alp, 

¢> = 'I'-I«r - p,)/(r + p,»f3lp, 

p = 'I'-1/3«r - p,)/(r + p,»ylp, 

where 

a 2 + -& /]2 + 3y - 41TGm2 = 4p,2, 

(16) 

'1'= TJ+D (r_p,)('1- D)lp _ TJ-D (r_p,)('1+D)lp, 
2D r+p, 2D r+p, 

D 2 = 712 - 41TGm2, 71 = (6a + 5{J + 12y)/12. 

Here a, p, y, and m can be chosen as the independent param
eters so that p, can become pure imaginary. Notice that when 
y = p 13, the above solutions reduce to the five-dimensional 

solutions. I
,2 In particular, when 2a = {J = 3y = ,j 41TG m 

and a = KI8 the solution represents the Gross-Perry-Sor
kin monopole3 with magnetic charge m = 1/2e. This mono
pole is perfectly regular as a five-dimensional object, but 
from the four-dimensional point of view the monopole has a 
naked singularity at r = p,. 

(iii) m = 0, In this case g becomes constant, g = b. So 
from (13) we have 

l:_ = «r - p,)/(r + p,» - 2blp, 

2/=b+D{[(2a-b+D) + (2a-b-D) 

X«r - p,)/(r + p,»2Dlp] 

where 

X [(20 - b + D) - (2a - b - D) 

X «r - p,)/(r + p,) )2Dlp] -Il}, 

D2 = 4p,2 - 3b 2 - 602, a =/1,-00' 

From this we have 

l:+ = {2a-b+D _ 2a-b-D (r_p,)2DIp} 
2D 2D r+p, 

X «r - p,)/(r + p,» - (b+ D)lp . 

Inserting l: ± and/in (12) we find 

(20 - b)2 - D2 = 41TGt/; 

thus we obtain the following solution 

A = 'I'-1/2«r - p,)/(r + p,»alp, 

¢> = 'I'«r - p,)/(r + p,»)fllp, 

p = 'l'1/3«r - p,)/(r + p,»ylp, 

<I> = ~ [(r - p,) -Dip _ (r - p,)DIp] 
2 r+p, r+p, 

[ ( ) 
-Dip ()DIp] -I 

X (71 + D) ~ ~ : - (71 - D) ~ ~ : ' 
(17) 
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where 

a2 + -&{J2 + 3y - 41rGq2 = 4p,2, 

'I' = 71 + D (r - p,)(p - D)lp _ 71 - D (r - p,)(p + D)lp, 
2D r+p, 2D r+p, 

D 2 = 712 - 41TGq2, 71 = (6a - 5{J - 12y)/12. 

Here the independent parameters are a, {J, y, and q. When 
y = {J 13, the above solutions reduce to the five-dimensional 
solutions. I 

(iv) q=/=Oand m =/=0. This is the most general case. From 
(12) and (13), we have 

l: d
2
l:+ _ (dl:+)2 + 161TGq2l: = 0 

+ d:r dz -, 

d
2
l: (dl:)2 l:_ d:r - - dz- + 161TGm2l:+ = 0, 

where 

z = (1/2p,) log [ (r - p,) 1 (r + p,) ] . 

The solutions of the above equations are given by 10 

l:+ = 161TG(m2q4) 1/3 

x[ e-w,(z-z,) + e-w,(z-z,) 

(WI - W2)(WI - w3) (w2 - WI)(W2 - W3) 

+ e- w,(z-z,) ] , 

(w3 - W I )(W3 - w2 ) 

where Wi and Zi (i = 1,2,3) are integration constants that 
satisfy 

WI + W2 + W3 = 0, WIZ I + W2Z2 + W3Z3 = O. (19) 

Asymptotically flat boundary conditions require 

l: ± Iz=o = 1. (20) 

Inserting l: ± in (13) we find 

wf + wi + ~ = 32(p,2 - 152); (21) 

thus we obtain the following complete set of solution: 

A = (l:+l:_)-1/2, 

¢> = (l:+)(r - p,)8CIp, P = (:1:+)1/3(r _ p,) - IOCI3
p
, 

:1:_ r+p, :1:_ r+p, 

<I> = _1_[_1_ d:1:+ __ 1_ dl:+ I] (22) 
161TGq :1:+ dz :1:+ dz z=o . 

Here the ten parameters p" m, q, Wi' Zi' and c are constrained 
by the five equations (19)-(21) so that the solutions have 
five-independent parameters. When c = 0 the solutions re
duce to the five-dimensional solutions.2 Notice that all the 
solutions except the Dobiasch-Maison solutions I have a 
four-dimensional naked singularity. 

III. CONCLUSION 

This completes our list of the static and spherically sym
metric black hole solutions. Strictly speaking, not all the so-
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lutions can be called black holes because many of them have 
a naked singularity at the origin. For simplicity, however, we 
will continue to call them black holes. A characteristic fea
ture of the above solutions is that they carry additional 
"charges" that are forbidden by the Birkofftheorem. To see 
this, consider the "neutral" black hole ( 15). Even though it 
is neutral in the sense that it carrier no "electromagnetic" 
charges ·of the unbroken U ( 1) gauge group, it is character
ized by three (not one) parameters a, (3, and r. Of these, a 
determines the inertial mass of the black hole because it de
scribes the asymptotic behavior of the metric. But (3 and r 
are new parameters. Since they describe the asymptotic be
havior of t/J and P ab' they may be interpreted as the dilatonic 
and internal charges, respectively. With this interpretation, 
the physical meaning of the five parameters of the most gen
eral spherically symmetric black hole (22) becomes clear. 
They are the inertial mass, the electric, magnetic, dilatonic, 
and internal charges of the solution. 

To discuss the physical meaning of the new dilatonic 
charge let us consider the motion of a neutral test particle 
around the black hole (15). In this case, the higher-dimen
sional geodesic equation gives us the following four-dimen
sional equation II: 

~ + r ar/'papp = ! (E,g'a + pl'pa) a;t/J , (23) 

where pi' and s are the four-dimensional momentum and 
affine parameter of the test particle, and E4 is the signature 
factor of the four-dimensional trajectory. Notice that the 
right-hand side of (23) characterizes the universal fifth force 
generated by the dUaton. To understand the effect of the fifth 
force, notice that the inertial mass of the black hole (15) 
(obtained with the Landau pseudo-energy-momentum ten
sor) is given by 

mj = a/G. (24) 

On the other hand in the Newtonian limit (23) gives the 
following effective gravitational mass of the black hole: 

mg = (2a - (3)/2G. (25) 

From this we deduce that the dilaton generates an attractive 
(or repulsive) fifth force when its charge {3 is negative (or 
positive). Clearly this is a generalization of the five-dimen
sional antigravity effect of Gross and Perry,3.4 which they 
obtained when 2a = {3. 

One may wonder whether the above result implies a vio
lation of the equivalence principle in the Kaluza-Klein uni
fication. According to the equivalence principle, the motion 
of a neutral test particle under the presence of gravitation 
should be described by a geodesic. In this sense it is obvious 
that (23) violates the equivalence principle. Indeed the re-
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suIt (25) tells that the observed "gravitational" mass of the 
black hole must include the contribution of the dilaton. On 
the other hand, it must also be emphasized that this apparent 
violation of the equivalence principle is not due to the gravi
tation, but due to the fifth force. In fact, (23) guarantees that 
the gravitation never violates the equivalence principle, as 
far as one can find a way to separate the pure gravitation 
from the fifth force. The real question then is whether this 
separation can be made possible. Our analysis shows that 
this is not possible with a neutral test particle. Using a 
charged test particle, however, one can show that in princi
ple one can separate the fifth force from the pure gravita
tion. II This is so because the fifth force is charge dependent 
in general. This assures that there is no violation of the equiv
alence principle for the gravitation. 

Finally we point out the existence of the dilatonic charge 
may not be a generic feature of the Kaluza-Klein black 
holes. Indeed our result (25) is a direct consequence ofthe 
fact that the dilaton in the above solution is massless. This 
allows the dilaton to generate the long-range fifth force that 
can directly compete with the gravitational attraction. In a 
realistic model, however, the dilaton may acquire a mass due 
to a spontaneous breaking of the scaling invariance.3,5 Once 
the dilaton acquires a mass the fifth force becomes short 
ranged, so that the dilatonic charge will vanish. Nevertheless 
the implication of the above analysis is unmistakable. In any 
higher-dimensional unification (supersymmetric or not) in 
which the Kaluza-Klein dilaton becomes very light, the ap
pearance of a fifth force that can alter the gravitational at
traction significantly is unavoidable. A detailed analysis will 
be published elsewhere. II 
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The problem of operator representations and associated Hamiltonians for quantum fields and 
their conjugates appropriate to the nonlinear u model is discussed. To respect the target-space 
constraints, canonical field momenta are rejected in favor of alternative affine conjugate fields 
that serve to generate constraint-preserving group transformations in the target space. Various 
operator representations are discussed at length, some of which do not admit canonically 
conjugate fields. After establishing certain general properties for Hamiltonians, there is an 
analysis of how operator field representations and Hamiltonians can be linked. 

I. INTRODUCTION 

As a mathematical model for classical and quantum 
field theory, the nonlinear umodel continues to be of consid
erable interest. It frequently serves as a paradigm for con
strained systems and is of particular relevance to those work
ing in quantum gravity since its perturbative 
renormalizability properties are the same as those of general 
relativity. The umodel is in fact nonrenormalizable in space
time dimensions greater than two, and our study of possible 
nonperturbative quantizations is strongly motivated by the 
desire to find a nonperturbative approach to quantum gravi
ty. The purpose of the present paper is to begin such a pro
gram based on an investigation of the unitary representa
tions of certain groups which are naturally adapted to the 
global structure of the highly nonlinear configuration space 
ofthe classical u model. 

The simplest such model is when the field variables 
u l (X),U 2(x), ... ,uN (x) (where 1 <N < 00 and x is a point in 
the s-dimensional spatial manifold ~) are forced to lie on the 
surface of an (N - 1) -dimensional sphere SN - 1 in RN via 
the constraint 

N 

L ua(x)ua(x) = C (1.1 ) 
a=1 

for some positive constant c. Conventional canonical fields 
cpa (x), a = 1, ... ,Npossess canonical conjugates ~ (x) satis
fying the classical Poisson brackets 

{cp a(x),1f'(y)} = DabD(X,y), a,b = 1, ... ,N, (1.2) 

where the Dirac delta function D(x,y) is defined with respect 
to a suitable volume element f} on the spatial manifold ~. 
However, for the nonlinear u model, the adoption of such 
fields ~ (x) (which essentially induce translations in the 
target space) would be incompatible with the constraint 
( 1.1 ) and an alternative set of conjugate fields is required. Of 
course, one possibility would be to solve the constraint for 
the "physical" configuration variables and then to construct 
the conventional conjugates for this reduced set. This is es-

sentially what is achieved by the use of Dirac brackets or 
related methods. However, this can only be done locally on 
the target space and is also likely in practice to involve a 
weak field perturbative expansion via, for example, the use of 
normal coordinates. 1 Both these restrictions are undesirable 
from our perspective and we wish instead to retain the full set 
ua (x), a = 1, ... ,N of variables. This can be done consistently 
if we select canonical "conjugates" that induce rotations in 
the target space rather than translations. This would involve 
a set of fields Jab (x)( = - J ba (x», a,b = 1, ... ,Nwhich sat
isfy the Poisson brackets 

{Jab (X),Jcd (y)} = (DadJ be (X) - DbdJac (X) 

+ DbeJad(X) -DaJbd(X»D(X,y) (1.3) 

and which induce the infinitesimal rotations on the ua (x) 
variables given by 

{ua(x),Jcd (y)} = (DacUd (x) - Da dUe (X) )D(X,y) . (1.4) 

Unlike ( 1.2), these new Poisson brackets are manifestly con
sistent with the constraint (1.1). 

Together with 

{ua(x),ub(y)} = 0, (1.5) 

Eqs. (1.3), (1.4) form the fundamental kinematical brack
ets for the SN - 1 valued nonlinear u model, just as ( 1.2) and 
the relations {cp a(x),cp bey)} = {'IT" (x),~ (y)} = 0 repre
sent the fundamental kinematical brackets for conventional, 
unconstrained fields. It is important to observe that the vari
able 

N 

T(x): = L ua(x)ua(x) ( 1.6) 
a=1 

has a vanishing Poisson bracket with uQ (x) and J be (y) and 
is thus a Casimir operator for the algebra represented by 
(1.3)-(1.5). 

Just as the aim of conventional canonical quantization is 
to find operator realizations of the canonical fields qf (x) 
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and 11 (y) that satisfy the commutator analog of the funda
mental kinetmatical brackets so, it can be argued, the aim of 
quantization of. the nonlinear u model is to find operator 
realizations of the fields u Q (x) and J be (y) that satisfy the 
commutator analog of the fundamental brackets (1.3)
(1.5). The purpose of this paper is to analyze several opera
tor representatives of precisely this type. 

This procedure can be further justified by noting that, in 
effect, we are considering a special case of a rather general 
approach to quantizing a system whose classical phase space 
@5 is a homogeneous space, i.e .• one that admits a transitively 
acting group @} of symplectic transformations. As has been 
discussed at length,2 the act of constructing unitary repre
sentations of this group (or perhaps of a central extension) 
can be regarded as the correct analog for @5 of the familiar 
quantization of a system whose phase space is a (topological
ly trivial) vector space and where the canonical group @} is 
simply the associated Weyl-Heisenberg group. In the case of 
the nonlinear umodel, the configuration space is the infinite
dimensional manifold C(~,G IB) of maps from ~ into the 
homogeneous space G I B, where G is a compact Lie group; 
for example, when the target space is the (N - 1) sphere 
~-I, Gis SO(N), andBis an SO(N - 1) subgroup. Gen
erally speaking the maps concerned will be smooth and of 
compact support, although occasionally it will be useful to 
consider a wider class. 

The target space G/ B can always be embedded in some 
real vector space Won which G acts linearly in such a way 
that one of its orbits is precisely G IB, i.e., B appears as the 
"little group" of some vector in W.3.4 Typically, the orbit 
G I B will be the zero set of some set of G-invariant functions 
on W which thus generate the constraints of the system; for 
SN - I the carrier space Wis simply the Euclidean space RN. 
Note that since G is compact, there is no loss of generality in 
assuming that there is an inner product on W with respect to 
which the action of G [denoted L (g), geG] is via orthogonal 
operators. These will leave invariant the spheres embedded 
in W, and hence the "quadratic Casimir" constraint (1.1) 
will always be among the set of constraints defining the mod
el. We will concentrate entirely on this quadratic Casimir in 
the present paper. 

The space C(~,G IB) is topologically quite complicat
ed, but ifwe restrict our attention to the subspace C(o) (~,G I 
H) of maps from ~ into G I B that can be lifted to G, then it 
can be shown5 that the group C(~,G) acts transitively on 
this subspace; a group which acts transitively on the entire 

phase space T*C(o) (~,G IB) is then @}: = C(~,W*0G) 
::::;C(~,W*)0C(~,G), where the semidirect product 0 is 
with respect to the conjugate action of G on the dual vector 
space W*. [N.B. This is an analog forfunction spaces of the 
argument in Ref. 2 which shows that the canonical group for 
a system whose classical phase space is @5 = T * ( G I B) is 

W*0G.] 
For the case where the target space is SN - I , the corre

sponding canonical group will be C( ~,RN )0C(~,SO(N» 
whose Lie algebra is indeed precisely that of the Poisson 
bracket relations (1.3 )-( 1.5). For the general G IB-valued 
u model, we must find unitary representations of ~he group 
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C(~,W*)0C(~,G) with the unitary operators VeAl, 
U(a), AeC(~,G), aeC(~,W*) satisfying 

V(AI) V(A2 ) = V(A1A2 ) , (1.7) 

VeAl U(a) VeAl -I V(L(A)a) , (1.8) 

U(a l ) U(a2) = U(a l + a2) , (1.9) 

where L(g) denotes the conjugate representation of geG on 
the vector space W* defined by (L(g)u,w): = (u,L(g)w), 
ue W*, we W, and < , ) is the usual pairing between Wand its 
dual W * . Note that in (1.7) - ( 1.8) the group products are 
understood to be pointwise in l:; for example. L(A)a 
means the element in C(~,W*) defined by 
(L(A)a)(x): = L(A(x»a(x). The Lie algebra of the ca
nonical group @} is the space of smooth maps from l: into the 

Lie algebra2( W *G)G) of W*0G and the associated, self

adjoint operators J (I) and u(a), where leC(~,2(G», 
aeC(l:,2W*», are definedyia 

V(exp/) =e- iJ (/), U(a) = U(exp a) =e-;U(a), 

( 1.10) 

where, as usual for an Abelian group, we identify a Lie alge
bra element with its exponential in the Lie group. The corre
sponding commutation relations are 

[J(It),J(Iz)] =iJ([ltlz]) , (1.11) 

[J(/),u(a)] = iu(L(/)a) , (1.12) 

[u(a l ),u(a2)] =0, (1.13) 

with [/J;](x): = [It (x)lz(x)], where [ ] denotes the Lie 
bracket in 2( G). With respect to a basis set (e l ,e2 .... ,eN ) of 
W*, and a basis set {E.,E2, ... ,Edim(G)} of 2(G). the un
smeared form of these relations is 

[J;(x) • .Ij(y)] =iC/8(x,y)Jk (x). 

where [E;Ej ] = Cij kEk , and 

[J; (x),uQ(y)] = iub(x)Li//8(x.y) , 

[uQ(x),ub(y)] = 0, 

(1.11') 

(1.12') 

(1.13' ) 

where L;b a is the set of real constants describing the action of 
2(G) on W*. 

Commutation relations like (1.11 )-( 1.13) must be un
derstood as referring (implicitly) to a common dense do
main for the operators concerned. In our case. domains of 
this type will usually be composed of finite sums of coherent 
states or the like. However. we will not be unduly pedantic 
about this point since we will mainly be studying unitary 
representations of the group @}, in which case the self-adjoint 
generators can be constructed in the usual way with the aid 
of Stone's theorem. 

The algebra (1.11)-( 1.13) belongs to a larger class of 
related algebras. sometimes called "affine algebras" and 
whose associated quantum fields are known as "affine 
fields." Thus our study is part of a larger program to find 
operator realizations of quantum fields of this type. Commu
tation relations like ( 1.11 )-( 1.13) are distinguished sharply 
from conventional canonical commutators by the absence of 
a central extension term. a difference which produces radical 
changes in the representation theory. Affine relations are not 
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only relevant for constrained· systems like the nonlinear q 

model, but they are also appropratie for certain models in 
which the fields satisfy constraints that are inequalities, rath
er than equalities. Elsewhere it has been argued that the posi
tive-definiteness of the three-metric in canonically quantized 
gravity can best be preserved through the use of affine fields 
and affine commutation relations.6-9 Thus, at least tangen
tially, our present study of operator realizations of the non
linear q model may have some bearing on the deeper ques
tion of the quantization of the gravitational field. 

A key issue in what follows will be the existence or non
existence of an operator equivalent of the Casimir function 
T(x) in (1.6), or its generalizations to the G IH-valued q 

model. For the canonical commutation relations, the stan
dard goal is to search for irreducible representations of the 
canonical fields, since these are traditionally regarded as rel
evant for model problems (although there are counterexam
ples to this conventional wisdom 10, 11 ). By analogy, one 
would expect to seek solutions of the nonlinear q model af
fine commutation relations for which the fields u (h), J ( f) 
are represented irreducibly. In the case of, for example, 
quantum theory for a system whose configuration space is 
the finite-dimensional sphere SN - 1 , the canonical group is 

RNG)SO(N), and the operator uQ uQ is a well-defined Casi

mir for this group, and must therefore be a multiple of the 
unit operator if the representation is to be irreducible. This is 
the means whereby the classical constraint is coded into the 
quantum theory. However, in the infinite-dimensional case 
the situation is somewhat different and in the limited cases 
which we will discuss, we find two classes of representation 
as far as the Casimir function T(x) (1.6) is concerned. In 
one of these, T(x) is a well-defined, nonconstant, unbound
ed local operator as it stands. However, in the second class 
T(x) is only defined as an operator after a fairly severe regu
larization. 

Section II of the paper deals with a class of representa
tions in which the canonical momenta for the fields u(h) 
also exist as well-defined operators. We shall display two 
types of representation here: one irreducible and one reduc
ible. Section III, on the other hand, deals with representa
tions of the affine commutation relations for which no can
onically conjugate momenta exist. These are direct 
extensions of the ultralocal representations that have been 
used in other contexts to study idealized model problems in 
which terms in the Hamiltonian involving spatial gradients 
are dropped. Finally, in Sec. IV we consider the extent to 
which the Hamiltonian for an affine theory is determined by 
the cyclic representation of the affine algebra. 

II. REPRESENTATIONS WITH CONJUGATE MOMENTA 

A. A class of Irreducible representations 

We are interested in studying the representations of infi

nite-dimensional groups of the form ®: = C(l:,W*G)G) 

;::::C(l:, W*)G)C(l:,G). Representations of groups of the 

type C( l:,K) (where K is a Lie group) have been of interest 
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to theoretical physicists since the days of current algebras 
and have been investigated in a variety of ways. Continuous 
tensor productsI2

,13 have been an important tool, as has the 
(not unrelated) line of research initiated in Gel'fand et 
a1. 14--16 And of course, in recent years, there has been enor
mous interest in the special case ofloop groups (i.e., where 
l:;::::S I). However, much (albeit not all) of this work has 
been concerned with the case where the target group K is 

compact, whereas for us, not only is K = W*G)G noncom

pact, but it has the suggestive form of a semidirect product, 
as does the function group ® = C( l:,K) 
;::::C(l:,W*)G)c(l:,G) itself. 

The simplest finite-dimensional analog is the Euclidean 

group En ;::::RnG)SO(n), all of whose irreducible represen

tations can be obtained using induced representation theory. 
This at once raises the question of the feasibility of using this 
method for the infinite-dimensional semidirect product 
group ®. This question cannot be addressed in the usual 
way since infinite-dimensional groups like 

®;:::: C(l:, w*)0C(l:,G) are not locally compact and hence 

the standard theorems 17 of induced representation theory 
are not applicable. A priori, there is no reason to expect that 
an induced representation of ® will be irreducible or that all 
representations could be obtained this way. The analogy of 
the finite-dimensional case suggests at best that it might be 
worth studying the action of C( l:,G) on the topological dual 
C( l:, W*)' of the real vector space C( l:, W*) but, unlike the 
analogous case for En , one should not expect the representa
tion functions to be necessarily concentrated on a single orbit 
of this action. Indeed, as we shall show, a more typical situa
tion is one in which the action of C ( l:, G) on C ( l:, W * )' is 
strictly ergodic with respect to some measure p on 
C( l:, W *)'. Thus the action is not transitive on the support of 
p but nevertheless the only measurable proper subsets of the 
support that are group-invariant have measure zero. 

The general form of a representation of 

C(l:,W*)G)C(l:,G) can be found most easily if we assume 

that the topology on C( l:, W*)' has been chosen to make it 
into a nuclear space (fortunately, this is not too difficult to 
arrange in general) . We can also assume, with no real loss of 
generality, that the representation of® is cyclic with respect 
to the Abelian subgroup C( l:, W *). Then a straightforward 
adaptation of the well-known theorem for the infinite-di
mensional Weyl-Heisenberg group (for example, Ref. 18) 
shows that if fl is any cyclic vector, there exists a probability 
measure p on C( l:, W *)' such that the Hilbert space of the 
representation is isomorphic to L 2(C(l:,W*)',dp) and the 
following applies. 

(i) The measure p is determined uniquely by its "Four
ier transform" which satisfies 

<fl,U(a) U) = i e - ;(x.a) dp(x) . 
C(l:. w·)' 

(2.1) 

Here (x,a) denotes the value of distribution xeC(l:,W*)' 
when acting on the function aeC(l:, W*). 

(ii) The representation of® on 'l'eL 2(C(l:, W*)',dp)is 
of the form 
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(U(a)'II)(x) = e-I(".a)'II(X) , 

(V(A)'II)(x) :::r; rA (x)'II(L *(A)x), 

(2.2) 

(2.3) 

where (L ·(A)x,a): :;:: (x,L(A)a) and where,u is quasi-in
variant under the action of C( l:,G) with a Radon-Nikodym 
derivative satisfying 

d,u(L ·(A)x) = IrA (x) 12d,u(x) . (2.4) 

(iii) The representation of the group 
C(l:, W·) ®C(I,G) on L 2(C(I, W*)',d,u) is irreducible if 
and only if the measure,u is ergodic with respect to the action 
ofC(l:,G) on C(I,W·)'. 

Thus, as in the case of conventional induced representa
tion theory, the problem is to find either transitive orbits 
carrying quasi-invariant measures or strictly ergodic group 
actions. To motivate our first example it is useful to consider 
the simple finite-dimensional case in which we are given an 
irreducible representation of the canonical commutation re
lations 

[qa,qb] = [Pa'Pb] = 0, [qo,Pb] = i60b ; a,b = l, ... ,n . 
(2.5) 

Then the set of operators 

Jab: = qaPb - qbPa (2.6) 

together with q I ,Q2, ... ,q" provides a representation ofthe Eu
clidean group E" . This representation is of course reducible 
and decomposes into a direct integral of irreducible repre
sentations labelled by the continuous eigenvalue of the Casi
mir operator qoqo' This simple example motivates us to 
study first the case in which the field variables u(a) admit a 
conjugate set 11'({J) such that 

[u(a),11'({J)] = i(a,fJ) , (2.7) 

where ( , ) denotes some inner product which is bicontin
uous on the real vector space C( I, W·). The simplest repre
sentation is the irreducible Fock representation which is 
specified uniquely by the Gaussian measure on C(l,W·), 
with Fourier transform 

(O,U(a)O) = r e-I(><,a) d,u(x) = exp -! (a,a) 
JC(%.w')· 

forallaeC(l,W·). (2.8) 

The canonical fields act as 

(e - iu(a)'II)(x) = e -1(".a)'II(x) , (2.9) 

(e- i1T(P)'II)(x) =pp(x)'II(x -{J), (2.10) 

where a,fJeC(l, W·) andpp (x) = (d,u(x - {J)ld,u(X»1/2 
is the square root of the Radon-Nikodym derivative of the 
measure,u on C( I, W·)' that is quasi-invariant under trans
lations by C(l, W·). The critical question for us is whether 
this representation of the canonical commutation relations 
can be extended to include the group ®. From what was said 
above it is clear that a necessary and sufficient condition for 
this is that, as well as being quasi-invariant under transla
tions by C(l,WIII), the Gaussian measure,u should also be 
quasi-invariant under the action ofC(I,G). We will consid
er first the case when the inner product ( , ) is invariant 
under C(I.G); this is particularly simple since it implies 
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that the measure,u is actually invariant (i.e .• the Radon
Nikodym factor is trivial). As was mentioned earlier, since 
G is compact, we can assume without loss of generality that 
the representation L of G on W· is orthogonal with respect 
to some inner product ( • ) w' on W*. Then a natural 
C( I. G) invariant inner product on C( I. W*) can be defined 
by 

(a.{J): = i (a(x),fJ(x»w' d{J(x) 

= i aa (x){Jo (x)d{J(x) • (2.11 ) 

where {J is the volume element on I and where the basis 
{e l .e2 

..... eN
} of W· has been chosen so that (eO .eb) W' 

=60b
• 

The problem now is to decide whether or not the ensu
ing representation is irreducible. The formal expression for 
theCasimiris T(x): = Iua (x)UO (x), but we can see at once 
that this is unlikely to be a well-defined operator since. in this 
Gaussian representation. (O.u(a)u({J)O) = !(a.{J). and 
hence 

(2.12) 

Thus the putative Casimir would appear to be proportional 
to 6(0). A natural step at this stage might be to define a 
regularized Casimir as the operator :Iuo (x)ua (x): where:: 
denotes the usual normal ordering operation. Since this new 
operator differs from the unordered operator by a c number 
it would appear to have the same commutation properties as 
the latter. and in particular therefore to commute with the 
generators of the affine group. However. although 
:Iua (x) UO (x): has finite matrix elements between, for ex
ample. any pair of coherent states. it does not define a gen
uine operator (even when smeared with a test function) but 
only a quadratic form. As such. it cannot serve as a proper 
Casimir for the representation. 

However, another possibility is to define a regularized 
operator by "dividing" by 6(0) (rather than subtracting the 
singularity as in normal ordering) but this requires a more 
careful analysis of the singularity. Since we are only interest
ed in the short distance behavior. we can illustrate the main 
idea by assuming that the s-dimensional manifold I is com
pact and endowed with a Riemannian metric whose asso
ciated volume element is {J. Let WI (x), W2(X), ... denote the 
eigenfunctions of the Laplacian operator with eigenvalues 
- A." - A.2 .... • This set is orthonormal with respect to the 
inner product (f,g) = f/(x)g(x)d{J(x) and is a basis set 
for the Hilbert space completion of C( I.R) with respect to 
this inner product. Thus. formally 

00 

6(x,y) = L w" (x)w" (y) • 
,,=1 

(2.13) 

which enables us to define the "regularized" Casimir opera
tor (sum over a being understood) as 

T M (r): = L uO(rwn )ua(w,,) 
A..<M' 

(2.14) 
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where the smearing function r(x) >0 and where the sum is 
over all eigenvalues less than the regulating parameter M 2. 

(Note that M has the units of inverse length.) As M ... 00, 

this family of operators converges formally to the smeared 
form of T(x). The "vacuum" expectation value of T M (r) is 
given by (2.12) as 

(O,T M(r)O) = N L r dt1(x)r(x)w" (x)w" (x) 
2 An<M,Jl:. 

(2.15) 

and then Carleman's asymptotic relation19 

shows that as M ..... 00, the matrix element (0, T M 0) diverges 
as M . Since ° is a cyclic vector with respect to the represen
tation of the subgroup C(l:,W*), the most general matrix 
element of T M can be obtained from 

(U(a)O,T M (r) U(l1)O) 

= r e-l(x.tJ- a} L xQ(w" )xQ(w" )dIL(X) . 
JC(l:..W O )' An<M' 

(2.17) 

But 

f e - i(x.a}xQ(x)xb(y)dIL(X) 

(2.3) may actually be irreducible in this Pock space. Surpris
ing as this may seem, it is in fact true. 

In proving this result it is convenient to utilize the ca
nonical coherent states defined as usual in termes of the anni

hilation operator A(/): = (u(/) + ht(!»/.J2 [so that 
[A(/),At(g)] = (108)] as 

II): = exp -! (f,/)expA t (/)0. (2.21) 

Such vectors are normalized, (III) = 1, and can be de
fined for all complex functions lin L 2(1:, W*). However, it 
will be sufficient to confine our attention to the subset of 
coherent states for whichjEC( 1:, W *) and is real since finite 
linear combinations of such vectors are dense in the Hilbert 
space of interest. We shall make repeated use of the eigenre
lations A ( I ) Ig) = (108) Ig) appropriate for such states. 

In order to demonstrate irreducibility it is sufficient to 
show thatthe operatorsAQ (x) andAat (x) are suitable func
tions of ub (x) and JI (x). Before giving a precise statement it 
might be useful to first outline the argument formally. Thus 
Ji (x) = - LlDbUa (x)""" (x) = (i/2)Llab Aot (x)Ab (x), 
which is well defined between an arbitrary pair of coherent 
states 1/),lg) as 

(II JI(x)lg) = iL1
0% (X)gb(X) . (2.22) 

Then 

J1(x)UC(x) 

= iLiobA at(x)A b(X)(A C(x) + A ct(x»/.J2 (2.23) 

= (iI'\l2)(Llo cA at(x)8(0) + :J1(x)UC(x):), (2.24) 

= ~ 8Qb(8(x,y) _ ~a(x)a(y»e- (l/4)(a.a) 

and hence 

(2.18) where, as usual,:: denotes normal ordering. From (2.24), it 
follows that, between arbitrary coherent states, 

(U(a)O,T M(r) U(P) 0) 

= N r r(x)dt1(x) 
2 Jl:. 

_ (P _ a,/3 - a) )e - (l/4)({J- a.tJ- a) (2.19) 

and thus the matrix element (2.17) has the same M behav
ior as (O,T M (r)O). 

This suggests that a "regularized" Casimir operator 
might be defined as 

Treg: = Lt M -sTM (2.20) 
M-oo 

and then (2.19) implies that, between the basic states 
U(a)O, Treg is a multiple ofthe unit operator. It is an easy 
extension of the argument above to show that the sequence 
of operators in (2.20) does indeed converge strongly to a 
multiple of the unit operator on the dense subset of finite 
sums of vectors of the form U(a)O, aeC(l:,W*). This in 
tum suggests that, in the special case when W:::::RN and 
G::::: SO (N) [so that T(x) is the only Casimir to be expected] 
the representation of the affine field operators given in (2.2), 
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LI{J b (/IA at(x) Ig)8(0) 

= - i'\l2(/1 J1(x)ub(x)lg) + regular terms . (2.25) 

However, for this present case of the rotation group SO (N) 
acting on RN

, the matrix elements LiQ b obey the relation 
CIJL;Q bLjb C == v8Q cforsome v>O, where (;Ij is the quadratic 
Casimir for the group SO(N). Thus Aat (x) can be isolated 
in the form 

(/IA at(x)lg)8(0) 

= ( - i'\l2/v)C IJL 1b °(11" (x)ub(x) Ig) 

+ regular terms, (2.26) 

which demonstrates the point provided we can "divide" by 
8(0) in some appropriate way and hence make the "regular 
terms" irrelevant. 

To make this kind of argument precise let us study the 
quantities 

UM:=(-i'\l2lv)CIJL1b" .~ XM,,<lawn)ub(w,,) , 
A,;~2 

(2.27) 

where {XM 1M == 1,2, .. .} is a sequence of positive numbers 
which suitably tend to zero and which will be determined 
shortly. For coherent states I,), it is straightforward to show 
that 
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II(UM -A t(/»lg)1I2 

=fd{J(X)fo(X)fa(X)(I- L "M(W" (X»2)2 
A."<M 2 

+ f f d{J(x)d{J(y) fa (x)go (x) fb (y)gb (y) 

X (1 - L "M(W" (x) )2) 
An<M2 

X ( 1 - )'.~M' "M(W" (y»2).+ regular terms, 

(2.28) 

where "regular" refers to terms that would remain bounded 
were "M = 1 for all M, i.e., when the limit as M -+ 00 of 
~)'.<M'''MW" (x)w" (y) is the 6 function 6(x,y). Now from 
(2.16) we see that if" M is defined to be 

"M: = r( 1 + s/2) (41TIM2)s/2 , (2.29) 

then 

Lt II(UM -A t(f»lg)1I2 = 0, 
M-oo 

(2.30) 

which implies the same result for arbitrary finite linear com
binations of coherent states. But the set of all such combina
tions is dense in the Hilbert space, and this is the sense in 
which A ta (x) is indeed a function of the operators U

O (x) 

and Ji (x). The relation AO (x) = ,fiuO(x) - A at(x) com
pletes the isolation of the creation and annihilation operators 
and demonstrates the irreducibility of the affine algebra for 
this representation. 

By virtue of the theorem quoted earlier, the result just 
proved also shows that the action of the group C(~,SO(N) 
on C( ~,RN )' is ergodic with respect to the measure Jl. But 
note that this action is certainly not transitive since it is easy 
to write down a number of disjoint orbits. Thus, in demon
strating the irreducibility of the affine group representation, 
we have at the same time shown that this C(~,SO(N» action 
on C(~,RN)' belongs to the interesting (but rather elusive) 
class of strictly ergodic actions. For more general groups G 
we would ,need to study the extra Casimir operators that are 
needed to select the G I H orbit embedded in W. 

B. A class of reducible representations 

Ifwe wish to find a Fock representation in which T(x) is 
a well-defined operator without regularization, it is clear 
that we must use a measure that is concentrated on less sin
gular configurations than is the one defined by (2.7), (2.8). 
One natural way is to introduce a Sobolev-type structure and 
consider the Gaussian measure with covariance specified by 
the inner product (a,F{3), where F: = ( - t:.. + p) - T, T and 
p are positive real numbers, and t:.. is the Laplacian operator 
used above. Generally speaking, the larger is T, the wider is 
the class of allowed test functions a, {3, and, corresponding
ly, the less singular are the distributions contained in the 
support of the measure Jl (: = Jl F ) • 

One unavoidable property of this regulated inner prod
uct is that it is no longer invariant under the action of the 
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group C(~,G) on C(~, W*) andhencethemeasureJl will, at 
best, be quasi-invariant. Note also, that in order to maintain 

. the canonical commutation relations associated with (2.8), 
as well as irreducibility thereof, it is necessary to define the 
conjugate variable 1T({3) so that 

(n,ei1T(Pln) = exp -! ({3,F- 1{3) (2.31) 

which pairs with 

(n,e-ill(aln) =exp-! (a,Fa) 

in the form 

(n,e- iu(alei1T(Pln) 

(2.32) 

= exp(i/2)(a,{3)exp - (1I4)«a,Fa) + ({3,F- 1{3». 
(2.33) 

It is not easy to check directly the C(~,G) quasi-invar
iance of this new Gaussian measure, and we will tackle the 
problem via a study of the existence of the operators which 
we would expect to be the generators of the group, were the 
measure to be quasi-invariant. Thus for test functionsji, we 
consider 

JM(f): = - L iob L UO(jiw" )~(w,,) (2.34) 
A.n <M2 

and seek to define J (f) as M -+ 00. The commutation rela
tions and (2.33) give 

(n,uO(a l )~({31) u
C(a2)1T"({32)n) 

= - i6bc(a2,{3I)(n,uO(a l )1T"({32)n) 

+ (n,uO(a l )uC(a2)~({31 )1T"({32)0.) 

=! (6bc6ad(a l ,{32) (a2,{31) - 6ob6Cd(al,{3l) (a2,{32) 

+ 60C6bd(al,Fa2) ({3I,F -1{32» (2}5) 

and then, writingTr LiLj asDij' (2.34), (2.35) give 

II JM (f)nIl 2 

=..!..Dij L L «fiw",wm)(jiwm,w,,) 
4 )..<M' Am<M' 

- (fiw",F jiwm )(w",F-1wm». (2.36) 

To simplify the estimates, we will take as an example the 
special case where ~ is the flat s torus. RS /211Zs with the 
Fourier transform relations 

hex) = L i"'''h(n), 

" 
r21T r21T 

h(n) = (21T) - S Jo ... Jo e - i"'''h(x)dx , (2.37) 

where n and x now denote s vectors and whose inner product 
is written as n' x. Then 

(2.38) 
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which, for large M, becomes 

IIJM (/)fiIl2 

=.!. (21T) 2SDij 2:,11(n)p"(n) 
4 II 

2:, (.1.;;'+11-.1.;;') 
X Am<M' .1.;;'+11 • 

(2.39) 

Now,onatorus,Am = m'mandso, provided 1";60, the sum 
in (2.39) can be approximated by 

2:, ,(A;;'+;-A;;')_!M'A-1/ 2p(A)dA, (2.40) 
Am<M A m+n 

wherep(A) is the "density of eigenvalues," i.e., S"p(A )dA is 
the number of eigenvalues whose value is less than A. How
ever, Weyl's well-known theorem 19 shows that the latter de
pends asymptotically on A as NI2, and hence peA) 
-A s/2 - I. Hence the right-hand side of (2.39) behaves like 
j{<s-I} and it follows that one cannot define an operator 
J ( I) as M .... 00 unless the dimension 8 of I. is one. In this 
case, a more detailed calculation shows that for any coherent 
state Ig), the matrix elements (gl( J M ( I) - J N ( I »2Ig) 
satisfy 

for some constant c. This bound shows that the sequence of 
operators J M (I) converges strongly on all coherent states; 
it is then a trivial matter to prove the strong convergence on 
the dense set of all finite linear combinations of such states, 
and in that sense, J (I): = Lt M .... ooJ M (I) defines a den
sely defined operator. It is clear that this operator satisfies 
the correct commutation relations (1.11 )-( 1.13) and hence 
we have shown that the modified Gaussian measure defined 
by (2.32) is indeed quasi-invariant under the (connected 
component) of the group C(I.,G) provided that dim I. = 1. 

For the example under consideration (8 = 1), we have 
thus obtained a representation of the loop group 
C(SI,W*)G)C(SI,G) ;::::C(SI,W*G)G). Note that 

and hence if we choose a suitable value of 1", for example 
1" = 1, it follows that the left-hand side is actually finite when 
x = y. As a consequence, it follows (using coherent states, 
for example) that T(x) = UO(x)UO(x) is a well-defined op
erator for each x (without the need for smearing). Since 
T(x) commutes with UO (x) andJ, (x), and is not a multiple 
of the identity, the reducibility of this representation is there
by established. Moreover, the spectrum of T(x) is absolutely 
continuous so that the representation of the affine fields is a 
direct integral of inequivalent representations labelled by the 
spectral values of T(x). Thus in this special case, we repro
duce something resembling the decomposition theory of the 
analogous representation for the finite-dimensional Euclid
eangroup. 
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III. ULTRALOCAL REPRESENTATIONS 

In this section we present a class of inequivalent repre
sentations of the affine commutation relations which are un
like those of the preceding section in that no canonical mo
menta existl° for the fields in question. Representations with 
just this property suggest themselves as being especially rel
evant for affine algebras associated with nonlinear (T models 
since translations of the field variables associated with ca
nonical momenta are manifestly incompatible with the puta
tive constraint UO (x)UO (x) = constant. The existence of 
conjugate variables in the form of "rotation" generators that 
preserve the constraint, as well as the absence of canonical 
generators that violate the constraint, thus seems particular
ly appealing. 

The affine field representations discussed in this section 
are constructed in the fashion used for ultralocal models, 
and we shall refer to the existing literature 1 1,21.22 for most of 
the details of such representations, contenting ourselves 
with the essentials needed for our present purpose. We begin 
by con$idering the Hilbert space fJ = L 2( I. X W,dt'J ® dv), 
where dv is some G-invariant measure on the finite-dimen
sional real vector space Win which the G I H orbit is embed
ded; for example, the Lebesgue measure on lit" is invariant 
under the action ofSO(n). Now define the unitary operators 

(b(A)tfo}(x,A): = tfo(x,L(A(x)-I)..t) , 

(u(a)tfo)(x,A): = e-l(a(X).A)tfo(x,A) , 

(3.1 ) 

(3.2) 

where (x,A )el. X Wand ( , ) denotes the pairing of W* and 
W. It is easy to check that (3.1), (3.2) gives a representation 

of the canonical group ® = C(I.,W*)G)C(I.,G). However, 

it is extremely reducible. For example, let A be a subset of I. 
with t'J(A) > 0 and let P A denote the corresponding projec
tion operator on fJ defined by (PA tfo)(x,A): = tfo(x,A) , ifxeA 
and (PA tfo) (x,A): = 0, otherwise. Then PA commutes with 
the operators in (3.1), (3.2) which reflects the "indepen
dence" of the group operations on neighboring spatial 
points. Similarly, the operators in (3.1), (3.2) commute 
with the projection operator QB associated with any G-in
variant subset B of Wwith v(B) >0. 

A class of representations naturally associated with the 
above can be obtained by forming the finite tensor products 

n 

® fJ of fJ with itself. Direct sums of these representations can 
also be taken, leading in the limit to the various Fock spaces 
over fJ. For our purposes, the most relevant will be the bo
sonic Fock space S) formed from the direct sum of all the 
symmetrized tensor products Sym ® g. It will be convenient 
for us to employ the (equivalent) definition of fJ as the expo
nentialolfJ (Refs. 11,23,24). This exploits "exponential" 
vectors of the form 

exp tfo: 1 fIJ tfo fIJ (lIV21)tfo® tfofIJ (l/V31)tfo® tfo® tfo + ... , 
(3.3) 

whose inner products are defined by 

(exp tp,exp tfo)$>: = exp(tp,tfoh . (3.4) 

Finite linear combinations of such vectors are dense in the 
Fock space S) and are particularly useful vectors for defining 
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certain types of operator. For example, the annihilation op
eratorA(qJ) associatedwithfPE~:::::L 2(1: X W,d{}® dv) is de
fined on exponential vectors by 

(3.5) 

in which context it is clear that the normalized "vacuum" ... ... 
state is exp 0 where 0 denotes the null vector in ~; for the sake 
of clarity this vacuum state will be denoted 10) hereafter. 
The unsmeared operators A (x,A.) and At (x,A.) satisfy the 
usual commutation relations [A (x,A.),A t (X',A')] 
= 8(x,x')8(A,A. '), so we do indeed have a conventional 
Fock representation. 

Ifu(k) is a unitary representation of any group K on ~, 
then an associated representation on S) = exp ~ can be de
fined by its action on exponential vectors 

U(k)exp "': = exp u(k)",. (3.6) 

In particular, this applies to the representation of 

C(1:, W*)G)C(1:,G) defined by (3.1), (3.2), although, as is 
clear from the construction, this new representation is even 
more reducible than (3.1), (3.2) insofar as each subspace 

n 

Sym ® ~ of S) is invariant under the action of the group. How-
ever the situation becomes potentially more interesting if we 
introduce eoeycles for the action on ~. A cocycle is a map {3: 
K --+ ~ satisfying the condition 

{3(k1k2 ) = {3(k1) + u(k1 ){3(k2 ) for all k 1,k2eK . 
(3.7) 

Then the definition 

U(k)exp "': 

= exp( - (1/2)({3(k),/3(k»~ - ({3(k),u(k)"')~) 

Xexp(u(k)", + {3(k» (3.8) 

gives a projective representation of the group K: 

U(k1)U(k2) = exp - iIm(f3(kl),u(kl){3(k2»~U(klk2) . 
(3.9) 

A special case arises when the cocycle is a eoboundary of 
the form 

{3(k): = u(k)e - e , (3.10) 

where e is a vector in ~. In this case the multiplier in (3.9) 
can be removed by appending the phase factor exp - i 
Im(u(k)e,e)~ to the transformation in (3.8) to give the fol
lowing genuine representation of K: 

U(k)exp '" 

: = exp(e,(u(k) - l)(e + "'»~ 
xexp(u(k)(", + e) - e), 

whose vacuum expectation value is 

(OIU(k) 10) = exp(e,(u(k) - l)e)~ . 

(3.11 ) 

(3.12) 

In particular, if w is any self-adjoint operator on ~, an asso
ciated self-adjoint operator W on exp 1) is defined using 
Stone's theorem on the unitary operator 
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ttt w exp '" 

: = exp(e,(titw 
- l)(e + "'»~ exp(titW

(", + e) - e), 

(3.13 ) 

where fER. The corresponding generating function is 

(Oltit WIO) = exp(e,(titw 
- l)e)~ . (3.14) 

At first nothing appears to be gained by this operation 
since the representation (3.11) of the group K is unitarily 
equivalent to that in (3.6) via the unitary map I from exp 1) 
to exp ~ defined by 

I(exp "'): = exp - (~(e,e)~ - (e,,,,)~) exp('" + e) . 

(3.15) 

However, one may consider using functions e:1: X W --+ C 
which are not square integrable [i.e., e does not belong to 
1):::::L 2(1: X W,d{}® dv)] and yet for which (3.11), (3.12) 
are still well defined. The ensuing representation will typi
cally notbe equivalent to the simple (reducible) Fock repre
sentation (3.6), and in fact it is possible to construct irredu
cible representations in this way. It is these "e non-L 2" 

representations with which we will be mainly concerned for 
the remainder of the paper. 

It is a standard result 11 that the above construction is 
equivalent to defining new operators 

B(X,A): =A(x,A.) + e(x,A.) , 

(3.16) 

which evidently satisfy the commutation relations 
[B(x,A.),Bt(x',A.')] = 8(x,x')8(A,A. '). When applied to 
our affine group, the generators of the transformation (3.11) 
can be expressed (on an appropriate dense domain) as 

ua(x) = Iw Bt(X,A)A aB(x,A.)dv(A) , 

Jj(x) = (i/2)Liab Iw Bt(x,A.) 

X (A aa b - A ba a)B(x,A. )dV(A) , 

(3.17) 

(3.18 ) 

in which A a are the components of the vector AE W with 
respect to the basis {e l ,e2, ... ,eN }, which is dual to the basis 
{el,e, ... ,eN} of W*. With respect to the G invariant metric 
on W dual to that on W*, these basis vectors will satisfy 
(ea ,eb) = 8ab and the norm of A is IIA II = (A aA a) 1/2. It is 
straightforward to verify that (3.17), (3.18) do indeed satis
fy the affine algebra (1.11 )-( 1.13). 

In order that the operators (3.17), (3.18) be well de
fined, it is sufficient' I that a non-L 2 function e: 1: X W --+ R (it 
is no significant loss to take e as real valued) satisfies 

I e2 (x,A.)d{}(x)dv(A) = 00 , (3.19) 

II A a2(x,A.)d{}(x)dv(A) 1< 00 , (3.20) 

I 2(x,A.)IIA 112/0 + IIA 11
2 )d{}(x)dv(A) < 00 • (3.21) 
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If c is a continuous function, and if the manifold l: is com
pact, then divergences in the expressions above can only 
come from the integration over the noncompact space W. If 
l: also is noncompact. a finite A integral will produce a repre
sentation that is locally (spatially speaking) equivalent to 
that of (3.6). Hence it is the integration properties inA that 
are of main interest for us. Note that the general spectral 
arguments applied previously to the Abelian subgroup 
C(l:,W*) will be valid here too, and the representation 
above will be equivalent to one on L 2(C(l:. W*)' ,d,u) for 
some measure,u on the topological dual of the nuclear space 
C(l:, W*). However, in the present case it isknown20 that,u 
and its translation by any nonzero element ofC(l:,W*) are 
mutually singular, and consequently, the fields in (3.17) do 
not possess any conjugate variables of the canonical kind. As 
remarked earlier, this gives added significance to the use of 
such representations of the affine commutation relations as 
the primary ingredient in a nonlinear quantum theory. 

We see from (3.21) that a non-L 2 behavior for c can 
only arise from some singularity around A = O. Note that, if 
necessary, we can define (3.20) as a principal value integral 
and assume that c is such that the result is finite. In fact, in 
some earlier studies even the last integral has been taken 
divergent; however, such cases do not materially change 
things and are not discussed in this paper. To account for the 
singularity atA = 0 consistent with (3.19)-(3.21) we could 
consider the family of functions 

c(x,A) = KIIAII-Ye-P(.t) , (3.22) 

where N /2<r < 1 + N /2 (recall that dim W = N), K is a 
constant, and p may be taken as a polynomial such that p>O. 
We will assume from now on that l: is compact so that the 
effects of c are determined entirely by its integration proper
ties in A. 

In order for a particular self-adjoint operator w on ~ to 
truly generate an operator on ~ = exp ~, it is necessary and 
sufficient that [cf. (3.14)] 

(3.23 ) 

should be finite and continuous in tER. We can now see at 
once why this Hc-twisted" Fock representation is less reduc
ible than the original one on ~. First note that if P is any 
projection operator on a Hilbert space then the equation 
p 2 = P implies that 

eitP _ 1 = (eit -1}P. (3.24) 

When applied to the present case, this implies that the opera
tor PA on ~ that projects onto any subset A ofl: with t?(A) >0 
does not produce a well-defined operator on exp ~ since the 
divergent A integral in (3.19) will result in an infinite value 
for (3.23). Similarly, the projection operator Qc onto a G· 
invariant subset C of W does not pass to an operator on exp ~ 
if C contains the point A = O. However, if this point is not in 
C then a genuine operator will be produced and this will 
commute with the generators of the representation of 
C(l:,W*)G)C(l:,G). Thus even this c-twisted representa
tion is not irreducible although, by this means, we have man-
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aged to remove the spatial decoupling of the original repre
sentation on ~ and of the simple nontwisted Fock 
representation. 

We are mainly interested in studying the properties of 
the Casimir operator in this new family of representations. 
Note that 

uQ(x)uQ( y) 

= 8(x,y) J IIA II 2Bt(x,A)B(x,A)dv(A) 

+ regular terms, (3.25) 

where "regular terms" are less singular that the leading term 
as x ..... y. The situation is similar to that arising from (2.12) 
and suggests that, as therein, a suitable regularization of the 
formal Casimir uQ(x)uQ(x) would be to "divide" by 8(0). 
As in the previous case, we make this rigorous by using the 
eigenfunctions w.,w2, ... , ofthe Laplacian on l: which gener
ate8(x,y) via (2.13). Once again, the Carleman asymptotic 
relation (2.16) shows that a well-defined operator can be 
constructed as 

Treg (r): = Lt M - S L ua(rwn )ua(wn ). (3.26) 
M-oo An<M:2. 

This shows that (when suitably smeared), 

Treg (x): = J IIAII 2Bt(x,A)B(x,A)dv(A) (3.27) 

is a well-defined local operator that commutes with the gen
erators uQ(x), J i (x) of the affine group. Since Treg (x) is 
nonconstant (see below) it follows that the representation of 
this group is reducible. 

Expressions like the vacuum generating functional in 
(3.12) follow from the general symbolic relation 

exp i(Bt,wB) = :exp(Bt,(eiW - I)B): (3.28) 

where w is an operator in the Hilbert space ~ and: : denotes 
normal ordering of the A t and A (hence Bt and B) opera
tors. In particular, let (wf/!) (x,A) = aa (x)A af/!(x,A). Then 
(3.28) implies that [cf. (3.14)] 

(Oleiu(a)IO) = exp J (iaQ(X).t
Q 

- 1)c2 (x,A)dt?(x)dv(A) , 

(3.29) 

while for (wf/!)(x,A) = r(x)IIAII 2f/!(x,A), 

(01 expi J r(x) Treg (x)dt?(x) 10) 

= exp J (eir(x)iI.tIl' - 1)~(x,A)dt?(x)dv(A). (3.30) 

This expression shows clearly that T reg is not simply a multi
ple of the unit operator, as otherwise its generating vacuum 
expectation value would have been given by 
exp ifr(x)t(x)dt?(x) for some/(x), which is not the case. 
Moreover, like u, Treg has an absolutely continuous spec
trum since it follows from (3.30) that the function 

C(t): = 0lexp it J rex) Tregdt?(x) 10) 

is an integrable function of tER (Ref. 25). 
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It might be thought that an irreducible set offield opera
tors could arise by choosing the measure von W to be con
centrated on one of the G orbits in order to remove the redu
cibility from the operators on exp g arising from the 
projection operators Qe, A =1= 0, on g; if v is Lebc:sgue ~ea~ure 
on W this would correspond formally to chooslDg a dIstnbu
tional form for c such that c'2 is a ~ function concentrated on 
this orbit. With respect to the G-invariant metric on W, such 
an orbit would necessarily be a subspace of a sphere in W 
with some radiusp; in particular, IIAII would be equal to this 
constant p and would therefore drop out of the integral 
(3.21 ). But then the condition (3.21) implies that c is an L 2 

function, and hence that the representation is equivalent to 
the simpler one with no cocycIe at all. The question therefore 
is whether such a representation is interesting when the mea
sure v is concentrated on a G orbit. The motivation for such a 
step is that it removes part ofthe reducibility of the ori~i~al 
representation on g since there are no longer any nontnVlal 
G-invariant subspaces of Wother than the orbit itself. How
ever, it does not lead to an irreducible representation ofthe 
affine fields on the Fock space exp g. This is evident from the 
fact that 

(Olexp i J rex) Treg (x)dt?(x) 1 0) 

= exp a J (elpr(x) - l)dt?(x) (3.31 ) 

for some constant a and, again, this is not of the form 
exp ifr(x)t(x)dt?(x). Note that, in the present case, the 
spectrum of the operator f r(x) Treg (x)dt?(x) with, f?r ex
ample, a smooth test function r of compact support, IS not 
absolutely continuous. For if it were, the Riemann-Lebes
guelemma would ensure that (Olexp itS rex) Treg dt?(x) 10) 
vanished as t -+ 00, which is not the case. 

Let us return now to the case of a non-L 2 cocycle func
tion c and consider the implications of the detailed behavior 
near the singular point A = O. There is a good reason for 
choosing the behavior of c(x,A) in (3.22) near A = 0 to be a 
function of the norm IIAII only. In the case of the group 
C(1:,G), condition (3.23) becomes 

J Ic(x,L(A(x»A) - c(x,A) 12dt?(x)dv(A) < 00 

for all AeC(1:,G), (3.32) 

whose "infinitesimal" form is precisely (3.20). Thus (for 
compact 1:) the existence of Jj (x) as a local operat~r re
quires that the singular component of c should be G lDvar
iant. 

There is in fact a subclass of such representations in 
which the function c is fully G invariant. In this case the 
representation of C(1:,G) on exp g simplifies to 

V(A)exp t/J = exp(c,(tI(A) - l)t/J)~ exp tI(A)t/J 

(3.33) 

from which, in particular, it follows that VeAl 10) = 10). 
Thus the vacuum 1 0) is annihilated by all the generators 
J j (x). Full G invariance of c also means that 
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(3.34) 

In the general case, however, c(x,A) is not fully G invar
iant and consequently the rhs of (3.34) becomes some non
vanishing function u~ (x). If 1: is just the flat space R', and if 
we require the vacuum 1 0) to be translation invariant, then 
the function c must be chosen to be a function of A only, in 
which case the rhs of (3.34) is a nonvanishing vector in W. 
Such cases are analogous to broken symmetry solutions in 
conventional quantum field theory. Unfortunately, ultralo
cal model theories do not themselves possess broken symme
try solutions as there can be no zero mass (Goldstone) exci
tations to account for such breaking. 

An interesting property of the classical nonlinear u 
model is the existence of topologically nontrivial configura
tions. These correspond classically to maps in C(1:,G IH) 
which are not deformable to the trivial map, and the topolog
ical sectors of the classical theory are labelled by the homo
topy classes of these maps. It is therefore an interesting ques
tion to see if such topological effects also arise in the affine 
group representation theory. Thus the quantum field 
u~c) (x) corresponding to a specific choic~ of c could be said 
to belong to a particular homotopy class If 

(Olu~c) (x) 10) = J A ac'2(X,A)dV(A) = 11.C) (x) , 

(3.35) 

where Y(c) is a map from 1: into W whose image lies in the 
G / H subspace of Wand which, considered as a G I H valued 
map, belongs to the specified homotopy class. 

To see that such quantum sectors can indeed be con
structed let C(A) be a cocycle satisfying (3.19)-( 3.21) and 
which is a function of A only. Let BeC(1:,G) and define a 
new cocycle by c(x,A): = c(L(B(x»A.). Then for the corre
sponding quantum field denoted u~B) (x), one finds 

(Olu~B) (x) 10) = J A ac2(L(B(x»A)dv(A) 

=L(B(x)-I)abl1c) , (3.36) 

where I1c): = fA bC2(A)dv(A) is the vacuum expectation 
value associated with the original cocycle C(A). Now sup
pose C(A) is chosen such that the vector Y(c) lies on th.e 
particular orbit in W identified with G I H. For example, If 
f( IIA II) is a suitably damped function of IIA II then 
f f( IIAII)A aA bdv(A) will be proportional to ~ab and hence, 
for any vector lIE W, if 

C(A): = [IIA IIf(IIA 11)(1 + (v,A )/211vll IIAII)p/2, 

then fA aC2(A)dv(A) defines the components of a vector 
pointing in the direction of v. With such a choice for c, it 
follows from (3.36) that 11.B) (x): = (OIU(B) (x)IO) lies on 
this same orbit and so Y(B) does indeed define a map from 1: 
into the G I H subspace of W. Furthermore, Y(B) is obtained 
by acting with L(B(x) -1) on the vector Y(c) , which can be 
thought of as a constant function from 1: into G I H. Thus the 
topological sectors that can be reached in this way are pre
cisely the set mentioned in the introduction, i.e., the homo-
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topy classes of the maps C(o) C~,G IH) from :I into G IH 
that can be lifted to G. 

It is interesting to enquire when these different sectors 
are unitarily equivalent; i.e., does there exist a unitary opera
tor ~ on exp lj such that ~ UfB) (x) ~-l = u~C) (x) where B 
and C are any pair of maps in C(:I,G)? To answer this, note 
that (1.8) implies that 

V(A)ua(x) V(A)-l = ub(x)I(A(x»b a. (3.37) 

Thus, since it is always possible to obtain BEC(:I,G) by mul
tiplying CEC(:I,G) with another group element in C(:I,G), 
a failure to construct such an operator would mean that the 
Hilbert space associated with the original cocycle c does not 
carry a represenation of the entire group but only the con
nected component of the identity [obtained by exponentiat
ing the generators ofthe Lie algebra of C(:I,G)] plus what
ever disconnected transformations can be attached to a 
unitary operator~. A similar remark applies to the represen
tations associated with any specific function B. However, the 
condition for a particular AEC( :I,G) to be implementable in 
the representation with cocycle cis just (3.31 ) , and similarly 
the necessary and sufficient condition for the Band C sectors 
to be unitarily equivalent is that 

f Ic(L(B(x»A.) - c(L(C(x»A.)1 2dt1(x)dv(A.) < 00. 

(3.38) 

Since, as remarked above, the singular part of c is G 
invariant, it follows from (3.38) that if :I is compact there 
will be no problem and all sectors are unitarily equivalent. 
The Hilbert space will then decompose into a direct sum of 
subs paces labelled by the topological sectors, each one of 
which carries a representation of the connected component 
of the canonical group. The generators of the disconnected 
transformations will then serve as intertwining operators be
tween these sectors. This property is quite important in, for 
example, discussions of strings propagating on a toruS.26,27 

Note that if :I is noncom pact then the fields U~B) (x) and 
u~C) (x) will be unitarily equivalent provided that Band C 
are asymptotically equivalent (as x .... 00) in the sense of 
(3.38), whatever difference they may possess in between. 

IV. REPRESENTATIONS AND DYNAMICS 

A. The Hamiltonian for canonical. fields 

In the previous sections we have discussed various rep
resentations of the affine field commutation relations 
(1.11)-( 1.13). In this final section we come to the impor
tant question of the relation of these representations to dy
namics, i.e., the assignment to each such representation of a 
Hamiltonian generator of time translations. Our aim is to 
develop an analog in the affine case of Araki's well-known 
demonstration28 of the way in which the choice of a particu
lar representation of the canonical commutation relations in 
quantum field theory essentially specifies the Hamiltonian. 
Such an analysis is not totally straightforward since many of 
our representations of the affine relations are reducible. On 
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the other hand, all our examples-reducible as well as irre
ducible-have in common the fact that the Hilbert space 
vector denoted by 10) (and which is typically chosen to de
fine expectation functionals) is cyclic for the field operators 
u(a) alone. Thus, for each of the representations discussed 
above, vectors of the form la): = U(a) 10) = e - iu(a) 10), 
for all test functions a, span the relevant Hilbert space. 

It is pedagogically useful to start by reviewing briefly 
Araki's argument for an N vector of canonical fields in a 
form suitable for our own purposes. The expectation that 
any associated canonical Hamiltonian can be written heuris
ticallyas 

H = ~ f (1T"(x)1T"(x) + V(lp»dt1(x) (4.1) 

[where V( lp) includes terms involving spatial derivatives of 
lp] is reflected more formally in the requirement that H 
should satisfy the basic identities 

i[H,lpa(x)] = 1T"(x), (4.2) 

i2 [ [H,lp a(x) ] ,lp b(y)] = i[ 1T"(x) ,lp b(y) ] 

= ~ab~(x,y), (4.3) 

modulo domain technicalities that we will ignore. If we in
troduce vectors of the form II>: = tltp(f) 10), then it follows 
that 

(~/b~Y) + ~/:(yJ(/I1T"(X)lf') 
= (Iii [1T"(X),lpb(y)] If') 

= ~ab~(x,y)E(1' - I), (4.4) 

where the expectation functional E( I' -I): 
= (/lf') = (011' - I) depends only on the difference 
f' - f Consequently, 

(/11T"(x) If') = ~(Ia(x) + 1~(x»E(f' - I) 
+Fa(f' -f,x) 

for some Fa. To fix Fa we investigate 

Fa (2f,x) = ( - 111T"(x) If) 
= (0 I eitp( f>1T"(x)eltp(f) 10) 

(4.5) 

(4.6) 

and observe that if the vector 10) is time reversal invariant, 
then Fa =0. This fact may readily be seen in the context of 
the SchrOdinger representation of n-dimensional quantum 
mechanics where time-reversal invariance implies the reality 
of the wave function. In that case the quantum mechanical 
analog of Fa is given by 

provided that'" falls off sufficiently fast as Ixl .... 00. 

Hamiltonians that lead to time reversal invariant eigen
states are even functions of the canonical momenta 1T(X); in 
particular this is true of (4.1) which is consistent with (4.2), 
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(4.3). Let us assume therefore that 10) is time reversal invar
iant so that Fa = 0 for the canonical case, i.e., 

(fl1T"(x) If') = Kfa (x) + f~ (x»E(f' - f)· 
Then we observe that 

(_8_+ 8 )(flHlf') 
810 (x) 8f~ (x) 

= (fli[H,~ a(x)] If') 

=!(Ia(x)+f~(x»E(f'-f), (4.8) 

from which we deduce that (flH If') 
= !(fJ')E(f' - f) + G(f' - f) for some G given by 
G(f) = ( - flH 10). If 10) is an eigenstate ofHwith eigen
value Ao then G(f) = Ao( -flO) = AoE(f), and hence 

(flH If') = (!(J,f') + Ao)E(f' - f)· (4.9) 

Under the stated assumptions, this is Araki's expression 
determining the matrix elements of the Hamiltonian as a 
symmetric operator on the dense set of all finite linear com
binations of the vectors I f) for all test functions f Since 
H-,Ao on this dense set, the domain of H may be uniquely 
extended to give a self-adjoint operator that preserves this 
lower bound (this is the familiar Friedrich's extension, e.g., 
Riesz and Nagy29). We draw the reader's attention to the 
fact that the discussion above did not require irreducibility 
of the canonical fields but only that the vectors {If)} 
spanned the relevant Hilbert space. 

B. The Hamiltonian for affine fields 

We wish now to develop, as far as possible, an analogous 
argument for fields satisfying the affine commutation rela
tions. We have argued that relations ofthis type are appro
priate in the quantization of systems like the nonlinear u 
model and, for convenience, we will restrict our attention to 
the SO(N) theory in which the fields take their values in the 
(N - 1) sphere SN - 1 • The classical Hamiltonian for this 
model can be obtained by taking the free-field Hamiltonian 

H = ~ f(aoua(x)aoua(x) + V;ua(x)V;ua(x»dsx 

(4.10) 

and then imposing the constraint".I.~ = 1 ua(x)ua(x) ~ const. 
Note that V; denotes the spatial derivation operator and, for 
simplicity, we have assumed that the spatial manifold ".I. has 
a trivial metric (i.e., a torus T S or the Euclidean space RS 

). 

The generators of the SO(N) transformation are given by 
(in the notation of Sec. II) J; (x) = - L;ab ua(x)aoub(x) 
and hence, if Cj is the quadratic Casimir for SO (N), 

CijJ;(x)Jj(x) = k(ua(x)uU(x)aoub(x)aoub(x) 

- uU(x)aouu(x)ub(x)aoub(x» 
(4.11 ) 

for some constant k. If the constraint is imposed, (4.11) 
becomes proportional to the time derivative part of the con
strained form of ( 4.10) leading to the well-known Sugawara 
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form of the Hamiltonian of the nonlinear u model. 30 This in 
turn suggests that in our case [where the constraint is "im
posed" only insofar as T(x): = ua(x)uu(x) is potentially a 
Casimir operator], a plausible formal model for the Hamil
tonian is 

H=x f (T(X)-lCijJ;(X)Jj(x) + W(u»dSx, (4.12) 

where x is some constant and W is a local function of ua (x) 
and its spatial derivatives. 

The starting point for our analysis is the remark that 
(4.12) motivates choosing as the affine analog of (4.3), 

(4.13 ) 

where 

[Bub(x),uC(x)] =0. (4.14) 

Note that, for a suitable choice of x, the formal expression 
for B"b (x) is 

Bab(x) = 8ab - uU(x)ub(x)IT(x), (4.15) 

which has the projection property B ub (x) B be (x) = B uc (x) . 
A rigorous definition of ( 4.15) will involve some sort oflocal 
operator product renormalization. Each affine field operator 
representation implicity carries its own "rule book" for re
normalization, which may not be easy to implement. Indeed 
the renormalized operator Bab (x) may no longer possess the 
projection property, although it will generally retain its non
negative definite character, a fact that will be useful later. An 
example is afforded by the ultralocal representation of Sec. 
III in which the renormalized version of (4.15) [cf. (3.27)] 

Bab(x) = 8ab _ S Bt(x,A)...i a...i bB(x,A)dv(...i) . (4.16) 
S B t(x,A)...i c...i CB(x,...i)dv(...i) 

This symbolic expression for the resulting quadratic form is 
no longer projection-valued. 

In any event, we shall assume that the form B"b (x) is 
known and satisfies (4.14). It then follows from (4.13), 
(4.14) that 

_ ( 8 + 8 )(ali[H,UU(X)] la') 
8ab (y) 8a~ (y) 

= 8(x,y) (alB ub(X) la') 

= 8(x,y)X ub(a' - a;x). ( 4.17) 

Note that the functional xab is determined, at least in princi
ple, by the expectation functional E(a): = (Ola) 
= (Ole - ;u(a) 10) for the fields; explicit expressions for spe
cific examples are given in Secs. II and III. Even though, in 
practice, xab may be difficult to determine from E we shall 
regard it as known in what follows. 

From (4.17) we deduce that 

(ali[H,uU(x) ] la') 

= - !(ab (x) + a~ (x»Xub(a' - a;x) 

+ YU(a' - a;x). (4.18 ) 

The analog of this relation with (4.5) in the canonical case 
should be clear. In particular, we shall invoke an appropriate 
analog of the time reversal argument to set 1'" = O. Hence, 
we are led to the relation 
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( 8 + 8 )(aIHla') 
8aa (x) 8a~ (x) 

= !(ab (x) + a;, (x»Xab(a' - a;x), (4.19) 

which implies that 

(alH la') = ~ f aa (x)a;' (x)Xab(a' - a;x)d Sx 

+ Z(a' - a) (4.20) 

for some Z defined by Zeal: = ( - alH 10). Thus (4.20) 
determines the matrix of the Hamiltonian on the dense set of 
vectors made up of finite sums of states la). 

This is our most general result for the affine analog of 
Araki's analysis of the canonical theory. However, as in the 
canonical case, any further information regarding 10) can be 
used to give a further characterization of the matrix elements 
of the Hamiltonian. For example, if 10) is invariant under 
spatial translations in ~ ( ::::: RS or T S

) then, for all vectors 
aE~, E(a[a[) = E(a) where a[a1(x): = a(x + a). It fol
lows that xab (a' - a;x) is independent of x and hence the 
first term of (4.20) becomes !XOb(a'-a) 
faa (x)a;' (x)dsx. Another and independent, example, is if 
10) is chosen as an eigenstate of H with eigenvalue Ao. Then 
Z(a) = Ao( - alO) = AoE(a), which thus becomes a 
known function. In particular, 

(alH la') = ~ f aa (x)a;' (x)Xab(a' - a;x)dSx 

+ AoE(a' - a). (4.21) 

By the nature of its construction, Xab(a' - a;x) is a non
negative-definite functional, and it follows that H~ Ao on the 
dense set of vectors introduced above. Thus the Friedrich 
extension procedure quoted earlier uniquely defines a self
adjoint Hamiltonian having the same lower bound. 

Let us conclude by emphasizing that, as in the canonical 
theory, our results for the Hamiltonian in the affine case 
apply to a very large class of representations, both reducible 
and irreducible, and characterize the Hamiltonian whenever 
states of the form la) span the Hilbert space, i.e., when 10) is 
a cyclic vector for the field operators alone. (Even if 10) is 
not a cyclic vector for the field operators, the expression de
rived above for the matrix elements of the Hamiltonian still 
holds in the subspace spanned by such vectors.) Moreover, 
in the case of fields where uncountably many inequivalent 
representations exist, it is entirely natural to link the Hamil
tonian to the representation space by adopting the eigenval
ue relation H 10) = AoIO) for some Ao. As we have seen, this 
choice reduces the Hamiltonian matrix elements to expres
sions determined in principle from the expectation func
tional for the fields. 

From the perspective of the affine field algebra represen
tations presented in Secs. II and III, perhaps the most inter
esting application of the relation between Hamiltonians and 
operator representations is to the case of the topologically 
nontrivial and nontranslationally invariant case 10) asso-
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ciated with x-dependent c functions in the ultralocal repre
sentations [cf. (3.29)]. Applications of the general discus
sion for Hamiltonians to explicitly covariant models must 
await further advances in the development of affine field rep
resentations themselves. 
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In a Riemann-Cartan space-time U4 the minimally coupled massive spin-S Dirac equations are 
subject to constraints for all S>!. O~ may seek to modify these equations by the inclusion of 
appropriate supplementary terms a, fJ (indices suppressed) in such a way that the modified 
equations are unconstrained. This is done here explicitly in the case where the field spinors are 
}V""vn and "fv, ... vn-" with n = 2S. The spin-1 tensor equations, i.e., the minimally couRled 
Proca equations, are transcribed into spinorial form. The explicit expressions for a and fJ that 
so appear are in harmony with those already obtained. The freedom to choose a to be a zero 
spinor is shown to be circumscribed. Finally, it is pointed out that whether the unconstrained 
(spin-I) equations are minimally coupled or not depends on whether one chooses to write 
them as tensor or spinor equations. 

I. INTRODUCTION 

In an earlier paper,1 after first clarifying what is to be 
understood by the "incompatibility" of relativistic wave 
equations, I established the following result: the minimally 
coupled massive spin-S (S>!) first-order Dirac equations 

( l.la) 

(l.1b) 

are incompatible in any nontrivial Riemann-Cartan space
time U4 • The equations of constraint (or simply "'the con
straints") (4.3) of Ref. 1 formally represent this incompati
bility, for in an arbitrary U4 they limit the freedom of choice 
of initial data; see Secs. V B and VI of Ref. 1. In the corre
sponding Riemannian case2 one may alternatively take the 
constraints to impose generic limitations upon the V4 rather 
th~ upon the choice of initial data, but to do so in the pres
ent context would be an empty exercise since the constraints 
then require the absence of torsion. 

Equations (1.1) have their origin in the corresponding 
equations in a space S4' free of curvature and torsion, from 
which they arise by the prescription of minimal coupling, 
i.e., by a modification that consists solely in the replacement 
of partial by covariant derivatives. Therefore, neither the 
curvature tensor R n kim nor the torsion tensor Ski m will ap
pear explicitly in Eqs. (1.1). While this prescription has the 
charm of simplicity, it is flawed because in general it does not 
lead to unconstrained equations and one would appear to 
have no option but to abandon it. Following the Riemannian 
case,3 it suggests itself to modify Eqs. (1.1) by the addition of 
spinors aMa ,N._, and PM.N., both symmetric in Ms and 
Nt _ I> to the rhs of ( 1.1 a) and (1.1 b ), respectively. Where 
these spinors are so chosen that the modified equations are 
unconstrained, while both spinors must vanish identically in 
the absence of curvature an~ torsion. 

The problem of finding explicit expressions for 4 a and p 
for general values of sand t is formidable and its solution is 
extant: I shall therefore confine myself here to the simplest 
case, i.e., s = 0, t = 2S( = :n) since this is tractable, yet has 

some interesting features absent from the corresponding 
work contained in Ref. 2. In Sec. II, following the precedent 
set in Sec. V of Ref. 2, ~ is taken to be a zero spinor and an 
explicit expression for fJ is then found. The remainder of the 
paper is devoted to a detailed examination of the special case 
of spin-I. In Sec. III the transcription of the minimally cou
pled Proca equations into spinor form directly provides par
ticular expressions for aP-P and p vP, with a.itP¥=O: Not unex
pectedly, they are fully in harmony with the results of Sec. II. 
A possible pitfall in nonchalantly choosing a/JP to be a zero 
spinor is examined in Sec. IV. Finally, Sec. V concerns a 
peculiar ambiguity inherent in the minimal coupling pre
scription, namely, whether the (first order) equations are 
minimally coupled or not depends on whether one chooses 
to write them as tensor or spinor equations. 

II. I=n: UNCONSTRAINED EQUATIONS 

When s = ° and t = n only one dotted index occurs in 
Eqs. (1.1), so that one may simply write jJ, in place of jJ, \. 
Then the equations to be dealt with are 

(2.1a) 

(2.1b) 

Alternatively, eliminating S and TJ between Eqs. (2.1) one 
has 

(!O + ,r)sNn = SkIV\SNn-,A;[k/l 

. AN 
_ V' vn(1'Nn-' - IC{J n 

I' ' 
(2.2a) 

(10 + ,r),.jtNn-, _ SkiP. nJ..Nn-, 
2 'I - A"' ;[kl 1 

- Ka/-tNn-, - VJ..v'p Nn • (2.2b) 

From (2.2) there arises only a single condition upon a and p, 
namely, by transvection of (2.2a) with rv

n
_ jv

n
' 

V. a/-tNn-, _ Ky fJA Nn_ za/3 = Ski f:Nn- za/3 • 
I'vn _ , a/3 a/3~ ;[kl 1 

(2.3 ) 

If one sets a = 0, p = 0, one is left with the single equation of 
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constraint (4.3a) of Ref. 1, while the constraint (4.3b) of 
Ref. 1 is nugatory.] By inspection, if a, P satisfy condition 

A A_ 

(2.3), so do a + ii, P + p, provided only that 

P- Nn_zap _ V· ci'Nn- 1 
KYaP - /l-Vn_1 ' (2.4) 

where ii can be chosen arbitrarily. In the first instance it 
A A 

therefore suffices to make any convenient ansatz for a and p. 
The simple choice 

~Nn-I=O, 

pNn_zaP= [(n _1)/n]p(Nn- 2y<')P 

(2.5a) 

(2.5b) 

suggests itself, wherepis a symmetric spinor. [The insertion 
of the numerical factor n/(n - 1) ensures that pNn

_
z 

AN aP 
= raPP n-Z .] Then (2.3) gives 

f3
Nn- 2 Ski f:Nn 

K. = - Vn_IVn~ ;[kl J 

A N 
=DVn_,'YnS "; (2.6) 

cf. (4.3a) of Ref. 1. Bearing (2.9) of Ref. 1 in mind, (2.6) 
becomes 

K.f3Nn- z = l(n + I)Skl P(). f:Nn) 
2 vn _ IV" A.kl~ 

(2.7) 

The expression on the rhs of (2.7) may be simplified along 
the lines pursued in Sec. V of Ref. 2, but it is not necessary to 
spell this out in detail. At any rate, granted (2.5) and (2.7), 
Eqs. (2.1) are unconstrained. 

Of course, one still cannot be sure that one is on the right 
track with the somewhat ad hoc device for "removing con
straints" adopted above. In fact, it does gain some indepen
dent support from the results of a detailed investigation of 
the spin-l equations. However, at the same time this throws 
up a possible pitfall in the ansatz (2.5a) which is peculiar to 
the Riemann-Cartan space-time, i.e., there does not exist a 
corresponding difficulty in a Riemannian space-time. 

III. THE CASE OF SPIN-1 

When S = 1, i.e., s = 0, t = 2, Eqs. (1.1) are 

V;'pSVP = Kn;'v, (3.1a) 

V;.Prfv = KS vP. (3.1b) 

In a Riemann-Cartan space-time U4 (3.1) are constrained 
(see Sec. V A of Ref. 1), whereas in a Riemannian space
time they are not. Now, instead of pursuing the ad hoc addi
tion of supplementary terms to Eqs. (3.1) one may argue as 
follows. When space-time is Minkowskian one may take as 
the starting point the usual flat space Proca equationsS 

f-lfkl = <P1;k - <Pk;I' (3.2a) 

fkl;1 = f-l<Pk, (3.2b) 

where SUbscripts following a semicolon temporarily denote 
partial derivatives. The corresponding equations in a U4 are 
to be obtained from Eqs. (3.2) through the minimal cou
pling prescription: No formal change occurs in them, but 
subscripts following a semicolon now denote covariant de
rivatives. 

Equations (3.2) are manifestly unconstrained; conse
quently, one can obtain from them unconstrained spinor 
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equations by mere transcription. To begin with, any bivector 
fkl has as its spinor equiv,alent a pair of symmetric spinors 
~v and ~v such that 

(3.3) 

Also, because of (2.8) in Ref. 6, the dual of fkl is 

ft
kl

: = - ~ieklm"fmn = !(Skl/l-vS/l-v - Skljl..,t;'.,). (3.4) 

Therefore, 

s/l-V = S kl/l-'1kl' t;'''= Skl;'''Ikl' (3.5) 

If 

(3.6) 

F + kl and F _ kl are self-dual and antiself-dual, respectively. 
Again, the spinor equivalent of <Pk is a mixed spinor rfv 

such that 

<Pk = (lI,fi)ukjJ.vrf
v
• (3.7) 

Now, because of (3.5) and (3.7), 

V;' f:Vp = ~ Sklvp~ = _ U ;,vF kl 
P~ P Jkl;m k + ;1' (3.8) 

where (2.17) of Ref. 6 has been used. Setting f-l = : - K,fi, 

(3.8) finally becomes 

V;'ps vp = Krfv - Uk;.vpkl;I' (3.9a) 

Next, by transvection of (3.2a) throughout with sI'¥<v 
one obtains 

K f: /l-V - S kl/l-v,yo 'nap 
~ - - VlatJ·/ ;k' 

bearing (3.5) and (3.7) in mind. Using (2.16) of Ref. 6, this 
becomes 

Adding V..t [v'I..t/l-J to both sides of this equation, 

V..t v~ = Ks/l-v - !t'''V iz{J'TJatJ 

in view of (4.5) of Ref. 6. Equivalently, because of (3.2b) 
and (3.7), 

(3.9b) 

Now, when n = 2 the generic, unconstrained equations 
(2.1) are 

(3.10a) 

V;. vrfP = KS vP + jJvp; (3. lOb) 

Eqs. (3.10) remain unconstrained when (ii'P, if'" are added 
to fLI'P, jJ vP, respectively, provided only that condition (2.4), 
i.e., 

Kr vpP"P = V iAP(ii'P, 

is satisfied. Specifically, according to Eqs. (3.9), 

ftiAP = - Uk iAPj1kl;1 + (ii'P, 

jJ VP = (2K) -lrvPfkl;lk + P "P; 

thus the particular choice 

(3.11) 

(3.12a) 

(3.12b) 

ijiAP = UkiAPj1kl'l (3.13) 

reduces fLI'P to zero. In regardS to P "P, it suffices to set 

P "P = : !r"PP, (3.14) 

where the scalar Pis then determined by (3.11), i.e., 
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KfJ= Vf.t.paf.t.p =pkl;I' 

In effect, one thus has altogether 

&f.t.P=O, ijl'p= (2K)-lyvPF+ kl;lk' (3.15) 

It is easy to convince oneself by inspection that, with n = 2, 
Eqs. (2.5), together with Eq. (2.6), are exactly reproduced 
by Eqs. (3.15). 

IV. THE ASSUMPTION u';'P=O REVISITED 

In making the choice &f.t.P = 0 in Sec. II, I simply fol
lowed the precedent set for a Riemannian space-time in Sec. 
V of Ref. 2: While this appears to lead again to an acceptable 
solution of the problem, the special case S = 1 indicates that 
it contains a possible pitfall which should not be overlooked. 

Hitherto, attention has been confined exclusively to 
Eqs. (1.1). However, if one requires invariance under the 
full Lorentz group of equations in the flat space-time from 
which they originated, then one has to adjoin to Eqs. (1.1) 
the equations 

( 4.1a) 

(4.1b) 

When S = 1, (4.1) become, with the addition of supplemen
tary terms, 

Vp v;f.t.p = Kr/'v + af.t.v, 

VPvr/'v = K;f.t.P + jJ f.t.p. 

(4.2a) 

(4.2b) 

Bearing Sec. II in mind, it is obvious that the absence of af.t.v 

and jJ /lP would entail the constraint 
kl. ap _ SaP; ;kl - O. 

It suggests itself to follow precedent with the choice 

a/lV = o. 

(4.3) 

(4.4) 

Granted, then, that &/lV and a/lV are both absent, Eqs. (3.1a) 
and (4.2a) jointly imply 

( 4.5) 
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One now arrives at the desired conclusion most easily by 
applying the operator V/lV to the lhs of (4.5), which then 
takes the generic form h kl'lk' where h kl is a bivector. How-
ever, 

h kl KA h kl 
;Ik = kl (4.6) 

(recall Sec. V A of Ref. n. In the nontrivial U4 (4.6) fails to 
vanish in general. It follows that in Eqs. (3.lOa) and (4.2a) 
on cannot take &/lV and a/lV to be zero spinors simultaneous
ly. This conclusion will evidently not be affected if one pre
scribes minimal Hermitian coupling in place of minimal cou
pling. On the other hand, the conclusion in question cannot 
be drawn in a V4 • 

V. CONCLUDING REMARK 

The results of Sec. III point to a certain weakness inher
ent in the minimal coupling prescription which stands apart 
from the remarks of Sec. IV of Ref. 2. Normally, minimal 
coupling is understood to be a prescription which is to be 
applied to first-order equations. (The iterated equations are 
then usually not minimally coupled.) Here, however, one 
has a different state of affairs. The Proca equations (3.2) are 
minimally coupled, whereas their spinorial equivalents 
(3.9), or (3.10) together with (3.15), are not: Mere tran
scription has vitiated the prescription. In other words, 
whether the unconstrained equations are minimally coupled 
or not depends on whether one chooses to write them as 
tensor or as spinor equations. 

'H. A. Buchdahl, J. Math. Phys. 30, 700 (1989); where not otherwise indi
cated the terminology and notation of this paper are adhered to here. 

2H. A. Buchdahl, J. Phys. A: Math. Gen. 15, 1 (1982). 
3H. A. Buchdahl, J. Phys. A: Math. Gen. 15, 1057 (1982). 
'Occasionaly, when there is no risk of confusion, all indices of given spinors 
are suppressed. 

5E. M. Corson, Tensors, Spinors and Relativistic Wave Equations (Blackie, 
London, 1953), Sec. 27b. 

6H. A. Buchdahl, J. Aust. Math. Soc. 2,369 (1962); knowledge of the defi
nitions and notation in this paper is presupposed. 
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In this paper the separation of variables is presented in the Dirac equation in open, flat, and 
closed expanding cosmological Robertson-Walker universes. The equations governing the 
radial variable and the evolution of the time-dependent factor are obtained. An exact solution 
to the Weyl equation is derived for an arbitrary expansion factor of the Robertson-Walker 
metrics. An exact solution to Dirac equation in a universe filled with radiation is also 
presented. 

I. INTRODUCTION 

Recently there has been an increasing interest in quan
tum mechanical properties of particles in curved space
times. Audretsch and Schiiferl

•
2 have presented a detailed 

analysis of the energy spectrum of the hydrogen atom in 
static Robertson-Walker universes. The study of a one-elec
tron atom in a general curved space-time as well as the Ham
iltonian of the Dirac equation in Fermi coordinates was 
found by Parker. 3,4 The Hawking radiation5

•
6 is an appropri

ate example of the importance of the effects of strong gravi
tational fields in quantum mechanical processes. The con
struction of a quantum field theory in curved space-times 
and the definition of quantum vacuum is impossible without 
a careful study of one-particle states, i.e., without a detailed 
investigation of the exact solutions of relativisitic wave equa
tions in curved backgrounds. 

Some exact solutions to the Dirac equation in curved 
space-times have been reported,7,g and considerable atten
tion has recently been paid to the study of de Sitter cosmolo
gical models and spatially flat Robertson-Walker uni
verses.9,10 Separation of variables in the Dirac equation was 
possible because of the simple form taken by the metric in 
these models, and an appropriate selection of the local 
frame. A useful method to carry out separation of variables 
in the previous cases is based on the obtainment of a com
plete set of first-order differential operators. II Nevertheless, 
exact solutions to the Dirac equation in spatially closed or 
open expanding Robertson-Walker universes can not be 
achieved using this technique. In the present article we ex
hibit a second-order method of separation of variables in the 
Dirac equation for the three types of Robertson-Walker 
metrics. This allows us to find the explicit structure of the 
Dirac spinor. Time and radial dependence of the solution are 
determined by two systems of two coupled ordinary differen
tial equations. In the massless case, we succeed in finding 
exact solutions to the Weyl equation ina Robertson-Walker 
background for an arbitrary expansion factor and arbitrary 
space curvature. 

a) Postal address: Carmelitas 4282, Caracas lOlO-A, Venezuela. 

The paper is organized as follows: In Sec. II, we write 
down the covariant generalization of the Dirac equation in 
cosmological Robertson-Walker universes and a complete 
separation of variables is achieved. In the same section we 
present the explicit structure of the spinor solution. In Sec. 
III the solution to the Weyl equation for each Robertson
Walker metric and arbitrary expansion factor is obtained. 
We present in Sec. IVan exact solution to the Dirac equation 
in spatially closed and open Robertson-Walker space-times 
with a metric representing a universe filled with radiation 
(p =pI3). 

II. DIRAC EQUATION IN ROBERTSON-WALKER 
SPACE-TIMES 

The generalization of the Dirac equation in curved 
space-time is 

(yY(x)Vv+m)'I'(x) 0, (2.1 ) 

where the generalized Dirac matrices satisfy the anticom
mutation relations 

and 

1 (ab~ a r, =-g --a(3 
A 4 Ila a" 

.< 

where 

S IlV = !( yllyV - rVrll) , 

(2.2) 

r a ) SIlV VA , (2.3) 

(2.4) 

and the matrices b ~, ap establish the connection between 
the Dirac matrices (r) on a curved space-time and the Min
kowski space (y) Dirac matrices as follows: 

YIl=b~Ya' yll=a~ytJ. (2.5) 

The Robertson-Walker metric in spherical coordinates 
reads 12 

d$2 = R 2(t)C ::r + r dO?) - dt 2
, (2.6) 

with 
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d02 = d(J 2 + sin2 (J dq; 2 , 

where 

E= 0, + 1, - 1. 

(2.7) 

(2.8) 

It is convenient to write the interval (2.6) in chronometrical 
coordinates expressed in the comoving frame,13 where the 
expansion factor depends only on the time parameter 7 

d!? = ea(T){dr + 5 2(r)d02 - dr}, (2.9) 

and 

{

r E= 0, 

5(r) = s~nh r, E: - 1, 
sm r, E - - 1. 

(2.10) 

Using the relations (2.3) and (2.4) and choosing a diagonal 
tetrad ap, 

ap = diag[e - a12,e - a/2,e - aI25(r) -I, 

e - aI2(5(r) sin (J)-I] , (2.11 ) 

we obtain the spinor connections r I-' for the metrics (2.9) 

(a) E= - 1, 

r3 = lea(a sin2(r) sin2«(J)rPyl + 2 cos(r)sin(r) 

(2.12) 

(2.13) 

xsin2«(J)ylyl + 2 sin2(r)sin«(J)cos«(J)fyl). (2.14) 

(b) E= 1, 

ro = 0, r l = leaarPyl, (2.15) 

r 2 = lea(a sinh2(r)rPf + 2 sinh(r)cosh(r)ylf), (2.16) 

r3 = !ea(a sinh2(r)sin2«(J)t>yl + 2 cosh(r) 

xsinh(r)sin2«(J)ylyl + 2 sinh2(r)sin«(J) 

Xcos«(J)fyl) . 

(c) E = 0, 

ro = 0, r l = leaarPyl, 

r 2 = lea(arrPf + 2rylf) , 

[ sin o cos 9' 
h a =e- a12 5-IC~S(Jcosq; 

f3 -5-lsm-l(Jcosq; 

0 

(2.17) 

(2.18 ) 

(2.19) 

sin (J sin q; 
5 - I cos (J sin q; 

5-1 sin-I (Jcosq; 

0 

S = exp( - (q; 12)1'IP) exp( - «(J 12)P1'I) U, (2.31) 

where 

U = !(1'lp + PP + Pf + 1). (2.32) 

Using a suitable representation of Dirac matrices l6 

tp = ( ~ i ~), l' k = (; :), k = 1,2,3, (2.33) 

and making the transformation (2.32) to Dirac matrices 
(2.33 ) 

U1'IU- I = p, UPU- I = 1'1, UPU- I = p. (2.34) 
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r3 = lea(ar sin2«(J)rPyl + 2rsin2«(J)ylyl 

+ 2r sin«(J)cos«(J)fyl) , (2.20) 

where 0, 1,2, and 3 denote 7, r, (J, and q;, respectively; and 
where the dot denotes d Id7. Substituting (2.12)-(2.20) in 
(2.1), the Dirac equation in the Robertson-Walker back
ground reads 

-'-ao+....L....a l + a2 { 

.;)l -I P 
ea12 eal2 eal25 (r) 

P } + a3 + m <I> = 0 , 
ea125(r) sin (J 

(2.21) 

where <I> is related to 'I' by 

'I' = 5(r)-1 (sin (J)-1/2e -3aI4<1>. (2.22) 

Applying the method of separation of variables proposed in 
Ref. II,itispossibletowriteEq. (2.21) as a sum of two first
order differential operators KI, K2 satisfying the relation 

[KI,K2] = 0, {KI + K2} ~ = 0, (2.23) 
A A 

KI~ = k~ = - K2~' (2.24) 

where 

KI = - i{pa2 + (p Isin (J)a3}1'ltp , 

K2 = - i5(r) {(tpao + 1'lal) + mea12}1'ltp, 

~ = 1'ltp<l>. 

(2.25) 

(2.26) 

(2.27) 

The operator KI corresponds to the "momentum" obtained 
by Brill and Wheelerl4 in the problem of separation of vari
ables of the Dirac equation in the Schwarzschild metric. The 

A A 

physical angular momentuml5 K is related to KI by the uni-
tary transformation S, connecting Dirac matrices and the 
spinor 'I' in the diagonal tetradic gauge to Dirac matrices 
and the spinor 'I' c in the Cartesian gauge, i.e., 

(2.28) 

S'I' = 'l'e , (2.29) 

where y~ are Dirac matrices in the Cartesian tetrad gauge. 
The matrix h p and the operator S are given by the relations 

cos (J 

~l - 5- 1 sin (J 

0 

0 

Equation (2.21) can be expressed as follows: 

(- cra() + im(o.1/sin (J) - ik)cI>l = 0, 

(cra() - im(o.1/sin (J) - ik)cI>2 = 0, 

with 

(2.30) 

(2.35) 

(2.36) 

(2.37) 

Using the algebra of Pauli matrices and taking into account 
the form ofEqs. (2.35) and (2.36), it is easy to see that the 
spinor 2 has the following structure: 
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[ 

q(r,r)XI(O) ] 

I. q(r,r)X2(0) (.) 
= p(r,r)XI (0) exp Imrp . 

- p(r,r)X2(0) 

(2.38) 

The constant m in Eqs. (2.35) and (2.36) is the eigenvalue 
9! the operator - ia tp which commutes with the operator 
K I . We would expect m to take half-integer values because 
the spinor wave function 'I' e has to be continuous every
where, i.e., 

'l'e (rp = rpo) = 'I' e (rp = rpo + 217") , 

and since 

S(rpo) = - S(rpo + 21r) , 

it becomes clear that 

<I>(rpo) = - <I>(rpo + 21T) , 

(2.39) 

(2.40) 

(2.41 ) 

with the above boundary conditions, - iatp is a Hermitian 
operator, with eigenvalues 

m = ±!, ±~, ±~, ... . (2.42) 

Using the standard representation for the Pauli matrices, the 
spinor equation (2.35) splits in two equations 

(~ + -!!!-)X2 - kXI = 0, 
dO sm 0 

(~ - -!!!-)XI + kX2 = 0, 
dO sm 0 

where 

4>1 =~:). 
The ansatz 

XI = sinm(O)cos(O 12) g(O) , 

X2 = sinm(O)sin(O 12) f(O) , 

leads to 

(x+1) dg +(~+m)g=kf, 
dx 2 

(x-1) df +(~+m)f=kg, 
dx 2 

where we have made the substitution 

x = cos 0. 

(2.43 ) 

(2.44 ) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

The solution ofEqs. (2.48), (2.49) is given in terms of the 
Jacobi polynomials17 by the expressions 

(2.51 ) 

g(x) = Co P ~m - 112.m + 112) (x) , (2.52) 

where Co is a constant of normalization and n is given by 

n = Ik I - Iml - ! . (2.53 ) 

Therefore, the functions X I' X 2 'are 

X I = Co sinm( O)cos( 0 12)P ~m + 112.m - 112) (cos 0), (2.54) 

Xl = Co sinm( O)sin( 0 12)P ~m - 112.m + 112) (cos 0). (2.55) 

The separation of variables in Eq. (2.26) cannot be writ
ten in terms of first-order commuting differential operators. 
It is then convenient to rewrite Eq. (2.24) as 
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[(]pao + mea/2
) f]P + (]pal + i(k Is»] I. = O. (2.56) 

Introducing the auxiliary function 1J defined by 

I. = [( ]pao + mea12 )f]P + (]pal - i(k 15»] 1J, (2.57) 

Eq. (2.56) reduces to 

{NI + N2} 1J = 0, [NI ,N2 ] = 0, (2.58) 

where 

Nl = (]pao + mea12
) ( - ]pao + mea12

) , 

N2 = (]pal + i(kI5»(]pal - i(kI5» , 
A A 2 
N 21J = - N I 1J = A 1J. 

(2.59) 

(2.60) 

(2.61 ) 

Using the representation (2.33) for ]p and (2.59)-(2.61) 
we can write 1J as follows: 

(2.62) 

Applying the auxiliary condition (2.57) on 1J, I. can be writ
ten as 

(2.63 ) 

where a( r), fJ( r), a(r), and her) satisfy 

(
d. al2) :1fJ dr - Ime a = - 1/1. , (2.64) 

(:r + ime
al2

) fJ = - iAa, (2.65) 

(!!... + ~) a = Ah , 
dr 5 

(2.66) 

(:r - ;) h = - Aa . (2.67) 

Solution of the first two equations requires the knowledge ot 
the expansion factor ea(T). From the other two equations 
three cases emerge. 

(i) € = O. Then 5 = r and the solution is given by 

a(r) =aorl12Jk+II2(Ar) , (2.68) 

her) = aorl12Jk_112 (Ar) , (2.69) 

where ao is an arbitrary constant. 
(ii) € = 1. In this case 5 = sin r. Since the equations 

have the same structure as the system (2.43 )-( 2.44 ), we can 
use the ansatz (2.46) and (2.47). Hence, we obtain 

a(r) = Co sink(r)sin(r/2)F(! - A + k,! + A + k, 

~ + k,(1 - cos r)/2), (2.70) 

her) = cor q + k)/A ]sink(r) cos(r/2)F(! - A + k, 

! + A + k,! + k,(1 - cos r)/2), (2.71) 
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where Co is an arbitrary constant and F(a,b,c,z) are the 
Gauss hypergeometric functions. 17 

(iii) € = - 1. In this case $ = sinh r and the solution to 
(2.66), (2.67) is 

a = ao sinhk(r)cosh(r/2)F(~ - iA + k, 

! + iA + k,~ + k,( 1 - cosh r)/2) , (2.72) 

b = ao(! + k)/A sinhk(r) sinh(r/2)F(~ - iA + k, 

! + iA + k,! + k,(1 - cosh r)/2). (2.73) 

The solution to the Dirac equation in the Cartesian gauge is 
obtained by performing the transformation (2.29), which 
gives the familiar form of the solution in terms of the spheri
cal harmonics l8 (the details of this calculation can be found 
in the Appendix): 

'1'0 = $(r) -Ie - 3a/4 

(

k - m + p 1/2[3( 7)a(r) Y;;' - 112 ( fJ,q;) ) 

X (k+m+p I/2[3(7)a(r)y;;'+I12(fJ,q;) . 

- (k + m + !) 1/2a( 7)b(r) Y;;' - 112 ( fJ,q;) 

(k - m +~) 1/2a( 7)b(r) Y;;' + 112 (fJ,q;) 

(2.74) 

The expansion factor eat r) is determined by the equation 
of state. 13 

III. SOLUTION TO THE WEYL EQUATION 

Neutrinos in a Robertson-Walker background are de
scribed by the Weyl equation, which corresponds to the 
massless limit of the Dirac equation plus the chirality condi
tion. The latter, in the representation (2.33), reads 

(1 - iys)'I'c = 0, 

where 

Ys = YOYIi/2Y3 . 

(3.1 ) 

(3.2) 

Then, the Weyl spinor can be expressed in terms of the solu
tion of the Dirac equation as follows: 

(1 + iys)'I'c = 'l'w . (3.3) 

The matrix Ys commutes with U and with the transfor
mation matrix S, therefore we can substitute 'I' c by ~ in 
(3.3). Then, we can use the results of the preceding section. 
Indeed, Eqs. (2.43) and (2.44) apply with no changes to the 
present case, while solutions to Eqs. (2.64) and (2.65) take 
the form 

(3.4 ) 

[3cxeiAr . (3.5) 

Using, now, the explicit representation of the matrix U, the 
chirality condition, and (2.63), the solution of the Weyl 
equation in the diagonal gauge takes the form 

'I' = $ -I (r)sin- I fJ exp( - ~a( 7»eim.peiAt(~), (3.6) 

where 
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= ((1 - i)[ (a + ib)XI - (1 + i)(a - ib)X2]) . (3.7) 
q (1 - i) [(a + ib)XI + (1 + i)(a - ib)X2] 

The solution in the Cartesian gauge can be obtained applying 
the transformation (2.31) to the spinor (3.6). 

The above result represents the general solution to the 
Weyl equation for each Robertson-Walker universe and for 
an arbitrary expansion factor a ( 7). 

IV. SOLUTION TO DIRAC EQUATION IN A RADIATION 
UNIVERSE 

In this section we study the Dirac equation in closed and 
open Robertson-Walker radiation universes. In the chrono
metrical coordinates the line element for the closed universe 
takes the form 

dr = sin2 
7[ - dr + dr + sin2 r(dfJ 2 + sin2 fJ dq; 2)] . 

(4.1 ) 

The system of equations (2.64), (2.65) with the expan
sion factor a = sin 7, reads 

(:7 + im sin 7) [3 = - iAa , 

(:7 - im sin 7) a = - iA[3 , 

from which we obtain 

(:; - im cos 7 + m2 sin2 7 + A 2) a = 0 , 

(4.2) 

(4.3) 

(4.4) 

(:; + im cos 7 + m2 sin2 7 + A 2) [3 = 0 . (4.5) 

The solution to these equations can be obtained, in a way 
analogous to the Mathieu equation, as a series of periodic 
functions. However, this solution requires a five terms recur
rence relation for the coefficients. 

A simpler solution can be found by realizing that Eqs. 
(4.4) and (4.5) are of the form of the Whittaker-Hill equa
tion. 19 Indeed after the change 

a = e-imcosrYI + eimcosrY2' 

[3 = e - im cos rXI + eimcos rX2 , 

(4.6) 

(4.7) 

can be written as a system of equations of the Ince type. 19 

That is, 

( d22 + i4m sin 2fJ..!!.... + 4A 2 + i8m cos fJ)XI = 0, 
dfJ dfJ 

(4.8) 

( d 22 _ i4m sin 2fJ..!!.... + 4A 2) X2 = 0 , 
dfJ dfJ 

(4.9) 

( d 22 + i4m sin 2fJ ..!!.... + 4A 2) Y1 = 0 , 
dfJ dfJ 

(4.10) 

( d22 _ i4m sin 2fJ..!!.... + 4A 2 - i8m cos 2fJ) Y2 = 0, 
dfJ dfJ 

( 4.11) 
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where 'T = 2(). The solution to the system (4.S )-( 4.10) is 

a=e-imcosr[f c,sinrr] 
,=0 

+ eimcosr[_l_' f rG, cos r'T] , 
U ,=1 

{3 = e - im cos r[_l_' f rC, sin r'T] 
2..1 ,= 1 

+ eim cos r Lto G, cos r'T] , 

( 4.12) 

(4.13 ) 

where the coefficients C, and G, satisfy the three terms re
currence relations 

2(1 - A. 2)C1 + C2 = 0, 

- (i/2)(r-l)mC,_1 + (r-4..12)C, 

+ (i/2)m(r + 1 )C,+ 1 = 0, 

2( 1 - A. 2)G1 + G2 = 0, 

(i/2)(r - l)mG,_ 1 + (r - 4..1 2)G, 

- (i/2)m(r + 1 )G,+ 1 = O. 

Equations (4.15) and (4.17) are valid for r>2. 

(4.14 ) 

(4.15 ) 

( 4.16) 

( 4.17) 

The solution corresponding to an open universe filled 
with radiation, can be obtained making the substitution 
'T ..... i'T in the equations for a and {3. 

The above solutions are absolutely and uniformly con
vergent for any value of'T. A detailed analysis of this point 
has been carried out by Urwin and Arscott. 20 

These results indicate that interesting solutions could be 
obtained if different matter distributions, in presence of elec
tromagnetic radiation, are considered'. This will be done in a 
forthcoming paper. 
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APPENDIX 

We give the explicit form of the transformation matrix S 
in the representation (2.33) of Dirac matrices 

s=l.(Z 0) (AI) 
2 0 Z ' 

where 

or 

719 

Z = exp( - (iqJ /2) ~)exp( - (i() /2) a2) 

Z= 

X [1 + i(o.1 + a2 +~)] , 

(
e - itp/2 

o 

(
1 + i 

X. 1 1-

o ) (CoS«() /2) 
eitp /2 sin ( () /2 ) 

1 + i\. 
1- ;) 

- sin ( () /2») 
cos«() /2) 
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(A2) 

(A3) 

In order to obtain the form of the spinor, solution of the 
Dirac equation in the Cartesian gauge, we let S act on i 
given in (2.63), and with the help ofEqs. (2.45)-(2.47) we 
obtain for the lower components of IIJ 

(
e - itp/2 

1IJ2 = sinm - 112 () 0 

(
COS«() /2) 

X sin«() /2) 
- sine () /2») 
cos«() /2) 

X ( - cos«() /2)P ~m - 112,m + 112)(X») 

sin«()/2)p~m+l/2,m-1I2)(X) , (A4) 

where x = cos (). Taking into account the recurrence rela
tions for the Jacobi polynomials 

(1- x)p~a+ l,b)(X) + (1 + x)p~a,b+ l)(x) = 2p~a,b) , 

(A5) 

p~a,b-I)(X) _ p~a-I,b)(x) = p~a!~ (x), 

we obtain 

(A6) 

IIJ = smm-I () 
. (_COS«()/2)p~m-1I2,m+1I2)(x») 

2 sin«()/2)p~m+1I2.m-1I2)(x)· 
(A7) 

Using 

2ak! d a 

Pk(a.=')a(x) = -p (x) 
(k + a)! dxa k , 

(AS) 

IIJ 2 can be written as 

2m
-

1I2k! ~ 
IIJ 2 

= (k + m - 1/2)! -V 2k + 1 

( 

- Yk,m - 112 (x) ) 

X 1 1 1/2 • 
(k + m + !)I/2 (k - m + 2) Yk,m+ 112 (x) 

(A9) 

Finally the explicit form of IIJ I is obtained in a similar fash
ion. 
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Recursion relation of character expansion coefficient in SU(3) lattice 
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In the SU ( 3) lattice gauge theory the recursion relations of coefficients of the character 
expansion are derived through the Schwinger-Dyson equation for the ensemble average 
containing multilink variables. The relations form two kinds of recursion relations which 
correspond to two independent integers A and p of the SU (3) (Ap) representation of the 
Young tableau. The property of the recursion relations in comparison with those of the U ( 1 ) 
and SU(2) groups is discussed. 

I. INTRODUCTION 

In the Wilson formulation oflattice gauge theory) in the 
quantum chromodynamics (QCD) the Schwinger-Dyson 
equation2 plays an important role in the inspection of the 
properties of the QC~onfinement and asymptotic free
dom. Brower and Nauenberg3 have presented an exact solu
tion in the differential form of the Schwinger-Dyson equa
tion in the limit of N ..... 00 at fixed N /11 (g denotes the 
coupling constant) in SU(N) and shown the occurrence of 
the third-order phase transition in any dimension. Xue et al.4 

have developed the method of the evaluation of the Wilson 
loop by use of the Schwinger-Dyson variational equation. 
This method is expected to be able to treat those quantities 
that the Monte Carlo method fails to simulate, such as Wil
son loops in large size and the loops in the scaling region.5 In 
these approaches, the Schwinger-Dyson equation is derived 
from the variation of one link variable, e.g., ~u (tr( UA», 
where U denotes the link variable and A is an arbitrary ma
trix. 

In this paper we derive the Schwinger-Dyson equation 
from the variation of the average on the trial action 
So( = tr( UJ + Jtut» for multilink variables in the SU(3) 
group, ~u(tr(UAl)tr(UA2)···tr(UAn»' where A;'s are 
again arbitrary matrices. We then express the Schwinger
Dyson equation in terms of the coefficients of the character 
expansion6

•
7 for the single-plaquette action. From a series of 

these equations we derive the two kinds of recursion rela
tions of the coefficients functions. 

II. CHARACTER EXPANSION 

We start with the Wilson action) 

S=p})r(Up + U~), (1) 
p 

where Up ( = U) U2U! Ul) represents the single-plaquette 
variable. In SU ( 3) lattice gauge theory the exponentiated 
single-plaquette action is expanded by the character, 
X..t,., (Up)' as follows6

•
7

; 

with 

d..t,., = -!(A + l)(p + I)(A +p + 2), (3) 

where N(P) denotes the normalization factor and d..tp is the 
dimension of the representation (A",,) for the SU (3) Young 
tableau. From the properties of the group integration we find 
thatAp..t = A..t,., and X..t,., = X~, with zero or positive integer 
valuesofAandp. Specifically,Aoo = 1 andxoo = 1. With the 
use of the orthogonality relation of the character, 

f X1,.,(U)X..t·,.,·(U)dU=~..t..t. ~,.,,.,,. (4) 

We write A..t,., (P> as 

A..t,.,(P) = N(P
1
)d..t,., f dUpX..t,.,(Up ) 

xexp[ptr( Up + U~)]. (5) 

As simple examples let us take (A,p) = (1,0) and (1,1). The 
corresponding characters are given by 

XIO( U) = tr( U), 

XII (U) = tr( U)tr( ut) - 1. 
(6) 

Substituting Eqs. (6) into Eq. (5) and performing some 
group integrations8

•
9 we find 

and 

(8) 

with 

N(P> = r60) (P) 

and 
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00 n 2m+t(3n+3r+3)'R2n+m 
r~k)(fj') = L L 'fJ. (9) 

n = 0 m = 0 (n + r + 1)! (n + r + k + 2)! (2n + m + 3r + 3)! (n - m) !m! 

Here we note that N({3) is nothing but the one-link partition 
function Zo ({3). 9 With the use of characters with larger val
ues of A. and,u, one can calculate the correspondingA..t1l from 
Eq. (5). From a series of the functions of A..t/s we find a 
general expression for A..tll with arbitrary integers of A. and,u 
(A.:>,u:>O): By setting n = A. +,u it can be described by 

A ({3) = _1_{3n ~ s' (A.)(,u) 
..til N({3) s~o· S S 

X ni
2s 

(n - 2s){3n - 2s- k 
k=O k 

X 2r~osek: S){32' r~k++,~ k- s ({3). (10) 

We note that the {3 expansion of A..tll starts with the power of 
A. +,u [see, also, Eq. (22) ], which is consistent with the case 
of the modified Bessel function III ({3) whose {3 series starts 
with the power of ,u. 

III. THE SCHWINGER-DYSON EQUATION 

We begin with the definition of the average on the gener-
ating function ofthe one-link integral: 

(Ii ) 
fdU/(U)exp[tr(UJ+Jtut)]IJ=fJl 

(U) 0= , 
fdU exp[tr( UJ + Jtut)] IJ=fJl 

J 
where/( U) is a given function ofthe link variable U. Here J 
stands for an arbitrary 3 X 3 matrix ofthe group GL(3,C). 
The index J = {3I means that after the group integration the 
matrix J is set to {3 times the unit matrix 1. 

In order to express the plaquette integral dUp , we set 
Up = U and make a transformation (Ut'U2'U3'U4 ) 

-+ (U,W), wheredUp = dU dW. Then Eq. (5) is reduced to 

A..tll ({3) = (1/d..t1l )(X..tll )0' 

Let us consider the following one-link average for the 
purpose of the action variation of the Schwinger-Dyson 
type3

: 

(L km (A. a) )0= (tr(A. aUVt)tr( UV2)·· ·tr( UVk ) 

Xtr( V! + t ut) .. ·tr( V! + m ut) )0' 
(11 ) 

where A. a denotes the SU (3) Gell-Mann matrix with an in
teger suffix a(1,a,8) and V, is the 3X3 arbitrary matrix 
of constant parameter. Performing the action variation 
U-+exp(iEaA. a) U (Ea is an infinitesimal parameter) in Eq. 
(11) and using the orthonormal property of the Gell-Mann 
matrix we find 

k m 

[3-!(k-m)](Lkm (1»o+ L (tr(UVtUV,)Lkm;t,)o- L (tr(VtVt)Lkm;t,)o+ (Lkm;t tr(UVtUJ»o 
,=2 ,=k+t 

with 

Lkm;t = L km (1)/tr(UVt ), 

{
Lkm (1 )/[tr( UVt )tr( UV,)] 

Lkm;t, = Lkm(1)/[tr(UVt)tr(VtUtn 
(r,k), 

(r> k), 
(13) 

where the denominators are assumed to be nonzero c 
numbers that cancel the same-terms in the L km (1). Equa
tion (12) is the Schwinger-Dyson equation for a function 
containing multilink variables. 

Let us compare Eq. (12) with the Schwinger-Dyson 
equations for the groups U(1) and SU(2). Here we set 
m = 0 for L km in Eq. (11), since the term Or tr( utvt) 
does not lead to independent relations. For U ( 1) we drop 
the symbol A. and the suffix a and take the action variation U 
-+exp(iE)U in (LkO)o' Then we find 

The Schwinger-Dyson equation for SU(2) is reduced to 
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I 

(12) 

( 2 - !5:...) (LkO (1»0 + ± (tr( UVtU V, )LkO;tr)O 
2 ,=2 

+ (LkO;t tr( UVt UJ»o - (LkO;t tr( vpt»o = O. 
(15) 

Here we note that the terms corresponding to the last two 
terms in Eq. (12) are canceled out because of 
tr( ut) = tr( U) in SU(2). 

IV. RECURSION RELATION 

We first consider the Schwinger-Dyson equation for the 
groups U ( 1) and SU (2). The Young tableaux of the groups 
U ( 1) and SU (2) are represented with the single integer k 
instead of (A.,,u) and the corresponding dimensions dk are 
equal to 1 and k + 1, respectively. Then the character expan
sion of the exponentiated single-plaquette action is given by 
Eq. (2) modified with the replacement of (A."u) -+ k. We no
tice that the index k does not represent the number of the 
dimension, contrary to the conventional character expan
sion.7 Simple group integrations of Eq. (5) for U (1) and 
SU(2) yield, for N({3) and Ak ({3): 
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for U(1), 

for SU(2), 

for U(1), 
for SU(2), 

where Ik represents the modified Bessel function. 

(16) 

We perform some group integrations ofthe Schwinger
Dyson equation for (LkO)o [Eq. (11)] and then set all 
Vr (r = 1, ... ,k) to be unit matrices. This leads to the follow
ing recursion relations of the modified Bessel function, re
spectively: 

kIk(2{3)//3=Ik_I(2/3) -Ik+I(2{3), for U(1), 

(k+ 1)Ik+ I (4/3)12/3 =Ik (4/3) -Ik+ 2 (4/3), for SU(2). 

(17) 

In contrast to the cases ofU( 1) and SU(2) the Young tab
leau of SU (3) is specified with two independent integers A 
and It. This implies that the Schwinger-Dyson equation 
( 12) leads to two independent recursion relations. We prac
tically carry out the integration in Eq. (12) and again set all 
V/s and V~'s to be unit matrices. We then find a relation 
amongtheAA/s. Forsimpleexamplesof(k,m) = (1,0) and 
(1,1) Eq. (12) yields, respectively, 

3(A20 - A IO ) + 2(A ll - 1) + (61/3)A1O = 0 (18) 

and 

5A21 - 2A20 - 3AIO + (8//3)A ll = O. (19) 

With the successive variations of k and m we obtain a series 
of equations among the A AI' 'So From these equations we find 
the following two kinds of recursion relations. 

(i) The recursion relation for which the largest value of 
A + It is kept constant ( = n>2) is 

(n + 1)An _ r,r + [en - r)/(r+ 1)]An _ r_ I,r+1 

= -[r(n+l)/(r+1)]An _ r,r_1 

+ (n+ 1)An_ r_ 2,r+1 +nAn_ r_ 2,r 

- [(n + 1)(n - r)l/3 ]An _ r- I," (20) 

where A AI' with A < 0 or It < 0 is assumed zero. We note that 
the A AI' 's on the lhs take the largest values ( = n) of A + It, 
while those on the rhs take smaller values A + It < n. Hence 
the recursion relation (20) can be used to obtainA n _ r,r from 
An _ r- l,r+ I or vice versa with the use of A AI' (A + It < n). 

(ii) The recursion relation for the determination of 
Ani (n>2) is 

(n+3)A nl 

= - (n + 2)Ano - (n/2)An _ 1,0 + ~(n + 2)An _ 2,2 

+ (n+2)An_2,1 - [n(n+2)1/3]A n_ I,I' (21) 

We again note that the A + It values of AAI' on the rhs are 
smaller than that of Ani' 

By using recursion relations (20) and (21) we can find 
AAI' with any integer value of A and It. We begin with the 
known quantities of A 10 and A II at a given value /3. From (i) 
with n = 2 and r = 1, i.e., Eq. (18), we obtain A zo. Starting 
with k = 2 we repeat the following three processes by incre
menting k by 1 until the required AAI' is reached. 
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(a) We fix Ak I from (ii) with n = k. 
(b) We fixAk+ 1,0 from (i) with n = k + 1, r = O. 
(c) WefixAk_ r,r+ I (l<r< [(k + 1 )/2]) from (i) with 

n=k+l. 
where [ ] denotes the Gauss symbol. Here we have used the 
symmetry property of the function A AI' = AI'A' 

It is quite difficult to prove the recursion relations ana
lytically. However, we have found that the AAI' obtained 
from the recursion relations agree numerically with A~ of 
Eq. (10), which is derived from the direct group integration 
ofEq. (5). Since the recursive and direct integration meth
ods are independent, we obtain a confirmation to the recur
sion relations. (In a previous paper lO we used the present 
recursion relations [Eq. (9) in Ref. 10 is nothing but Eq. 
(18) in the present text].) 

Let us check the behavior of A~ at /3-0. From Eq. 
(10) one sees that at/3-0, 

AA (/3)_/3A+1' i s! (A) (It) 2 
I' .=0 S s (s+I)!(A+It+2)! 

2 /3 A +1'. (22) 
(A + It + 2)(1t + 1 )!(A + I)! 

Namely, the /3 series starts with /3 A + 1'. On the other hand, 
the recursion relations start with the inputs of A 10 - /3 13 and 
A ll -/32/8. From the iterative procedure (a)-(c) we can 
easily find A AI' - 0(/3 A + 1') at /3 --- O. The recursion relation 
(i) then generates, at /3 - 0, 

AAI' - [(A +It + 1)/(A +It + 2)(A + 1)]/3AA_I,1' 

- [(It + 2)/(A + It + 2) (A + 1 )!]/3 AAOI' 

- [2/(A + It + 2)(A + 1)!(1t + 1)!]/3 A +1', (23) 

where the last line of this equation is given by setting It = 0 in 
the equation of the second line and then by replacing A by It 
with the use of A 1'0 = Aol" Here we see that the recursive and 
direct integration methods yield the same behaviors at/3 -0. 
We have another confirmation to the recursion relations. 

V. RELATION CONTAINING THE DERIVATIVE 

The derivative of the general one-link partition function 
with respect to /3 can be written as follows: 

~ J dUL km (1)exp[tr(UJ+Jtut)]IJ=PI 

= J dU [Lkm (1 )tr( UJ) + L km (1 )tr(JtUt)] 

Xexp[tr( UJ) + Jtut)] IJ=.BI (24) 

where L km is defined by Eq. (11). Setting all Vr unit matri~ 
ces we find 

d~Bn-r,r=Bn-r,r-1 +Bn-r+I,r-1 +Bn-r+I,r 

+Bn-r-I,r +Bn-r-I,r+1 +Bn-r,r+I' 
(25) 

with 

BAI' = dAI' N(/3)AAI' (/3), (26) 

where B AI' with A < 0 or It < 0 is again assumed to be zero. 
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For U(1) and SU(2) the well-known relations for the 
modified Bessel function are deduced for m = 0 in Eq. (24): 

d 
-Ik(2{3)=Ik_l(2P)+Ik+l(2P), for U(1), 
dP 

for SU(2). 

(27) 

We see from these results that the derivatives for the U( 1), 
and SU(2) functions cause the linear combination of two 
adjacent functions, whereas the derivatives for the SU (3 ) 
function causes the linear combination of six adjacent func
tions. 

VI. DISCUSSIONS 

We have given two independent recursion relations for 
the coefficient functions A ... I' in the SU (3) character expan
sion. This reflects the fact that the SU (3) Young tableau is 
specified by two integers. It is quite advantageious to calcu
late the coefficients A ... I' (P) with large values of A and J.l 
from the present recursion relations. We have also shown 
that the function A ... I' (P) has large similarities to the modi
fied Bessel function in that the characteristic relations are 
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derived from the same Schwinger-Dyson equation of the 
multilink variable. 

For the function A...,.. (P), by combining the recursion 
relations with the derivative relation one may derive a linear 
differential equation as one derives the second-order differ
ential equation for the Bessel function. This problem is quite 
interesting since the function A ... I' is not only the coefficient 
of the character expansion, but it also may show a closed set 
of functions such as the modified Bessel functions. 
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The general relationship between local symmetries occurring in a Lagrangian formulation of a 
field theory and the corresponding constraints present in a phase space formulation are 
studied. First, a prescription-applicable to an arbitrary Lagrangian field theory-for the 
construction of phase space from the manifold of field configurations on space-time is given. 
Next, a general definition of the notion of local symmetries on the manifold offield 
configurations is given that encompasses, as special cases, the usual gauge transformations of 
Yang-Mills theory and general relativity. Local symmetries on phase space are then defined 
via projection from field configuration space. It is proved that associated to each local 
symmetry which suitably projects to phase space is a corresponding equivalence class of 
constraint functions on phase space. Moreover, the constraints thereby obtained are always 
first class, and the Poisson bracket algebra of the constraint functions is isomorphic to the Lie 
bracket algebra of the local symmetries on the constraint submanifold of phase space. The 
differences that occur in the structure of constraints in Yang-Mills theory and general 
relativity are fully accounted for by the manner in which the local symmetries project to phase 
space: In Yang-Mills theory all the "field-independent" local symmetries project to all of 
phase space, whereas in general relativity the nonspatial diffeomorphisms do not project to all 
of phase space and the ones that suitably project to the constraint submanifold are "field 
dependent." As by-products of the present work, definitions are given of the symplectic 
potential current density and the symplectic current density in the context of an arbitrary 
Lagrangian field theory, and the Noether current density associated with an arbitrary local 
symmetry. A number of properties of these currents are established and some relationships 
between them are obtained. 

I. INTRODUCTION 

The gauge structures of Yang-Mills theory and general 
relativity are very similar when viewed from the perspective 
of Lagrangian field theory. In both cases, there is a group of 
local symmetries of the Lagrangian that acts on the manifold 
offield configurations, Y, on space-time M. In Yang-Mills 
theory, the field variable is a connection on a principal fiber 
bundle with group Gover M, which may be represented lo
cally as a Lie-algebra-valued one-form All on M. The group 
of local symmetries, f§ YM , consists of the usual gauge trans
formations, i.e., the set of maps from Minto G. In general 
relativity, the field variable is a metric gllv on M, and the 
group oflocal symmetries f§ GR is the diffeomorphism group 
of M. In both cases, the action of the group of local symme
tries gives Y the natural structure of a principal fiber bun
dle. 

where l: denotes the initial data surface, IIIIl denotes the 
gauge covariant derivative operator, E? is the electric field of 
All [see Eq. (2.43)], and A is a map from l: into the Lie 
algebra of G. Note that the set of such maps, A, is isomorphic 
to the Lie 'algebra of the factor group f§YM = f§yM/K', 
where K' is the normal subgroup of f§ YM composed of the 
gauge transformations that act trivially on the initial data. 
The Poisson bracket algebra of the C A'S is naturally isomor
phic to the Lie algebra of f§ ~M' i.e., have 

Both Yang-Mills theory and general relativity also can 
be given a Hamiltonian formulation on a phase space. In 
both cases, there are constraints on phase space associated 
with the local symmetries on the field configuration mani
fold Y. However, when the structure of the constraints is 
examined carefully, the close analogy between Yang-Mills 
theory and general relativity appears to end. 

In Yang-Mills theory one can define constraint func
tions on phase space (i.e., functions whose simultaneous 
vanishing defines the constraint submanifold) by 

CA = L tr(A'IIIIlEIl), (1.1) 

{CAo' CA) = CIAo,A,)· (1.2) 

In general relativity, the structure with respect to the 
spatial diffeomorphisms (i.e., the diffeomorphisms that map 
the initial data surface l: into itselO is very similar to that 
occurring in Yang-Mills theory. Constraint functions for 
the spatial diffeomorphisms can be defined by 

Cp" = - 2 LPllh J/2Dv(h -J/21rllv), (1.3 ) 

where P II is an arbitrary vector field on l:, the tensor density 
1r IlV is given by Eq. (2.49), and Dil is the covariant deriva
tive operator associated with the spatial metric hllv on l:. 
The Poisson bracket algebra of these constraint functions is 
naturally isomorphic to the Lie algebra of the diffeomor
phism group of l:, i.e., we have 

( 1.4) 

However, the situation for the nonspatial (i.e., "time trans
lation") diffeomorphisms is quite different. Constraint func-
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tions associated with these diffeomorphisms can be defined 
by 

Ca = !ah 1/2[ -3R+h-{7TJ'V1TJ'v- ~ r)], (1.5) 

where a is an arbitrary function on l:. However, although 
the Poisson bracket of any pair of constraint functions (1.3) 
and (1.5) is proportional to a constraint function (so that 
the constraints are "first class"), we now find that the pro
portionality factors are not constant on phase space. Rather, 
we obtain 

{Cp",Ca } = Cr , ( 1.6) 

{Ca"Ca) = Cr'" (1.7) 

where 

r = /3J' aJ'a, 

Y' = a1h J'V ava2 - a2h J'V ava1. 

( 1.8a) 

(1.8b) 

The spatial metric explicitly appears on the right-hand side 
of Eq. (1.8b). Hence Y' varies from point to point of phase 
space, and the Poisson bracket (1.7) yields different con
straint functions at different points of phase space. Thus the 
canonical transformations generated by the constraints 
( 1.3) and (1.5) do not correspond to a group action on 
phase space, and the constraints do not appear to reflect the 
structure of the local symmetries (i.e., the space-time diffeo
morphisms) on field configuration space. 

The above situation has been noted and studied by many 
authors (see, e.g., Isham and Kuchar,l and the references 
cited therein), particularly with respect to the difficulties 
that arise on account of the lack of Lie algebra structure 
when one attempts to apply the Dirac procedure for impos
ing the constraints (1.3) and (1.5) in the canonical quanti
zation of general relativity. In this paper, however, we shall 
not be concerned primarily with these difficulties or their 
remedies, although a step toward a possible remedy will be 
suggested near the end of Sec. IV. Rather, our primary focus 
will be on developing the general theory of local symmetries 
and constraints in order to enable us to understand how such 
differences can arise. Specifically, we seek to answer the fol
lowing questions: For an arbitrary Lagrangian field theory, 
under precisely which circumstances and in precisely what 
manner does the presence of local symmetries on the mani
fold of field configurations give rise to the presence of con
straints on phase space? When such constraints do arise, 
what is the general relationship between the Poisson bracket 
algebra of the constraint functions and the Lie algebra of the 
local symmetries? We shall give complete answers to these 
questions in this paper, and these answers will enable us to 
account fully for the above differences that occur in Yang
Mils theory and general relativity. 

The first major obstacle encountered in our analysis is 
caused by the fact that the local symmetries are defined on 
the manifold of field configurations, Y, whereas the con
straints are defined on phase space r. Hence, in order to 
relate constraints to local symmetries, we must first relate r 
to Y. We overcome this obstacle in Sec. II by giving a gen
eral prescription-valid for an arbitrary Lagrangian field 
theory-for constructing r from Y. To do so, we give gen-
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eral definitions of a "symplectic potential current density" 
(}P- and a "symplectic current density" if on space-time, 
and we establish a number of their properties. A "presym
plectic form" CiJ AB on Y then is defined by integrating if 
over a Cauchy hypersurface. Phase space r with symplectic 
form nAB is then obtained from (Y, CiJAB ) by a reduction 
procedure. For Yang-Mills theory and general relativity, 
this construction yields the usual phase space of these theo
ries. For a parametrized scalar field theory, the construction 
yields a phase space equivalent to that of the "deparame
trized" theory. 

Section III is devoted to the study of local symmetries 
on the manifold offield configurations, Y. We give a general 
definition of the notion of local symmetries for an arbitrary 
Lagrangian field theory that encompasses the usual notions 
of local symmetries for Yang-Mills theory and general rela
tivity as special cases. The Noether current density JI'" and 
Noether charge Q of a local symmetry are then introduced. 
The main result of this section is a theorem relating the vari
ation of the Noether charge to the local symmetry field vari
ation and the presymplectic form. An immediate corollary 
of the theorem is that the presymplectic form always is 
"gauge invariant" in a suitable sense. We thereby obtain a 
completely general proof of a result previously obtained for 
the particular cases of general relativity2,3 and Yang-Mills 
theory. 3 

In Sec. IV, we combine the results and constructions of 
the previous sections to obtain our general relations between 
local symmetries and constraints. It is proved that to each 
local symmetry which suitably "projects" from solutions in 
Y to phase space there exists a corresponding constraint. 
Furthermore, the constraints thereby obtained are always 
first class, and the Poisson bracket algebra of these con
straints is always isomorphic to the Lie bracket algebra of 
the local symmetries. The differences occurring in the struc
ture of the constraints between Yang-Mills theory and gen
eral relativity arise mainly from the following fact: In Yang
Mills theory all the "field-independent" local symmetries 
(i.e., the gauge transformations A: MI--+G, with A chosen to 
be independent of AJ') suitably project to phase space, 
whereas in general relativity one must choose the nonspatial 
diffeomorphisms to be "field dependent" (i.e., dependent 
upon gJ'v) in order to obtain a well defined projection. Con
sequently, although the nonspatial diffeomorphisms are ful
ly represented on the constraint submanifold of the phase 
space of general relativity, the principal bundle structure of 
Y arising from the "field-independent" local symmetries 
does not "project" to phase space. The relevance of consider
ing "field-dependent" diffeomorphisms in analyzing the 
gauge structure of general relativity previously has played a 
prominent role in the work of Bergmann,4 Bergmann and 
Komar,s and Salisbury and Sundermeyer. 6 

Our paper concludes with an appendix giving a brief 
discussion of Hamiltonian formulations of the general class 
of Lagrangian field theories considered here. 

Finally, we comment briefly on the nature ofthe results 
of this paper. Essentially all of our analysis divides cleanly 
into one of the following two categories: (i) local construc
tions of quantities on space-time-such as the current densi-
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ties (}", if, and J"-and derivations of relationships be
tween them; and (ii) constructions involving the manifold of 
field configurations, .7, and/or phase space r and proper
ties of tensor fields defined on these infinite-dimensional 
manifolds. The results falling into category (i) (comprised 
by the first half of Sec. II and all of Sec. III) are completely 
rigorous. In particular, formulas involving the varied fields 
8tjJa are rigorous statements about partial derivatives of ap
propriate one-parameter families of field configurations. On 
the other hand, the results falling into category (ii) assume 
that a Banach manifold structure has been given to.7 and r. 
There is no difficulty in doing this (at least in typical theo
ries), although the appropriate choice of manifold structure 
will depend upon the degree of differentiability and asymp
totic conditions one wishes to impose on the fields. However, 
we have not shown that a manifold structure can be defined 
so that appropriate continuity and other properties are satis
fied by the quantities obtained by our constructions, so that 
they rigorously define tensor fields of the indicated types. 
For example, we define by Eq. (2.24) below a functional () 
on .7 that is linear in the varied field 8tjJ. However, in order 
that () define a one-form at each point of.7 as we assume, the 
manifold structure must be chosen so that () is a continuous 
(Le., bounded) functional of 8tjJ. Since we have not attempt
ed to treat technical issues of this nature, the results of this 
paper falling into category (ii) must be viewed as heuristic. 
Nevertheless, it should be noted that the tensor calculus we 
use involving the Lie derivative and exterior derivative is 
well defined on infinite-dimensional Banach manifolds.7 

II. PHASE SPACE OF LAGRANGIAN FIELD THEORIES 

In this section, we describe in detail a geometrical con
struction of phase space for Lagrangian field theories formu
lated on an n-dimensional space-time M of topology R X l:.. 
For simplicity, we shall assume that l:. (and hence M) is 
orientable. If the space-time metric g"v is part of the "back
ground structure" (as in special relativistic theories), we 
assume that (M, g"v) is globally hyperbolic with each l:.t in 
the foliation of R X l:. being a spacelike Cauchy surface. If 
g"v itself is a dynamical variable (as in general relativity), 
we simply restrict g"v to be such that each l:.t is a spacelike 
Cauchy surface. In various places below, we will integrate 
total divergences over M. We then shall assume either that l:. 
is compact or that the fields satisfy asymptotic boundary 
conditions appropriate to ensure that no "spatial boundary 
terms" arise from applying Gauss' law to such integrations. 

We shall assume that the field (or collection of fields) tjJ 
of our theory can be described as a map from space-time M 
into another finite-dimensional manifold M', i.e., tjJ: Mt--+M'. 
In some theories (e.g., for a real- or complex-valued scalar 
field), the field tjJ is initially presented in this manner. In 
other cases, it may be necessary to introduce some additional 
structure in order to so describe the field. For example, in 
Yang-Mills theory the field is a connection in a principal 
fiber bundle over space-time. However, by choosing a cross 
section of the bundle as well as a basis field of the cotangent 
space of M, we can locally express the Yang-Mills field as a 
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mapfromMintoM' = L(G) XRn, whereL(G) denotes the 
Lie algebra of the Yang-Mills group G and n = dim(M). 
Thus, by describing the field as a map from space-time into 
M', we assume that any such additional structure has been 
introduced. We will verify below that for the Yang-Mills 
theory and general relativity, our construction of phase 
space is independent of the choices of cross sections and/or 
bases needed to so describe the field as a map between mani
folds. Note that, locally on M, there should be no loss of 
generality in assuming that the field can be expressed as a 
map of space-time into M', Le., more precisely, we would 
take this as the definition of a field theory on space-time. 
However, globally on Mit may not be possible to express the 
field in this manner, as occurs, for example, in Yang-Mills 
theory based on a nontrivial principal bundle. Nevertheless, 
since our fundamental constructions of the current densities 
(}I' and if given below are entirely local in nature, there are 
no problems with globalizing our results in such cases pro
vided only that the integrands appearing on the right side of 
Eqs. (2.23) and (2.24) are independent of the allowed 
choices, as they are in Yang-Mills theory and general rela
tivity. Thus there should be no essential loss of generality in 
assuming that the fields are described globally as a map tjJ: 
Mt--+M'; for simplicity we shall assume this is the case. 

For simplicity, we assume, further, that M' has been 
chosen so that all sufficiently smooth maps tjJ: Mt--+M' satis
fying appropriate asymptotic conditions are "kinematically 
allowed" field configurations. Again, there should be no es
sentialloss of generality in making this assumption. We de
note by .7 the collection of all allowed field configurations 
on space-time. 

In a sufficiently small neighborhood U' of any point 
tjJoEM', we may choose coordinates for M' such that the map 
tjJ can be represented locally as a collection of scalar func
tions, tjJa, o.fthe space-time point x. (Here we use lowercase 
greek letters for indices referring to M and lowercase roman 
letters for indices on M'. On account of a shortage of alpha
bets, abstract index notation will not be used.) Note that a 
change of coordinates in U' corresponds to an x-independent 
field redefinition t/.f = r(tjJb). We also choose a fixed deriva
tive operator V" globally on M. (Below, we will introduce a 
fixed volume element, Ea , ... a

n
' onM and will then restrict V" 

to satisfy V "Ea .... an = 0.) We act with V" on tjJa by treating 
tjJa as a scalar function. (Indeed, the purpose of introducing 
coordinates on M ' is to enable us to define a notion of second 
and higher derivatives of tjJ.) Our constructions below will 
make use of our choice of coordinates in M' and derivative 
operator on M. However, we will point out explicitly when 
the quantities we define are independent of any such addi
tional structure we have introduced. As we shall see, the key 
quantities ()" and if obtained below are independent of the 
choice of coordinates in M', but may depend upon V" for 
sufficiently high derivative theories. 

We assume that the field equations satisfied by tjJ are 
derived (in the manner to be specified below) by variation of 
an action S: .7 t--+R of the form 

(2.1 ) 
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where the Lagrangian .Y is a scalar density of weight 1 (see 
below) ~ch locally has the form of a function of tP° , its first 
k symmetrized derivatives, and, in addition, may also de
pend upon nondynamical background fields Y' (such as the 
space-time metric in special relativistic theories), 

In other words, the value of the density .Y at a point xeM 
depends only on the value of the quantities appearing on the 
right side ofEq. (2.2) evaluated at pointx. (There is no loss 
of generality in our assumption that .Y is a function only of 
totally symmetrized derivatives of tP° , since any antisymme
tric part of V"" ... V ",io can be reexpressed in terms of the 
curvature tensor associated with V", and lower derivatives of 
tP° .) Note that the statement that .Y depends only upon tPa 

and its first k symmetrized derivatives is independent of the 
choice of derivative operator on M and coordinates in M'. 

Since our analysis below will heavily involve unit weight 
scalar and vector densities, we take this opportunity to re
view their definition and properties and to explain our nota
tional conventions. On an orientable manifold M of dimen
sion n, a tensor density of type (k,l) and weight seR may be 

defined as an equivalence class of pairs (T""···"'\ ... v" 
Ea ... a ), where T""···"'\ ... V is a tensor field of type (k,l), 

I nil 

Ea ... a = E[a ···a I is a nonvanishing n-form (i.e., a volume 
el~me~t), and tw"o such pairs (T,E) and (T,E) are said to be 
equivalent if 

(2.3) 

where the functionfis defined by 

(2.4) 

Normally, one proceeds by introducing a fixed volume 
element Ea ... a on space-time and representing a tensor den-

, n 

sity by the tensor field T""···"'\ ... v" which is paired with 
Ea ... a in the equivalence class. However, for unit weight 
te~so; densities (which is all that will be considered here) a 
much sinipler description is available: For s = 1, we can rep
resent a tensor density by the tensor field 
T""···"'\ ... v/a ... a ,oftype (k,l + n), which is antisymme
tric in it~ last ~ lo~er indices. [This tensor field is indepen
~dent of the choice of representative (T,E) in the equivalence 
class.] Thus a unit weight scalar density, such as the Lagran
gian density above, is equivalent to an n-form 
.Y a ···a =.Y [a ···a I. From this remark it is easily seen 
that' then integral ~f the Lagrangian density over an oriented 
space-time M is well defined, without the need to specify 
additional structure on M. Similarly, a vector density of 
weight 1 may be represented by a tensor field 
vi' a ... a = vi' [a ... a )" By contracting the vector index with 
the' m;t lowe~ed n index, we produce an (n - 1 )-form 
vi' I'U ···a • Thus the integral of vi' I'U ··.a over an oriented hy
pers~rf;ce l: in Mis well defined, ~ith~ut the need to specify 
any additional structure on l:. Note that by Stokes' theorem, 
for any region DCM that comprises a compact manifold 
with boundary, we have 
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(2.5) 

where Va is any derivative operator and n = dim M. 
Although the above viewpoint on unit weight tensor 

densities has considerable formulational advantages, it is no
tationally quite cumbersome to keep the n antisymmetric 
indices in formulas. Hence, mainly for notational conven
ience, we shall follow the usual practice of introducing a 
fixed volume element Ea , ... a

n 
on space-time and representing 

a tensor density by the tensor in the equivalence class paired 
with Ea ... a • (An additional reason for doing so is that to 

, n 

treat nonorientable space-times, this type of representation 
of tensor densities is necessary. [On a nonorientable space
time, a tensor density may be defined as an equivalence class 
of pairs (T, E), where T again is a tensor field but now E is a 
nonvanishing "n-form modulo sign." In the equivalence re
lation (2.3), fis taken to be the magnitude of the factor 
relating the two "n-forms modulo sign."] For simplicity, 
however, we consider only the orientable case here.} In this 
manner, the Lagrangian density will be represented by a sca
lar function .Y, as was already done above. Similarly, a vec
tor density will be represented by a vector field vi' . Since our 
notation does not distinguish between tensors and tensor 
densities, we shall frequently remind the reader which quan
tities are densities (i.e., which tensors depend in the manner 
indicated above upon a choice of volume element). Note 
that in terms of the vector field representative vi' of a vector 
density, Stokes' theorem (2.5) takes the Gauss' law form 

(2.6) 

where V", is any derivative operator satisfying V", Ea ,·· .a
n 

= 0, and n", satisfies n",t'" = 1 for an "outward pointing" 
vector field t"', whereas n",f" = 0 if f" is tangential to aD. 
[The volume element Ea , ... a

n 
on Mis understood on the left

hand side of (2.6), whereas the volume element Ea , ... a
n 
t a, on 

aD is understood on the right-hand side.] For convenience, 
we shall assume that the derivative operator V", introduced 
above [see Eq. (2.2)] has been chosen so that V",Ea, ... a

n 

= O. Note that each side ofEq. (2.6) is equal to the corre-
sponding side of Eq. (2.5). Thus we emphasize that both 
sides ofEq. (2.6) are well defined for vector densities, with
out the need to specify any additional structure on D or aD. 

In the following, we will frequently encounter "local 
functions" (such as .Y) of the fields, i.e., quantities whose 
value at x can be expressed as an ordinary function of the 
coordinates, tPa (x), of the image of tP at x and of the symme
trized derivatives of tPa evaluated at x. We also shall encoun
ter "functionals" of the fields, i.e., quantities defined on field 
configuration space Y whose value may depend nonlocally 
on tP. To help distinguish notationally between local func
tions of tP and functionals of tP, we will use parentheses to 
denote the arguments oflocal functions [see, e.g., Eq. (2.2) 
above] and brackets to denote the arguments of functionals 
[see, e.g., Eq. (2.23) below]. 

Finally, we introduce the following notation for the first 
partial derivatives of the function .Y: 
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L 1'," 'I'k 
a 

(2.7) 

In taking these partial derivatives (as well as in all field var
iations considered below), it is understood that any nondyn
amical background fields t' that may be present [see Eq. 
(2.2)] are held fixed. Note that each of the M tensor densi
ties, M' covectors, Lal',·"I'), defined by Eq. (2.7) is totally 
symmetric in its space-time indices, La 1'," '1') = La (1'," '1'). 

However, with the exception of the highest derivative quan
tity Lal',·"I'" these tensor densities depend both upon the 
choice of derivative operator VI' on M and coordinates on 
M'. 

Consider, now, a smooth, one-parameter family, rp(J.): 
Mt-+M', of field configurations on space-time. We assume, 
initially, that rp(J.;x) is fixed (i.e., J. independent) for x out
side of a compact set in M. The first variation of the Lagran
gian density about the field configuration rpo = rp(O) then 
takes the form 

{).!f=~.!fl = ~ L 1""'l'lV "'V {)rpa, 
d'l £.. a (1', 1') 

/L A=O j=O 

(2.8) 

where evaluation of L/""I') at rpo is understood, and where 

arpa(J.;x) I 
aJ. A=O 

(2.9) 

has compact support. Note that {)rpa (x) is the tangent to the 
curve c(J.) = rp(J.;x) (with x fixed) in M' at J. = 0, so 
{)rpa (x) may naturally be viewed as a vector in the tangent 
space to M' at the point rpo(x). Thus {)rpa is an M'-vector
valued scalar field on M. 

We may rewrite Eq. (2.8) as 

(2.10) 

where 

k 
E = ~ ( - l)lV "'V L 1', ... 1') 

a £.. 1-', p,j a 
j=O 

(2.11 ) 

and 

k j 
() I' = ~ ~ ( _ 1) i + I ( V ... V L 1'1'2"'1') 

£..i ~ 1'2 Jli a 
j= I i= I 

(2.12) 

[In Eq. (2.12) it is to be understood that when i= 1, no 
derivatives act on La 1'1'2' . 'I'J, and when i = j, no derivatives 
act on {)rpa. Note that if we had chosen a derivative operator 
VI' for which VI'Ea""a

n 
#0, then Eqs. (2.10)-(2.12) would 

be modified.] We refer to (1' as the symplectic potential cur-
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rent density. Note that the dependence of ()I' on {)rpa and its 
derivatives is linear. 

Since .!f -and hence {).!f -is a scalar density on space
time and since {)rpa-and hence ()I'-has compact support in 
M, it follows that 

is well defined, i.e., independent of the choices of volume 
element, Ea ''' a , derivative operator V" in M satisfying 

, n r 

V Ea '''a = 0, and coordinates in M'. Since {)rpa is an arbi-I' , n 

trary M'-vector-valued scalar field on M (subject only to 
being of compact support in M), it follows that the quantity 
Ea , which is a scalar density with respect to M and a dual 
vector with respect to M', must similarly be independent of 
these choices. It then follows immediately from Eq. (2.10) 
that the scalar density V I' () I' also is well defined. From the 
form of Eq. (2.12) and the fact that each L/''''I') is totally 
symmetric in its space-time indices, it can be shown further 
than the vector density (1' is independent of the choice of 
coordinatesinM'. However, in general, (1' will depend upon 
the choice of derivativ~ operator V f' ~n M; a different choice 
of derivative operator V f' (satisfying V I'Ea''''a

n 
= Oforso~e 

volume element Ea""a
n 

on M) will yield a vector density (1' 

which, in general, differs from () I' by an identically con
served current density of the form V vH I'v, where 
H I'V = H [I'v] is locally constructed from the derivative oper
ators VI' and VI" the background structure t', and from ~a, 
{)rpa, and their derivatives. [Note that formula (2.12) for ()I' 
applies only when the volume element Ea''''a

n 
compatible 

with VI' is used to express the Lagrangian density as a scalar 
function If. To compare l1' with ()I', we must multiply this 
expression for e f' in terms of If and V f' by the factor /- I, 

where/is given by Eq. (2.4).] Nevertheless, from the form 
of Eq. (2.12), it can be shown that (1' is independent of the 
choice of VI' when k < 3. Thus, for theories in which the 
Lagrangian density does not contain derivatives higher than 
second order of the field variable, the symplectic potential 
current density (1' is independent of all extraneous structure 
introduced in our constructions above. 

Note that the M-scalar-density, M'-convector Ea is a 
local function of rpa and its derivatives up to order 2k. Since 
Ea depends locally on rpa and is independent ofthe choice of 
derivative operator on M, we may calculate it at any point 
xEM by choosing a local coordinate system in a neighbor
hood of x, taking Ea , .. 'a

n 
to be the coordinate volume ele

ment, VI' to be the coordinate derivative operator aI" and 
then applying Eq. (2.11). Similarly, the M-vector-density, 
M' -scalar (1' is a local function of rpa and its derivatives up to 
order (2k - 1) and of {)rpa and its derivatives up to order 
(k - I). When k < 3 we also may calculate (1' by using Eq. 
(2.12) in a local coordinate patch. Finally, since bothEa and 
(1' depend locally on rp and {)rpa, we now may drop the restric
tion that {)rpa have compact support in M, i.e., the quantities 
Ea and ()I' given by Eqs. (2.11) and (2.12) continue to satis
fy Eq. (2.10) and all the properties listed above when rp (J.) : 
Mt-+M' is an arbitrary smooth one-parameter family. 

From Eq. (2.10), it follows immediately that the action 
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S at field configuration rfJo: Mf--+M' will be stationary (i.e., 
dS / dA = 0) for all variations, 6rfJ° of compact support if and 
only if 

Eo = 0, (2.13) 

at rfJo. We take Eq. (2.13) as the equation of motion for the 
field rfJ. 

It should be noted that our expression (2.12) for fI' 
changes when we modify the Lagrangian density .Y by the 
addition of a term of the form VII- rf', where vector density zf' 
is a function of rfJ° and finitely many of its derivatives. (Such 
a modification of .Y, of course, has no effect upon Eo .) If zf' 
is a function of rfJ° only (i.e., if it does not depend upon 
derivatives of rfJ°), then this change in.Y simply induces the 
change 6rf' in (}II-. However, in general, the change in fI' 
determined by Eq. (2.12) will differ from 6zf' by an identi
cally conserved vector density which is a local function of 
rfJ°, 6rfJ°, and finitely many of their derivatives. In particular, 
if zf' is a local function of only rfJ° and its first derivative V II- rfJ°, 
i.e., if 

(2.14) 

then the change in Lagrangian density, .Yf--+.Y + V II- zf', in
duces the following change in fI' : 

(}1I-f--+(}1I-+6zf'+.lV {[ av
v 

_ azf' ]6rfJ0}' 
2 v a(VII-rfJ°) a(VvrfJ0) 

(2.15 ) 

An important relation can be derived by considering the 
second-order variations in .Y resulting from an arbitrary, 
smooth two-parameter family rfJ(A I.A2) of field configura
tions. By Eq. (2.10) we have 

62.Y= a.Y = Eo 62rfJ° + VII-(}~' (2.16) 
aA2 

where 62rfJ° = arfJ° / aA2 and () ~ is given by Eq. (2.12) with 
6rfJ° = 62rfJ°. Taking the derivative ofEq. (2.16) with respect 
to A I' we obtain 

a2'y 

aA I aA2 

= (6 1Eo )(62rfJ°) + Eo (6 162rfJ°) + VII- 61()~' 
(2.17) 

A similar expression holds, of course, for 6261.Y. Subtract
ing these expressions and using equality of mixed partial de
rivatives, we obtain 

0= (6IEo )(62rfJ°) - (62Eo )(6IrfJ°) + VII-oI', (2.18) 

where 

01' = 61(}~ - 62(}f 
k j 

=~ ~(-I);+I{(V "'V 6LII-II-""II-) 
~ ~ 11-, 11-1 10 
j= 1;= 1 

(2.19) 

(The variations 6Lo lI-""lI-j can, of course, be expressed in 
terms of the second partial derivations of .Y and the field 
variation 6rfJ° and its space-time derivatives.) We refer to 01' 
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as the symplectic current density associated with .Y. It is a 
vector density with respect to M and a scalar with respect to 
M ', and is a local function of rfJ°, the varied fields 6IrfJ°, 62rfJ°, 
and the space-time derivatives of these quantities. Note that 
the possible terms in 01' involving 6162rfJ° = 6261rfJ° cancel, so 
01' depends linearly both upon 61rfJ° and its derivatives, and 
upon 62rfJ° and its derivatives. It also is manifestly antisym
metric in 61rfJ° and 62rfJ°. From the properties of () 11-, it follows 
that 01' is independent of the choice of coordinates in M I, 
but, in general, a change in the choice of derivative operator 
on M will change 01' by the addition of an identically con
served vector density locally constructed from 
rfJ°, 6IrfJ°, 62rfJ°, and finitely many of their derivatives. How
ever, if k < 3, then 01' will remain unchanged. Note further 
that under the change in Lagrangian density 
.Y f--+.Y + VII- zf', 01' also will, in general, change by addition 
of an identically conserved vector density locally construct
ed from rfJ°, 6IrfJ°, 62rfJ°, and finitely many of their derivatives. 
For the case where zf' is a function of only rfJ° and VII- rfJ°, the 
change in 01' is easily computed from Eq. (2.15). Note that 
if zf' depends only on rfJ°, then 01' remains unchanged. Final
ly, we point out that in the simple case where .Y depends 
only on rfJ° and its first derivative (i.e., when k = 1), we have 

(}II- = L 1I-(6rfJ°) = a.Y 6rfJ° (2.20) 
° a(VII-rfJ°) 

and hence 01' is explicitly given by 

01' - a 2'y [6 A,0 6 A,b 6 A,0 6 A,b] 
- arfJ0 a(V II-rfJb) I'f" 2'f" - 2'f" I'f" 

a2'y 
+------:-

a(VvrfJ°)a(vII-rfJb) 

x [(V v 6IrfJ°)62rfJb - (V v 62rfJ°)6 IrfJb]. (2.21 ) 

Suppose, now, that rfJ(A 1, A2) is a two-parameter family 
of solutions of the equations of motion. Then Eo = 0, for all 
AI' A2 , so, in particular, 61Eo = 62Eo = O. Hence, by Eq. 
(2.18), we obtain 

VII-oI' = o. (2.22) 

In summary, we have shown that for any Lagrangian 
field theory, a symplectic current density 01' can be con
structed from .Y via Eq. (2.19). This current 01' is a local 
function of a "background field" rfJ°, two "linearized pertur
bations" 61rfJ° and 62rfJ°, and a finite number of their deriva
tives. It is independent of the choice of coordinates in M I 

and, for k < 3, also is independent of the choice of derivative 
operator on M. It satisfies the property that when rfJ is a 
solution to the field equations and 61rfJ° and 62rfJ° solve the 
linearized field equations, then 01' is conserved. 

We can construct from 01' a real-valued functional of 
the field variables, denoted m[rfJ°,6IrfJ°,62rfJ°]' as follows. 
Choose a Cauchy surface l: in the foliation of M (see the 
beginning of this section) and define 

m[rfJ°,6IrfJ°,62rfJ°] = L oI'np.' (2.23) 

(As discussed above [see Eq. (2.6) ] this integral on the right 
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side is naturally defined, without the need to specify a vol
ume element on l:.) Ifl: is compact, then W is independent of 
the choice of derivative operator on M (even when k> 3 ) and 
also remains unchanged under the change in Lagrangian 
density Y ........ Y ........ V /llf'. In the noncompact case, such 
changes in V /l (when k> 3) or Y may change w by a "sur
face term at infinity." In general, w will depend upon the 
choice ofl:. However, if tPa, /)ltPa, and /)2tPa are solutions, then 
w will be independent of this choice provided that either l: is 
compact or the fields satisfy asymptotic conditions appro
priate to ensure that no "spatial boundary terms" arise from 
applying Gauss' law to Eq. (2.22). In the following, we shall 
assume that such asymptotic conditions have been imposed 
upon the fields in the case where l: is noncompact. 

The above definition of w can be described in a much 
more geometrical manner, in terms of which our construc
tion of phase space will be given. We assume that the collec
tion Y offield configurations on space-time (i.e., the set of 
all sufficiently smooth maps tP: M ........ M I satisfying appropri
ate asymptotic conditions) has been given the structure of an 
infinite-dimensional Banach manifold. There is no difficulty 
in doing this (at least in typical cases), but we have not 
attempted to show that it can be done in such a manner that 
the continuity and other properties assumed below for var
ious quantities will hold. Thus, as already mentioned at the 
end of the Introduction, the discussion we are about to give 
must be viewed as heuristic. (This contrasts with the preced
ing discussion, which was entirely rigorous.) 

A field configuration tP on space-time is represented as a 
point of Y. Similarly, a field variation /)tPa on space-time 
about the field configuration tP [see Eq. (2.9)] may be 
viewed as a vector in the tangent space to Y at point tP. To 
emphasize this viewpoint in our notation, we will adopt an 
abstract index notation for tensor fields on Y, using capital 
roman letters. Thus we will write (/)tP)A when we view the 
field variation in this manner. [By contrast, we shall contin
ue to write /)tPa(x) to denote the tangent vector at point 
tP(x)EM' defined by Eq. (2.9) above.] From the vector den
sity (J'- on space-time defined by Eq. (2.12) we can define a 
functional () [tPa,/)tPa] by integration over a Cauchy surface 
l:, 

(2.24) 

(This functional depends, of course, upon the choice of l:.) 
We may view () as a function on the tangent bundle of Y. 
However, since {)Il is linear in /)tPa and its derivatives, it fol
lows that () is a linear function of (/)tP)A. We shall assume 
that the manifold structure of Y is such that () is continuous 
in (/)tP) A (which is not a consequence oflinearity in infinite 
dimensions) so that () defines a dual vector field on Y 
which we denote as () A, given by , 

(2.25) 

for all (/)tP )A. Similarly, since the functional w defined by 
Eqs. (2.23) is linear and antisymmetric in (/)ltP)A and 
(/)2tP)A, we assume that it defines a two-form WAB = W[AB J 
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on Y. Furthermore, it is easily seen that Eq. (2.19) corre
sponds to the relation 

(2.26) 

where d denotes the exterior derivative on Y. Thus our con
struction of W given above may be viewed as producing as 
exact (and hence closed) two-form WAB on Y, which we 
refer to as a "presymplectic form." 

The two-form W AB fails to be a symplectic form on Y 
because it is degenerate; equivalently, Y itself is unsuitable 
to serve as phase space because it is "too large." In particu
lar, note that any field variation /)tPa with support away from 
l: gives rise to a degeneracy direction (/)tP)A for WAB . How
ever, these difficulties can be cured by the "reduction proce
dure" of taking the "symplectic quotient" of (Y,w) (see, 
e.g., Ref. 8), thereby producing a manifold r on which there 
is defined a nondegenerate closed two-form !lAB' This sym
plectic manifold will serve as our phase space. We outline, 
now, the steps (and assumptions) needed to construct this 
phase space. 

By a standard identity (which holds on infinite-dimen
sional Banach manifolds 7 ), for any vector field ,pA on Y, we 
have 

£",WAB = t/F(dw) CAB + (dA)AB' 

where 

AA = WBA rps. 

(2.27) 

(2.28) 

The first term ofEq. (2.27) vanishes since WAB is closed. If 
,pA is a degeneracy vector field, i.e., if W AB,pA = 0 at all points 
of Y, we have AA = 0 and thus we find that 

£",WAB =0. (2.29) 

Furthermore, if,pA is the commutator of two degeneracy 
vector fields, i.e., if 

,pA = [tPI,tP2]A = (£"" tP2)A, 

with W AB 1/1 = W AB t/4 = 0, we have 

(2.30) 

W AB,pA = W AB £"" t/4 = £"" (w AB t/4) - t/4 £"" W AB = 0, 
(2.31) 

so,pA also is a degeneracy vector field. 
Consider, now, the distribution of degeneracy sub

spaces, i.e., the collection of subs paces of the tangent space to 
Y consisting of the degeneracy vectors of W AB' We assume 
that this distribution comprises a sub-bundle of the tangent 
bundle of Y. Since by Eq. (2.31) the commutator of two 
vector fields lying in this distribution also lies in this distribu
tion, by Frobenius' theorem 7 the distribution admits integral 
submanifolds. Hence we may define an equivalence relation 
on Y by setting tP I ~ tP2 if and only if tP I and tP2lie on the same 
integral submanifold. Let r denote the set of equivalence 
classes of Y and let 17': Y ........ r denote the map that assigns 
each element of Y to its equiValence class. We assume that a 
manifold structure can be defined on r such that Y has the 
structure of a fiber bundle over r with projection map 17'. 

(This need not automatically be the case since, in particular, 
the integral surfaces need not be embedded submanifolds 
i.e., they could "wind around in Y" like lines with irrationai 
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slope on the unit torus). We will use the same index notation 
(with capital roman letters) for tensors on r as for tensors 
on Y; no confusion should result since it should be clear on 
which manifold the various tensors are defined. We define a 
two-form nAB on r by the condition that, for all vectors RA , 

and SA in the tangent space to each point sEr, we have 

nABR ASB = OJABpAaB, (2.32) 

where pA and aA are any tangent vectors at any point </JEY in 
the fiber over ssuch that 1T*pA = R A, 1T*aA = SA, where 1T* 

denotes the natural map from the tangent space V." of <p to 
the tangent space Vs- of S induced by the map 1T. (We also 
shall use the same notation, 1T*, to denote the natural pull
back map taking differential forms on r to differential forms 
on Y.) On account of the degeneracy of OJ AB in the fiber 
directions, the right side ofEq. (2.32) does not depend upon 
the choice of "representative vectors" pA and aA at <p. Fur
thermore, on account of Eq. (2.29), the right side of Eq. 
(2.32) also does not depend upon the choice of point </JEY in 
the fiber over S. Thus nAB is a well defined two-form on r, 
which is related to OJ AB by 

(2.33) 

i.e., OJ AB is the pullback of nAB under the projection map 1T. 

Furthermore, nAB is closed (as a direct consequence of the 
fact that OJ AB is closed) and, by construction, is nondegener
ate. (Note, however, that nAB need not be exact even though 
OJ AB satisfies this property). Thus (r, nAB) is a symplectic 
manifold, which we take to be the phase space of our theory. 
Note that we have not provided r with a "polarization," i.e., 
we have not distinguished between configuration and mo
mentum variables, e.g., by expressing r as a cotangent bun
dle of a configuration space. However, we will have no need 
for such a polarization in the analysis given below. Note also 
that the definition of OJ depends upon a choice of Cauchy 
surface ~ [see Eq. (2.23)], and hence the construction of 
(r, nAB) also depends upon such a choice. 

Let Y denote the subset of Y consisting of solutions to 
the equations of motion (2.13). We shall a~ume t~t Y i~ 
submanifold of Y. Similarly, the image r=1T[Y] of Y 
under the projection map 1T will be assumed to be a submani
fold of r, which we shall refer to as the constraint submani
fold. If we interpret r as representing the "kin~atically 
possible" instantaneous states of the system, then...!" consists 
of those states that are "dynamically possible." If r is a prop
er subset of r, then not all kinematically possible states are 
dynamically possible, i.e., cons!:aints are present. We de
note by 17" the restriction of 1T to Y. We ass~me, further, that 
Y has the structure of a fiber bundle over r, with projection 
map 17": Y ~r. Note that we then have 

(2.34) 

where WAB denotes the pullback of OJAB to Y, and nAB de
notes the pullback of nAB to r. Note also that although, as 
mentioned above, the construction of (r, nAB) depends 
upon a choice of Cauchy surface ~ on space-time, the con
struction of (r, nAB) does not by virtue of the ~mark ~low 
Eq. (2.23). The relationships between Y, r, Y, and rare 
illustrated in Fig. 1. 
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r 

FIG. 1. The relationship between the manifold of field configurations Y 
and phase space r. The reduction procedure described in the text produces 
from the "presymplectic" manifold (Y, OJ AB ) the symplectic manifold (r, 
flAB)' together with a projection map 1r. Y .... r. The submanifold of Y 
comprised by the solutions to the field equations is denoted as Y, and its 
image under 11" defines the ~nstraint submanifold of phase spac~ denoted 
f. The restriction of 11" to Y defines the projection map iT: !Jr .... r. 

Several examples should help elucidate the above con
struction of phase space. Since we are primarily interested in 
theories with local symmetries, we focus attention on the 
three primary examples of such theories: Yang-Mills theo
ry, general relativity, and a parametrized scalar field theory. 

In Yang-Mills theory in a fixed, curved background 
space-time (M, gJl.v ) based on a semisimple Lie group G, the 
field variable is a connection on a principle fiber bundle over 
M with structure group G. As already mentioned at the be
ginning of the section, by choosing a cross section of this 
bundle and a basis of the cotangent space of M, we can (at 
least locally) describe this connection as a map A ill from M 
into M' = L( G) X an, where L( G) is the Lie algebra of G. 
Note that both the Lie algebra index i and the cotangent basis 
index,u correspond to the index" a" in our general treatment 
above. Since our general construction above calls for <pQ to be 
treated as a scalar function when acted upon by V Il' we will 
avoid some potential confusion by introducing a local coor
dinate system in M, choosing the basis of the cotangent space 
of M to coincide with the coordinate basis of this system, and 
choosing the fixed volume element and derivative operator 
to be the coordinate volume element E

a"
" an and coordinate 

derivative operator aJl.' [By doing so, the usual meaning of 
"ailA iv" coincides with our usage; by contrast, for, e.g., the 
metric compatible derivative operator, the usual meaning of 
V A i differs from what one would obtain by treating each JI. v 

component A i v (x) as a scalar function.] The Lagrangian 
density !L' is taken to be 

(2.35 ) 

where 

F i 2 a Ai + i Aj A k 
IlV = [Il v I C jk Il v' (2.36) 

where C~k is the structure tensor of the Lie algebra and the 
Lie algebra indices are lowered and raised with the Killing 
metric - Cki/Cjk' Since!L' does not depend upon second and 
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higher derivatives of A i,.., the quantities (I' and 01' do not 
depend upon our choice of derivative operator a,.., and the 
simplified formulas (2.20) and (2.21) apply. Thus we ob
tain 

(2.37) 

01' =.,f=g [ - (oIFr) (o~ iv) + (02Fr) (oiA iv) ]. 
(2.38) 

Now, under an infinitesimal change in the choice of local 
cross section (used to express the connection as a map be
tween manifolds), we have 

iii j f: k F ,..v-+F,..v +CjkF ,..v~ . 

(2.39) 

(2.40) 

Hence the variation of Ai,.. is changed by 

oA i,.. -+oA i,.. + C~k (oA i,..)S k. (2.41 ) 

It follows from Eqs. (2.40) and (2.41) that both (I' and 01' 
remain unchanged under a change of local cross section. 
(Note, however, that (I' and 01' are not gauge invariant in 
the sense that if oA i,.. takes the form of an infinitesimal gauge 
transformation, then (I' and 01' do not vanish. Nevertheless, 
in the next section, we will show, quite generally, that the 
pullback iii AB of liJ AB to the solution submanifold Y always 
is gauge invariant in this sense.) It also is manifest from the 
expressions (2.37) and (2.38) that the vector densities (I' 

and 01' do not depend upon the choice of coordinate basis of 
the contagent space in M. Thus (I' and 01' are well defined, 
i.e., they do not depend upon the additional structure intro
duced to express the Yang-Mills field as a map between 
manifolds. 

By Eqs. (2.23) and (2.38), we have 

liJAB(OIA)A(O~)B = L.,f=g[ - (oIFr)(o~ iv) 

+ (o2F;"V)(OIA iv) ]n,... (2.42) 

From this equation, it is manifest that the degeneracy direc
tions of liJ AB consist of those field variations for which the 
spatial projection (i.e., pullback) of OAi,.. to l:. and 

(2.43) 

both vanish on l:.. Hence each integral submanifold of degen
eracy directions consists of all field configurations that have 
on l:.the same E i '" and pullback of A i,... Thus the phase space 
r can be identified with such (A i,.. ,E;") pairs, with symplec
tic form nAB determined by Eq. (2.42). Thus (r,nAB ) cor
responds precisely to the usual phase space of Yang-Mills 
theory. Note that the constraint submanifold r consists of 
the (A i,..,E;") pairs that satisfy 

(2.44) 

As a second example, consider general relativity. The 
field variable here is the space-time metric. By introducing a 
basis of the cotangent space, we can (at least locally) view 
the metric as a map g,..v from M into the vector space of 
symmetric n X n matrices. (Here the index pair "/lv" corre
sponds to the index "a" in the general discussion above.) 

733 J. Math. Phys., Vol. 31, No.3, March 1990 

Again we introduce a local coordinate system and choose the 
cotangent space basis to coincide with the coordinate basis of 
our local coordinate system. We also again employ the coor
dinate volume element and derivative operator a,... For con
venience, we choose one of our coordinates to be "t " (i.e., the 
time function appearing in our foliation of M by Cauchy 
surfaces l:.,) and by a field redefinition (i.e., a coordinate 
transformation in M ') take our field variables to be the spa
tial metric components h,..v, the shift vector N,.. 
= h,..v (a / at) v, and the lapse function 

N = ( -!!tv a,..t avt) 1/2. The usual Hilbert Lagrangian den-

sity, 2" H = ~ - gR, for general relativity leads, via Eq. 
(2.19), to the formula for 01' given by Crnkovic and Witten,3 
which differs from the expression originally given by Fried
man2 by an identically conserved term of the form 
av (~ - g 0lg"'['" o~vJ{Jga{J)' We obtain thereby relatively 
complicated expressions for the integrands defining 0 A and 
liJAB' To simplify the situation, we choose instead the La
grangian density 

(2.45) 

where 3 R is the scalar curvature of h,..v and K,..v is the extrin
sic curvature of l:. given in terms of h,..v, N, and N,.. by 

(2.46) 

whereD,.. is the derivative operator on l:. associated with h,..v. 
This Lagrangian density differs from 2" H by addition of the 
divergence of a vector density if" which depends only on de
rivatives of the metric up to first order (see p. 464 of Ref. 9). 
Thus 2" Hand 2" yield the same equations of motion. Note 
that by our general discussion above, the symplectic current 
01' obtained from 2" differs from the current ~ obtained 
from 2" H by an identically conserved vector density locally 
constructed from the fields and their variations which can be 
computed using Eq. (2.15). Thus if l:. is compact, 2" and 
2" H produce the same presymplectic form liJ AB on r; how
ever, in the noncom pact case, the two expressions for the 
presymplectic form may differ by a "surface term at spatial 
infinity." Further discussion of the relationship between 01' 
and ~ will be given elsewhere, and a generalization of ~ to 
the Einstein-Maxwell case also will be used to derive con
venient expressions for conserved fluxes of gravitational and 
electromagnetic radiation. 10 

Since 2" has no dependence on second-order time-time 
or mixed time-space derivatives (or any higher-order de
rivatives) of g,..v, formulas (2.20) and (2.21) apply for the 
relevant components O"'n,.. and oI'n,.. (where n,.. = V,..t) of 
the current densities 0'" and 01'. We obtain 

O"'n,.. = 1T"'V oh,..v (2.47) 

and 

oI'n,.. = (OI1T,..V)(02h,..v) - (021T"'V)(Olh,..v), (2.48) 

where 

1T"'V =,fh (K"'v - Kh"'V). (2.49) 

Equations (2.47) and (2.48) define scalar densities on a hy
persurface l:. that are independent of the choice of coordi-
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nates used in the construction. Note, however, that, as in 
Yang-Mills case, () I'nl' and ifnI' fail to be gauge invariant in 
the sense that they do not vanish identically if tJgl'v is a gauge 
variation V (1'5v)' Nevertheless, as already mentioned above, 
it follows from the theorem proved at the end of the next 
section that such a gauge variation always is a degeneracy 
direction of the pullback (ij AB of ltJ AB to Y. 

From Eq. (2.48), we obtain 

ltJ AB (c5lg)A ( c52K)B 

= 1 [(tJ!,17'I'V)( c52hl'v) - (c52'17'I'V)( tJ1hl''')]' (2.50) 

Thus the degeneracy directions of ltJ AB consist of those field 
variations c5gl'v for which c5hl''' and tJ'17' 1''' vanish on l'.. Conse
quently, we may identify phase space r with the pairs 
(hl'''' '17' I''') on l'., with symplectic form nAB determined by 
Eq. (2.50). This corresponds precisely to the usual choice of 
phase space for general relativity. Note that the constraint 
submanifold f consists of those pairs that satisfy 

- 3R + h -1('17'1''''17'1''' - ~~) = 0, (2.51) 

DI' (h -1/2'17' 1''') = 0, (2.52) 

where 3R denotes the scalar curvature of hl'v' 
As our last example we consider the parametrized mass

less, Klein-Gordon, scalar field theory, which is a generally 
covariant version of the ordinary scalar field theory in a 
background space-time. In this theory, the field variables are 
a real scalar field r/J on M, and a diffeomorphism y from M to 
another copy of the same manifold, which will be denoted M. 
[Thus the field variable ¢J in the general discussion above 
corresponds to the pair (r/J,y) and we have M' = RxM.] 
The manifold M, in which the field y takes its value, is 
equipped with a fixed, nondynamical metric gab and, intro
ducing a coordinate volume element and derivative operator 
as before, the Lagrangian density of this theory, !f, is given 
by 

(2.53) 

where the metric gl''' (y) denotes the pullback of the back
ground metric gab by the map y, i.e., 

( *)a ( *)b 0 gil" = Y I' Y "gab' (2.54) 

where (y*)al' denotes the induced map from the tangent 
space of xEM to the tangent space of y(x)EM [or, equiv
alently, the pullback map from the cotangent space of y(x) 
to the cotangent space of x ] . 

From Eq. (2.11), the r/J component of the equations of 
motion is 

0= E", = - al'PI', 

where 

(2.55) 

(2.56) 

This is the usual equation of motion for a massless, Klein
Gordon scalar field in the space-time (M,gl''')' The ya com
ponent of the equations of motion is 

(2.57) 
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where (y. )Va == (y-1o)"a is the inverse of (y*)al" V I' is the 
derivative operator associated with gl'''' and TI''' is the ordi
nary stress--energy tensor of r/J in the space-time (M,gl''')' 
i.e., 

(2.58) 

Since conservation of stress-energy, VI' Tl'v = 0, is a conse
quence of the field equation for r/J, we see that Eq. (2.57) 
automatically is satisfied whenever Eq. (2.55) holds. 

We proceed, now, to construct the phase space. Again, 
note that the Lagrangian density (2.53) does not depend 
upon second or higher derivatives of either r/J or y. Therefore, 
one can apply the formula (2.20) to obtain 

(}1'=Pl'tJr/J+ (~ -gTl'v)(y.)Va tJya. (2.59) 

From this one obtains 

if = tJ1PI' tJ2r/J - c52PI' c51 r/J 

+tJI(~ -gTl'a)c5'])'a-c52(~ -gTl'a)tJJYa, 
(2.60) 

where 

Tl'a = Tl'v(Y. )"a. (2.61 ) 

By integrating Eq. (2.60) over a hypersurface l'. we get 

ltJ AB (c5 1 r/J,c5JY) A (tJ2r/J,c5,]),) B 

= 1 [(c5 I '17'·tJ2r/J - c52'17"c5 Ir/J) 

+ (tJ1Ha c5'])'a - tJ2H a tJJYa) ], 

where '17' and Ha are defined by 

'17'==Pl'nl' = - (~ - ggll" a" r/J) nl' , 

Ha==(,r=gT"a)n". 

(2.62) 

(2.63) 

(2.64) 

Note that '17' is the usual canonical momentum of the Klein
Gordon scalar field in the space-time (M,gl''')' Note also 
that Ha on l'. is a function only of r/J, '17', and ~ and the spatial 
derivatives of r/J and~. 

From Eq. (2.62), and this property of H a , we see imme
diately that any two field configurations having the same 
values of r/J, '17', and ya on l'. lie in the same degeneracy sub
manifold of ltJ AB' Furthermore, by expanding tJ1Ha in terms 
of c51r/J, tJ l '17', and c5JYa, one can verify that the field variation 
(tJr/J,c5'17',tJya) on l'. is a degeneracy direction of ltJ AB ifand only 
if 

(2.65) 

where tJyIl = (y. )1' a tJya, hI''' is the spatial metric on l'. in
duced from gl'''' and ul' is the unit normal to l'.. Thus we 
sweep out the degeneracy submanifold by allowingy to vary 
arbitrarily, with the corresponding variations of r/J and '17' giv
en by Eqs. (2.65) and (2.66). Hence we can uniquely char
acterize each degeneracy submanifold of ltJ AB by choosing a 
fixed diffeomorphism, y: MI-+M, and specifying the values of 
r/J and '17' on l'. associated with this choice of y. In this manner, 
we may identify phase space (r ,nAB) with the manifold 
composed ofthe pairs (r/J,17') on l'., with symplectic form 
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nAB (~I""~I1T)A(~2""~21T)B 

= L [(~11T)(~2"') - (~21T)(~1"')]· (2.67) 

This is precisely the usual phase space of a scalar field in the 
fixed, nondynamical space-time (M,gllv). Thus, when ap
plied to this case, our general prescription for constructing 
phase space has the effect of "deparametrizing" the parame
trized scalar field theory. Note that solutions to the equa
tions of motion (2.55) and (2.57) exist for all (",,1T) on l:, so 
in this case there are no constraints, i.e., the constraint sub
manifold is all of phase space, r = r. 

III. LOCAL SYMMETRIES ON FIELD CONFIGURATION 
SPACE 

In this section we shall define the notion oflocal symme
tries on field configuration space Y and will derive some of 
their properties. The principal result of this section is a 
theorem that directly implies that on the solution submani
fold Y every local symmetry direction (8¢)A is a degener
acy direction of the pullback to Y, (ij AB' of the presymplectic 
form W AB. In the next section, this result will be used to 
obtain important relationships between local symmetries 
and constraints on phase space. 

Roughly speaking, a local symmetry is a field vari
ation-such as the gauge transformations of Yang-Mills 
theory or the diffeomorphisms of general relativity-that 
keeps the action S invariant and that is "local" in a suitable 
sense to be made precise below. In this paper, we shall be 
concerned exclusively with infinitesimal local symmetries. 
Each infinitesimal local symmetry at each field configura
tion ¢EY gives rise to a vector (~¢) A in the tangent space to 
¢. In order to distinguish notationally such local symmetry 
vectors from arbitrary tangent vectors at ¢;EY, we will place 
a caret over local symmetry vectors, i.e., (8¢) A will denote a 
field variation corresponding to an infinitesimal local sym
metry, and similarly 8¢a (x) will denote the tangent vector to 
M' for this infinitesimal local symmetry at the point 
¢(x)EM'. Variations of other quantities induced by local 
symmetry variations also will be denoted with a caret, e.g., 
8.!f denotes the change in .!f resulting from 8¢a [see Eq. 
(3.1) ]. 

The most difficult part of formulating a notion of local 
symmetries for a general Lagrangian field theory-formu
lated within the framework of the previous section-is to 
capture the idea that one has "complete, local (in space
time) control" over the symmetry variations. The following 
definition provides such a notion in a form conveniently ap
plicable to the proofs of the lemmas and theorem of this 
section. As we shall explain further below, this definition 
encompasses the standard notions of infinitesimal local sym
metries in specific theories such as Yang-Mills theory and 
general relativity. 

Definition: A set of pairs (8¢a,all ) consisting of a field 
variation 8¢a on space-time (i.e., an M' -vector-valued scalar 
field on M) and a vector density all on M will be said to 
comprise a collection of infinitesimal local symmetries at 
field configuration ¢ if the following three conditions are 
satisfied. 
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(i) The pairs form a vector space, i.e., if (81¢a,a') and 
(82¢a,a~) are in the collection, then for all CI,C2ER so is 

(CI 81¢a + C2 82¢a,CIa') + c2a~). 
(ii) For each pair (8¢a,aIl) we have 

8.!f = V Ilall. (3.1 ) 

Furthermore, if l: is noncom pact, we require all to be such 
that no "boundary terms at spatial infinity" arise from ap
plying Gauss' law to integration of V Il all over the region 
between two Cauchy surfaces l:1 and l:2. In the noncompact 
case, we also require 8¢a to be such that no such spatial 
boundary terms arise from a similar application of Gauss' 
law to VJ)Il, where Oil is given by Eq. (2.12) with ~¢a re
placed by 8¢a. 

(iii) Given any pair (8¢a,all ) in the collection and given 
any two disjoint, closed subsets CC I' CC 2 eM of space-time, 
then there exists a pair (8' ¢a,a'll) in the collection such that 

8,¢a(x) = 8¢a(x) } 

'VXECC I; 
a'll(x) = all(x) 

whereas 

8,¢a(x) = 0 } 
'VXECC 2. 

a'll(x) = 0 

(3.2a) 

(3.2b) 

Note that condition (i) of the definition is not restrictive 
in that if one has a set of pairs (8¢a ,all) satisfying conditions 
(ii) and (iii), one can obtain a set satisfying all the condi
tions by taking their linear span. Note also that Eq. (3.1) by 
itself places no restriction on 8¢a, since one could simply 

solve Eq. (3.1) for all. Condition (ii) becomes restrictive 
only in conjunction with condition (iii), which states that 
one must be able to deform 8¢a and all to zero on CC 2 while 
preserving Eq. (3.1). It should be emphasized that condition 
(iii) applies to both 8¢a and all, i.e., it does not suffice to be 
able to deform only 8¢a to zero on CC 2. Finally, it should be 
noted that the same field variation 8¢a may occur many 
times in the collection of local symmetries, paired with dif
ferent vector densities all, i.e., a given local symmetry vari
ation 8¢a need not have a unique all associated to it. Quanti
ties defined below, such as the Noether current JIl, will 
depend on the choice of all. 

Let W", denote the subspace of the tangent space V", to 
Y at field configuration ¢ spanned by the local symmetry 
vectors (8¢)A at ¢. An assignment of local symmetries to 
each ¢;EY will be said to comprise an algebra of local sym
metries on Y if the distribution of subspaces W", is integra
ble. By Frobenius' theorem, this is equivalent to requiring 
that the distribution W", comprise a sub-bundle of the tan
gent bundle to Y and that the commutator of any two vector 
fields on Y lying in W", also lies in W",. For the results 
obtained in this section, it is not necessary that the local 
symmetries comprise an algebra. 

A collection of local symmetries at field configuration 
¢EY always is produced if all of the pairs (8¢a,all ) in the 
collection satisfy condition (ii) and are generated by formu
las locally having the general form 
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8t/Ja = ToA + TI aA + ... + TI alA, 

a" = UoA+ UlaA + ... + Um amA, 

(3.3 ) 

(3.4) 

where, for a given t/J€!T, the quantities To, ... ,TI and 
Uo,"" U m are fixed tensor fields on space-time, but the tensor 
field A can be chosen arbitrarily (within its specified index 
type) on space-time. [We have omitted all indices on the 
right sides ofEqs. (3.3) and (3.4) because the tensor fields 
T, U, and A may have arbitrary index structure (with re
spect to both M and M') and the index contractions may 
occur in an arbitrary fashion in each of the terms.] On ac
count of the linearity of Eqs. (3.3) and (3.4) in A and its 
derivatives, it is clear that the pairs (8t/Ja,a") comprise a 
vector space, so property (i) is satisfied. Since A is arbitrary, 
given disjoint closed sets C{; I' ~ 2 eM, we can choose A' so 
that A' = A on C{; I but A' = 0 on C{; 2' From this it follows 
that also property (iii) is satisfied. 

In Yang-Mills theory, at field configuration A i,. the in
finitesimal gauge transformations 

(3.5) 

satisfy Eq. (3.1) with a" = 0, where N is an arbitrary Lie
algebra-valued scalar field on M. Thus the pairs {( 8A i ,O)}, 

A . ,. 

with8A ',. given by Eq. (3.5), comprise a collection of in fin i-
tesimallocal symmetries at A i,.. Furthermore, the tangent 
subspaces to Y generated in this manner are integrable, so 
these gauge transformations define an algebra of local sym
metries on Y. 

For general relativity with Lagrangian density 

.2" H = ~ - g R, at field configuration g,.v the infinitesimal 
gauge transformations 

8g,.v = £Ag,.v = 2V(,.Av). = 2a(,.Av) - r",.vA" (3.6) 

satisfy Eq. (3.1) with 

(3.7) 

where A" is an arbitrary vector field on space-time. [For the 
modified Lagrangian (2.45), which differs from .2" H byad
dition of a term of the form V,. If', the vector density a" 
would be changed by the addition of 81f'.] Thus these gauge 
transformations comprise a collection of infinitesimal local 
symmetries atg,.v' Again, the tangent subspaces to Y deter
mined by Eq. (3.6) are integrable, so we obtain an algebra of 
local symmetries on Y. 

In the parametrized massless scalar field theory, the in
finitesimal transformations at field configuration (t/J,ya) , 

8t/J= £At/J=A"a,.t/J, 8ya= (y.)a,.A", (3.8) 

satisfy Eq. (3.1) with a" = A".2", where A" is an arbitrary 
vector field on space-time. Thus these transformations com
prise a collection of infinitesimal local symmetries at (t/J,ya). 
In this case, also, the tangent subspaces to Y given by Eq. 
(3.8) are integrable, and we obtain an algebra oflocal sym
metries. Thus the gauge transformations of Yang-Mills the
ory, general relativity, and parametrized scalar field theory 
are encompassed by our general definition of local symme
tries. 
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In fact, the local symmetries of Yang-Mills theory, gen
eral relativity, and parametrized scalar field theory actually 
have more structure than indicated above. In all three cases, 
one can define an action of (infinite-dimensional) group [1 
on Y so that Y is given the structure of a principal fiber 
bundle. The tangent subspaces W~ of the infinitesimal local 
symmetries then correspond simply to the tangent subspaces 
to the fibers. As mentioned in Sec. I, in Yang-Mills theory, 
the group [1 consists of the set of maps from space-time M 
into the Yang-Mills group G, whereas in general relativity, 
the group [1 consists of the diffeomorphisms of M into itself. 
In parametrized theories, the role of [1 is also played by the 
group of diffeomorphisms on M. 

The key additional structure provided by such a group 
action on Y is that it allows one to define the notion of a 
"field-independent" infinitesimal local symmetry. Namely, 
we say that an infinitesimal local symmetry (81t/J)A at t/JIEY 
iSA"the same symmetry" as (82t/J)A at t/J2eY if (81t/J)A and 
(82t/J)A correspond to the action on Y of the same element of 
the Lie algebra of [1. A vector field (8t/J)A on Y which is 
everywhere tangent to W~ will be said to be afield-indepen
dent infinitesimal local symmetry if it represents the "same 
s~mmetry" in this sense at all points of Y. [Otherwise, 
(8t/J)A will be referred to as "field dependent".] Clearly, the 
field-independent infinitesimal local symmetries comprise a 
subalgebra-isomorphic to the Lie algebra of [1-of the al
gebra of infinitesimal local symmetries. Since the field-inde
pendent symmetries span W~ at each t/JeY, in most cases 
nothing is lost by restricting attention to them. Thus, in most 
discussions, only the field-independent symmetries are con
sidered. For Yang-Mills theory the field-independent local 
symmetries are given by Eq. (3.5), with N chosen to be 
independent of A i,.. For general relativity and parametrized 
scalar field theory the field-independent local symmetries 
are those for which A" (as opposed to, say, A,.) is chosen to 
be independent ofg,.v in Eq. (3.6) and independent oft/Jand 
yin Eq. (3.8). 

One reason why we have not assumed the existence of 
the structure on Y sufficient to enable us to define the no
tion offield-independent symmetries is that it is unnecessari
ly restrictive. A much more fundamental reason is that, as 
we shall explain in Sec. IV, even when this structure is pres
ent, it will be necessary to consider the "field-dependent" 
infinitesimal local symmetries in order to represent fully 
symmetries on phase space. Thus, for the purpose of this 
paper, the notion of field-independent local symmetries ap
pears quite unnatural. 

We define now the notion of the Noether charge Q of an 
infinitesiIl!allocal symmetry and obtain some of its proper
ties. Let (8t/Ja,a") be an infinitesimal local symmetry at field 
configuration t/J. We define the Noether current J" by 

(3.9) 

where 0" is given by Eq. (2.12), with8t/Ja substituted for 8t/Ja. 
Thus J" is a vector density on space-time. Note that J" de
pends upon the choice of a", i.e., if the same local symmetry 
field variation 8t/Ja is paired with different a"'s, different 
Noether currents will result. 

Taking the divergence ofEq. (3.9), we obtain 
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v J!-'=V ()I'-V al' 
I' I' I' 

= (6.Y - Ea 6tpa) - 6.Y 
= -Ea6~a, (3.10) 

where Eqs. (2.10) and (3.1) were used. Thus if ~ satisfies the 
equations of motion, then the Noether current is conserved. 

Given a Cauchy surface l:, we define the Noether charge 
Q associated w~th (6~a,al') by 

Q= LJl'nw (3.11) 

In general, Q depends upon the choice of l:, but by Eq. 
(3.10) [supplemented by condition (ii) of the above defini
tion oflocal symmetries in the case where l: is noncompact] 
if ~ is a solution to the equations of motion, then Q is inde
pendent of the choice of l:. Indeed we have the following 
stronger result. 

Lemma 1: Let (6~a,al') be an arbitrary infinitesimal 10-
cal symmetry at a solution ~. Then the Noether charge Q, 
defined by Eq. (3.11), vanishes: 

Q = O. (3.12) 

Proof Choose disjoint closed sets C(f I' C(f 2 eM such that 
C(f I contains an open neighborhood of the given Cauchy sur
face l: appearinginEq. (3.11), whereas C(f 1. contains an open 
neighborhood of another Cauchy surface l:. Using property 
(iii) of the definition of infinitesimal local symmetries, we 
choose (6,~a,a'l') to be an infinitesimal local symmetry that 
agrees with (6~a,al') on C(f I but vanishes on C(f 2' Then, as 
proved above, the Noether charge Q' associated with 
(6' ~a,a'l') is conserved. However, clearly we have Q' = Qon 
l: whereas Q' = 0 on l:. Thus we obtain Q = o. 0 

Our next result provides a generalized Bianchi identity 
for all Lagrangian theories with local symmetries. 

Lemma 2: Let ~ be an arbitrary field configuration, and 
let (6~a,al') be an infinitesimal local symmetry such that 
both 6~a and al' have compact support on space-time. Then, 
we have 

(3.13) 

Proof Since 6~a and al' have compact support, it follows 
immediately that the Noether current JI' also has compact 
support. The lemma then follows directly from integrating 
Eq. (3.10) over M. 0 

If the local symmetries are of the form (3.3) and (3.4), 
then Eq. (3.13) is equivalent to a local differential identity 
on Ea [obtained by integration of Eq. (3.13) by parts to 
remove derivatives of A and then setting the coefficient of A 
in the integrand equal to zero]. For Yang-Mills theory and 
general relativity, this yields the usual Bianchi identity. For 
the parametrized scalar field theory, it yields an identity re
lating the ya equation of motion (i.e., conservation of stress
energy) to the "'equation of motion (Le., the Klein-Gordon 
equation). 

The next result can be interpreted as saying that at any 
point ~ of the solution submanifold Y offield configuration 

A A 
space.'T, every local symmetry vector (ti~) lies tangent to 
Y. The basic argument in our proof of Lemma 3 was sug-
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gested to us by S. Anco. 
Lemma 3: Let ~ be a solution to the equations of motion, 

Ea = O. Let 6~a be an infinitesimal local symmetry at ~. 
Then the induced variation of Ea vanishes: 

6Ea = 0, (3.14) 

i.e., 6~a is a solution of the linearized equations of motion. 
Proof We prove Eq. (3.14) first for the case ofa local 

symmetry pair (6~a,aI') such that both ~a and aI' are of 
compact support on space-time. Let ~(AI,A.2): Mf--+M' be a 
smooth two-parameter family of field configurations, with 
~(O,O) = ~, such that, for all AI' the field variation 

62~a=a~al (3.15) 
aA2 ;',=0 

is a local symmetry field variation of compact support, 
paired with an al' also of compact support. Then Eq. (3.13) 
holds at A2 = 0 for all AI' Taking the partial derivative ofEq. 
(3.13) with respect tOA I and evaluating atA I = 0, we obtain 

0= J) (tiIEa) (62~a) + Ea (tiI62~a) ] 

(3.16) 

where we used Ea = 0 at ~ in the second line. On the other 
hand, by Eq. (2.18) we have 

0= (tiIEa)(62~a) - (62Ea)(til~a) + Vl'if. (3.17) 

Since 62~a has compact support, it follows that if also has 
compact support. Hence, integrating Eq. (3.17) over M, we 
obtain 

0= J) (tiIEa) (62~a) - (62Ea) (til~a) ]. (3.18) 

Subtracting Eq. (3.18) from Eq. (3.16), we obtain 

0= JM (62Ea )(til~a). (3.19) 

Since til~a is an arbitrary field variation, Eq. (3.19) implies 
that 

62Ea = 0, (3.20) 

for an arbitrary local symmetry pair (62~a,al') of compact 
support. 

To prove that Eq. (3.20) holds for an arbitrary local 
symmetry pair (6~a,aI') not necessarily of compact support, 
we suppose Eq. (3.20) failed to hold for such a local symme
try atxeM. Choose disjoint closed sets C(f I' C(f 2 eM such that 
C(f I contains an open neighborhood of x and such that the 
complement of C(f 2 has compact closure. The local symmetry 
pair (6,~a,a'l') provided by property (iii) of the definition of 
local symmetries then would have compact support and also 
would fail to satisfy Eq. (3.20) at x, in contradiction with the 
above result. 0 

We now are ready to prove the main result of this sec
tion, which can be interpreted as stating that at each solution 
t/>EY, and for each local symmetry (6~)A at ~, we have 

(dQ)A = aJAB(6~)B, (3.21) 
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where Qis the Noether charge associated with (~t/J)A, d de
notes the exterior derivative on Y, and (J)AB is the "presym
plectic form" on Y. 

Theorem: Let t/J be a solution to the equations of motion, 
Ea = 0, and let t/J(A,1,A,2): Mt---+M' be a smooth two-param
eter family offield configurations with t/J(O,O) = t/J such that 
~2t/Ja:= (at/Ja / aA,2 >1."2 = 0 is the field variation of an infinitesi
mal local symmetry for all AI' Let Q(A,l) denote the Noether 
charge of this local symmetry at t/J(A,I'O). Then at t/J we have 

8 1Q = (J)[t/J,81t/J,t52t/J], (3.22) 

where (J) was defined by Eq. (2.23). 
Proof: By Eq. (2.18) we have 

(OlEa )(t52t/Ja) - (t52Ea )(81t/Ja) + Vp(J)P = O. (3.23) 

The second term vanishes by Lemma 3. Since Ea = 0 at t/J, 
we may write the first term as 01 (Ea t52t/Ja). Using Eq. 
(3.10), weseethatEq. (3.23) takes the form 

Vp ( -DIP + if) = O. (3.24) 

Thus, by Gauss' law, the associated charge 
S l: ( - 81JP + if)np is conserved, i.e., independent of 
choice of Cauchy surface l:. An exact repetition of the proof 
of Lemma 1 above then shows that, in fact, this charge van
ishes. Thus we obtain 

0= 1 ( -81JP + if)np 

= -8IQ+(J)[t/J,81t/J,t52t/J], (3.25) 

as we desired to show. 0 
Note that if we weaken the hypothesis of the above 

theorem by not requiring t/J to be a solution, the calculation 
that previously led to Eq. (3.24) now yields 

V P ( - 8 1JP + if) = t52(Ea 8 1t/Ja). (3.26) 

Hence, if we happen to have a local symmetry vector field 
(t52t/J)A on Y that satisfies ~2(EQ 8 1t/J

Q
) = 0 for all two-pa

rameter families of the type specified in the theorem [but 
with t/J = t/J(O,O) now arbitrary], then we again obtain Eq. 
(3.24), from which the result (3.25) again follows. Thus, for 
such very special, local symmetry vector fields on Y, Eq. 
(3.25) actually holds at all t/JEY, not just at solutions tjJEY. 
As we shall discuss further in Sec. IV, the field-independent 
gauge transformations of Yang-Mills theory satisfy this 
property. 

As already mentioned above, the Noether charge Q de
pends, in general, upon a P as well as t5t/JQ. An interesting 
corollary of the above theorem is that for any local symmetry 
(t5t/Ja,aP) at a solution t/J, the gradient of Q does not depend 
upon aP, nor does it depend upon how (~t/J)A and a P are 
extended off of t/J. [This result follows immediately from the 
fact that the right side ofEq. (3.22) is independent of these 
choices.] It also follows immediately from Eq. (3.22) that at 
a solution t/J, the first variation of the Noether charge in a 
degeneracy direction of (J) always vanishes. 

A further, very important corollary of the above 
theorem may be stated as follows. 

Corollary; Let t/Ja be a solution to the equations of mo
tion, E a = 0; let 81 t/Ja be a solution to the linearized equations 
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of motion at t/Ja (i.e., let 8 1t/JQ be such that 8 lEa = 0); and let 
~2t/Ja be an infinitesimal local symmetry field variation at t/J0. 
Then we have 

(3.27) 

Proof: This result is an immediate consequence of Eq. 
(3.22) together with Lemma 1. 0 

This corollary can be interpreted as saying that at any 
t/JEY, every local symmetry vector (~t/J)A is a degeneracy 
direction of the pullback WAB of (J)AB to Y, i.e., we have 

WAB(~t/J)B = O. (3.28) 

[Note that by Lemma 3, (~t/J)A is always tangent to Y, so 
the action ofwAB on (~t/J)A is well defined.] The analysis of 
the next section will be based mainly on this result. Note also 
that this corollary can be viewed as stating that, as claimed in 
Sec. II, W AB always is "gauge invariant," i.e., for any solution 
t/J and for any pair of linearized solutions (81t/J)A, (82t/J)A at 
t/J, the quantity (J)AB(01t/J)A(82t/J)B depends only upon the 
gauge equivalence class of (81t/J)A and (82t/J )A. Thus we have 
given a completely general proof, applicable to an arbitrary 
Lagrangian theory with local symmetries, of a result of 
Friedman2 for the case of general relativity. This result for 
the cases of Yang-Mills theory and general relativity also 
was obtained previously (by means of detailed calculations) 
by Crnkovic and Witten.3 

IV. LOCAL SYMMETRIES AND CONSTRAINTS 
ON PHASE SPACE 

Recall that, in Sec. II, we introduced the manifold of 
field configurations, Y; we defined a "presymplectic form" 
(J)AB on Y; and we constructed phase space (r, {lAB) from 
(Y,(J) AB) by a reduction procedure. We thereby also ob
tained a projection map 1T: Y t---+ r. The "constraint submani
fold" r of r was defined to be the image under 1T of the 
solution submanifold Y of Y and the restriction 1Tof 1T to Y 
gave a similar projection map 1T: Y t---+r. As in Sec. II, we 
shall continue to assume below that Y has the structure of a 
fiber bundle over r with projection map 1T and that Y has 
the structure of a fiber bundle over r with projection map 1T. 
We shall also assume that the nondegenerate symplectic 
form {lAB on r is invertible, so that the notion ora Poisson 
bracket is well defined on r. (Nondegeneracy does not auto
matically imply invertibility in infinite-dimensional spaces.) 
We denote the inverse of {lAB by {lAB, so that 
{lAB{lBC = OA c. 

In the present section, we shall use the projection map 1T 
to "carry down" the notion and properties of local symme
tries obtained in Sec. III from Y to r and from Y to r. We 
thereby shall obtain a relationship between local symmetries 
and constraints on phase space. 

As already noted in Sec. II, the projection map 1T: Y t---+ r 
induces a corresponding map 17"*: V",t---+V§ from the tangent 
space V", of any point tjJEY to the tangent space V§ of the 
image point S = 1T(t/J )Er. Thus, given a local symmetry vec
tor (~t/J)A at t/J, we may project it to obtain the vector 
X A:= 1T* (t5t/J)A at point S. However, since the map 1Tis manY
to-one, there is no reason why a local symmetry vector field 
(t5t/J)A on Y should have a well defined projection onto r; 
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the vector 1r*(B(J)A at 5Er obtained by projection may de
pend upon the choice of point tjJeY in fiber 11'- I [5] A over 5. 
Indeed, a necessary and sufficient condition for (&/J)A to 
have a projection from Y to r is that for all degeneracy 

A A 
vector fields f/I- on Y, we have that £", (8(J) also is a degen-
eracy vector field, i.e., for all f/I- satisfying 

{U AB tf!1 = 0, 

we have 

(4.1 ) 

(4.2) 

We shall see below that in the case of parametrized theories, 
there do not exist any local symmetry vector fields on Y 
satisfying this condition that project to a nonvanishing vec
tor field on r. However, in the case where there are local 
symmetry vector fields on Y that have a Wtrll defined, non
trivial projection to r, a notion oflocal symmetries on r can 
be defined. In fact, for most purposes the requirement that a 
local symmetry have a well defined projection from all of Y 
to all of r is too strong; it would exclude the nonspatial 
diffeomorphisms of general relativity (see below). Rather, 
all that is needed for most of our results is that the local 
symmetry project from Y to f. Therefore, we introduce the 
following two definitions. 

Definitions: A vector field X A on r will be called an 
infinitesimal local symmetry on r if it is of the form 
X A = 11'* (B(J )A, where (B(J)A is the field variation of an infin
itesimallocal symmetry defined on all of Y. Similarly, a 
vector field X A on f will be called an infinitesimal local 
symmetry on f if it is of the form X A = 11'* (B(J)A, where 
(~(J ) A is the field variation of an infinitesimal local symme
try defined on Y. 

We explore, now, some of the properties of infinitesimal 
local symmetries on f. Since, by Lemma 3 of Sec. III (l>r/» A 

is always tangent to Y, for any infinitesimal symmetry X A 

on f, we have 

(4.3) 

where 17"* is the tangent space map associated to the projec
tion map 17": Y t--+f. (We also use the same notation 17"* to 
denote the associated pullback map on forms.) By Eq. 
(2.34) of Sec. II, we have 

- -*-0 
{U AB = 11' AB' (4.4) 

where (jj AB denotes the pullback of the presymple~ic form 
OJ AB to Y, and 0 AB denotes the pullback of 0 AB to r. By the 
elementary properties of the map 17"*, we thus obtain 

A - AB 
(jj AB (l>(J)B = 17"* (OABX ). (4.5) 

The key result of this section now follows by invoking 
the corollary to the theorem proved at the end of Sec. III. 
According to that corollary, the left side ofEq. (4.5) always 
vanishes. Thus we obtain 

(4.6) 

and, consC,Quent1~ we find that every infinitesimal local 
symmetry X A on r satisfies 
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OABX B = O. (4.7) 

Equation (4.7) directly implies that to each infinitesi
mallocal symmetry on f, there co"esponds a constraint on 
phase space. To see this, we note that sinc~ OAB is nondegen
erate, if the infinitesimal local symmetry X A is nonvanishing 
at 5Ef, then the one-form 

f.lA = OABX B (4.8) 

also is non vanishing at 5. But Eq. (4.7) states that 
f.lA TA = 0, for all TA tangent to f at 5. Thus the codimen
sion off in r must be at least 1. Each additional independent 
infinitesimal local symmetry X,A at 5 results in an additi~nal 
independent f.l ~ and thus increases the codimension of r in 
r by 1. Since, as mentioned in Sec. II, r has the interpreta
tion as representing the "kinematically possible" states 
whereas f represents the "dynamical~ possible" states, 
each such increase in the codimension ofr corresponds to an 
additional constraint. 

Furthermore, in the case where the infinitesimal local 
symmetries on Y form an algebra, then the co"!..traints asso
ciated with infinitesimal local symmetries on r always are 
first class, i.e., these constraints close under the Poisson 
bracket in the sense explained below. To show this, given an 
infinitesimal local symmetry X A on f, we let C be any func
tion on r such that on f we have 

Clr =0 (4.9) 

and 

(4.10) 

where d denotes the exterior derivative on r. [On account of 
Eq. (4.7), Eq. (4.10) is merely a condition on the normal 
derivatives of C at f, so there are no futher integrability 
conditions that need be satisfied in order to obtain such a C. ] 
We refer to any C satisfying (4.9) ~nd (4.10) as a "con
straint function" associated with XA. Note that, by Eq. 
(3.21), the pullback 11'* (dC)A of (dC)A to Y is equal to 
(dQ)A onY, where Qis theNoether~harge~sociated with 
the local symmetry that projects to X A on r. For a gi~n 
choice of constraint function C, it is convenient to extend X A 

to a vector field X A on r by setting 

X A = OAB(dC)B' (4.11) 

Then X A automatically satisfies 

£XOAB = O. (4.12) 

Now, consider two infinitesimal local symmetries, XI
A and 

X/, on f. Under the hypothesis that the infinitesimal local 
~mmetri~ on Y comprise. an ~lg~bra, their commutator 
X A = £x X 2 A also will be an mfiruteslmallocal symmetry on 
f. On f,' we have 

A A B A B 
0ABXB = OAB£X,X2 = OAB£X,X2 

= £x, (OA~X/) = £x, (dC2 )A 

= (d(Xf(dC2 )D»A 

= - (d(OBD(dCl h(dC2 )D»A 

= (d{CI ,C2})A' 
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where the identity (2.27) was used in the third line and 
where the Poisson bracket {Cl>C2} is defined by 

{CI 'C2} = - .{}--4B(dCI )A (dC2)B. (4.14) 

Note that Eq. (4.13) holds on r for any choice of constraint 
functions CI,C2 satisfying (4.9) and (4.10). Furthermore, 
we have {CI 'C2} = 0 on r. Hence C= {CI,C2} is a con
straint function for XA. Thus the above calculations estab
lish the following results: To each infinitesimal local symme
try X A on r we may associate an equivalence class [C] of 
"constraint functions," where [C] consists of all functions 
on phase space satisfying Eqs. (4.9) and (4.10). The Pois
sion bracket algebra of these constraint functions is isomor
phic to the Lie bracket algebra of the infinitesimal local sym
metries on r in the sense that if C I is any constraint function 
for XI

A and C2 is any constraint !unction .for X2
A

, then 
{CI'C2} is a constraint function for X A = £X,X2

A
• In partic-

/".. _ 
ular, since the Lie bracket algebra of the X A'S on r close 
when the infinitesimal local symmetries on Y comprise an 
algebra, it follows that the Poisson bracket algebra of the 
constraint functions close. This corresponds to the usual no
tion of first class constraints, so, in this sense, the constraints 
associated with local symmetries are first class. Of course, 
our analysis does not preclude the possibility that the theory 
may possess other constraints in addition to those implied by 
the presence of local symmetries, so the entire set of con
straints need not be first class. 

The above discussion and results apply to all Lagran
gian field theories with local symmetries. Hence any differ
ence in the structure of the resulting constraints on phase 
space for different theories with local symmetries must be 
attributable to differences in the structure of the local sym
metries on Y and/or differences in the manner in which 
these local symmetries project to r. We now shall elucidate 
the special features of the local symmetries on phase space 
arising in Yang-Mills theory, general relativity, and the par
ametrized scalar field theory. We shall see that the differ
ences in the structure of the constraints on phase space in 
these theories arise primarily from the manner in which the 
local symmetries project to phase space. 

In Yang-Mills theory, the "field-independent" infini
tesimallocal symmetries on Y give rise to local symmetries 
on phase space that satisfy much stronger properties than in 
the general case considered above. As already mentioned in 
Sec. III, the "field-independent" symmetries on Y are given 
by 

i:" I a AI+ I Aj Ak (4.15) U~I'= I' Cjk I' ' 

where N is a fixed (i.e., independent of field configuration 
A II') Lie-algebra-valued function, A: M~L (G), on space
time. In particular, on ~ we have 

i: "I _ a AI + I A j Ak 
u~l'- I' Cjk I' ' (4.16) 

l>Et = c/kE/Ak. (4.17) 

Furthermore, as discussed in Sec. II, the degeneracy sub
manifolds of (J) AB consist of those field configurations with 
the same pullback of A II' to ~ and the same Et on ~. Thus if 
we consider the field-independent infinitesimal local sym
metry (4.15) at two field configurations on the same degen-
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eracy submanifold, it is clear from Eqs. (4.16) and (4.17) 
that the fields liE II' on ~ and the pullback of l>A / to ~ will be 
the same. This implies that in Yang-Mills theory, all the 
field-independent infinitesimal local symmetries on Y proj
ect to r and thus define infinitesimal local symmetries on all 
ofr. We shall refer to these local symmetries on r as "field
independent." The Lie algebra of the field-independent local 
symmetries on r is isomorphic to the Lie algebra of the 
group [! / K, where [! is the gauge group acting on Y and 
K is the normal subgroup of [! consisting of the gauge 
transformations that keep Et and the pullback of A II' fixed 
on 1:. Furthermore, r thereby naturally acquires the struc
ture of a principal fiber bundle, with group [! / K. The con
straint submanifold r similarly acquires a natural principal 
fiber bundle structure, also with group [! / K. 

In fact, the field-independent local symmetries of Yang
Mills theory possess further remarkable properties. It is not 
difficult to verity that the field-independent local symme
tries on Y satisfy the condition l>2(Ea 81ifJQ

) = 0 discussed 
after the theorem at the end of Sec. III. Consequently, the 
equation 

(dQ)A = {J)AB(l>ifJ)B (4.18) 

holds for field-independent local symmetries (l>ifJ)A at all 
t/JEY (i.e., not merely for tjxi7, as guaranteed by the 
theorem). An immediate consequence of Eq. (4.18) is that 
the Noether charge Q is constant on the degeneracy subman
ifolds of {J)AB. Consequently, we may project the function Q 
from Y to r so as to obtain a function Con r that satisfies 

(dC)A = OABXB, (4.19) 

everywhere on r, whereX A is the projection of (l>ifJ)A. Note 
'" that, in particular, Eq. (4.19) implies that X A is symplectic, 

i.e., £XOAB = o. Consequently, in Yang-Mills theory, for 
'" any field-independent local symmetry X A on r, we can 

uniquely assign a constraint function C such that C == 0 on r 
and Eq. (4.10) holds on all of r, not merely on r. Conse
quently, the Poisson bracket algebra of these constraint 
functions on r is isomorphic to the Lie bracket algebra of the 
field-independent local symmetries on r, which, in turn, is 
isomorphic to the Lie algebra of [! / K. Thus in Yang-Mills 
theory the field-independent local symmetries on r satisfy 
much stronger properties than hold in the general case. 

In Yang-Mills theory, the most general infinitesimal 
symmetry vector field (l>ifJ ) A on Y that projects to r is given 
by Eq. (4.15), where N is constant on the degeneracy sub
manifolds of (J)AB' i.e., the map A: M~L( G) is an arbitrary 
functional of Et on ~ and the ~llb~k of A II' to~. The local 
symmetries that project from Y to r are characterized simi
larly. Such field-dependent local symmetries on Y fail, in 
general, to satisfy Eq. (4.18). Their projection to r fails, in 
general, to be symplectic, and thus one cannot associate to 
them a constraint function on all of r. (Of course, as with all 
local symmetries, their projection to r is associated with an 
equivalence class of constraint functions in the manner de
scribed above.) However, since the field-independent local 
symmetries on r span the tangent subspace of infinitesimal 
local symmetries at each point of r, there is little reason to 
consider field-dependent local symmetries on r. 
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In general relativity, a certain subclass of the field-inde
pendent local symmetries on .7 -namely, the spatial diffeo
morphisms-satisfy special properties similar to the field
independent local symmetries of Yang-Mills theory. Recall 
from the previous section that the field-independent local 
symmetries are given by 

8gp,v = £Agp,v' (4.20) 

where the vector field AP, is independent of the field configu
ration gp,v on space-time. (Note that, therefore, Ap, = gp,v A v 
does depend upon field configuration.) Consider, now, the 
purely spatial infinitesimal diffeomorphisms, i.e., consider 
the case where AP, on 1: is everywhere tangential to 1:. Then 
on 1: we have 

8hp,v = £Ahp,v = 2D(p,Avl' 

8#v = £A #v = aU (AU#V) - 21fI(p, auAV), 

( 4.21) 

(4.22) 

where Dp, denotes the derivative operator on 1: associated 
with hp,v' Since the degeneracy submanifolds of (U AB consist 
of field configurations with the same hp,v and #V on 1:, it 
follows immediately from Eqs. (4.21) and (4.22) that the 
field-independent infinitesimal spatial diffeomorphisms 
project from all of Y to r. The Lie algebra of the resulting 
local symmetries on r (which we again refer to as "field 
independent") is isomorphic to the Lie algebra of the diffeo
morphism group of 1:. Furthermore, both rand f thereby 
naturally acquire the structure of a principal fiber bundle, 
with this structure group. However, unlike the Yang-Mills 
case, the field-independent infinitesimal spatial diffeomor
phisms on Y do not satisfy the condition 82 (Eo {j1<jJ°) = 0 
discussed following the theorem at the end of Sec. III. In
stead, we obtain 

(4.23) 

Nevertheless, remarkably, when this term is inserted into 
Eq. (3.25), it makes no contribution, since A~np, = O. Con
sequently, for the field-independent infinitesimal spatial dif
feomorphisms (8<jJ)A on Y, we again obtain 

(4.24) 

everywhere on Y. Hence, by exactly the same arguments as 
in the Yang-Mills case, to each of the resulting field-inde
pendent local symmetries on r we can uniquely associate a 
constraint function on all of r in such a way that the Poisson 
bracket algebra of these functions is isomorphic to the Lie 
bracket algebra of the local symmetries, which, in turn, is 
isomorphic to the Lie algebra of diffeomorphisms on 1:. 
Thus the structure for the field-independent spatial diffeo
morphisms in general relativity is completely analogous to 
the structure of the field-independent gauge transformations 
of Yang-Mills theory. 

However, the structure for the nonspatial diffeomor
phisms of general relativity is very different. For general AP" 
the formulas corresponding to Eqs. (4.21) and (4.22) are 
[see, e.g., Eqs. (E.2.35) and (E.2.36) of Ref. 9 for the case 
Gp,v = 0] 
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(4.25) 

8#v = ah 1/2h p,uh VPGup _ ah 1/2e R p,v _ ~ 3 Rh P,V) 

+ ~ah - lf2h P,V( ~11'pu - r) 
_ 2ah -1/2( #u11' u v _ !11'#V) 

+ h If2(DP,D va - h p,VD UDua) 

+ au (f3u#v) - 21fI(P,Duf3 V), (4.26) 

where a = - up,AP, (with up, the unit normal to 1:) and 
f3 p, = h p, vA v are the lapse function and shift vector associat
ed with AP" and Gp,v is the Einstein tensor of gp,v' Note that 
the term involving the Einstein tensor is the only term on the 
right sides of Eqs. (4.25) and (4.26) not determined by the 
specification of hp,v' #v, and AP, on 1:. Indeed, on a given 
degeneracy submanifold (i.e., for fixed hp,v and 11'P,v on 1:), 
the space-time metric gp,v can be chosen so that the spatial 
projection of Gp,v can be specified arbitrarily. Taking this 
fact into account, we see from Eqs. (4.25) and (4.26) that 
the only way a and f3 p, can be chosen on a given degeneracy 
submanifold so that 8hp,v and 8#vare constant (i.e., so that 
a consistent projection to r is obtained) is to choose a = 0 
and f3 p, independent of field configuration. Thus the most 
general local symmetries that project from Y to r are the 
infinitesimal spatial diffemorphisms, with AP, = f3 p, chosen 
to be an arbitrary functional of (hp,v,#V) on 1:. In particular, 
there is no notion of local symmetries on all ofr correspond
ing to nonspatial diffeomorphisms. 

However, this situation improves considerably if one 
seeks only local symmetries that project from !Jr to f. In 
that case, we have G p,v = 0 and it is clear from Eqs. (4.25) 
and (4.26) that 8hp,v and 8#v will be constant on each de
generacy submanifold if and only if a and f3 p, are constant 
there. Thus the most general local symmetries that project 
from !Jr to f are those for which a and f3P, are arbitrary 
functionals of hp,v and #V on 1:. In particular, none of the 
''field-independent'' local symmetries with nonspatial AP, 
project from!Jr to f, because if AP, is constant on a degener
acy submanifold, then a = - up, AP, and f3 p, = h p, vA v are 
nonconstant, since up, and h p, v = {jP v + uP,uv depend upon 
properties of the space-time metric gp,v that are not deter
mined by hp,v and #V on 1:. 

The infinitesimal local symmetries on f comprise an 
algebra that is "as large" an algebra as one would have ex
pected to obtain if the field-independent local symmetries 
had projected down. Thus the field variations corresponding 
to the nonspatial infinitesimal diffeomorphisms are fully 
represented on f. Furthermore, by our general analysis 
above, for each infinitesimal local symmetry on f we obtain 
an equivalence class of constraint functions whose Poisson 
bracket algebra is isomorphic to the Lie bracket algebra of 
the local symmetries on f. However, since there is no subal
gebra of local symmetries on f corresponding to the field
independent, nonspatial, infinitesimal diffeomorphisms on 
!Jr, there is no natural action on f of the group of field
independent local symmetries on Y (~the group of diffe
morphism of M) or any of its factor groups, apart from the 
spatial diffeomorphisms. 
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In summary, we see that the difference in the manner in 
which the local symmetries project from field configuration 
space to phase space fully accounts for the following differ
ences between Yang-Mills theory and general relativity. 

(1) In Yang-Mills theory the notion of local symme
tries is naturally defined on all of phase space r. In general 
relativity, although the local symmetries corresponding to 
spatial diffeomorphisms also are naturally defined on r, the 
local symmetries corresponding to nonspatial diffeomor
phisms are defined only on the constraint submanifold f. 

(2) In Yang-Mills theory the "field-independent" local 
symmetries on Y project to a natural subalgebra of local 
symmetries on r, also referred as "field independent." To 
each such field-independent local symmetry on r one can 
uniquely associate a constraint function C defined on all of r 
and satisfying the properties discussed above. In general rel
ativity, the field-independent local symmetries on Y corre
sponding to spatial diffeomorphisms similarly project to r, 
and, for the resulting field-independent local symmetries on 
r, constraint functions also can be defined on r that satisfy 
similar properties. However, for nonspatial diffeomor
phisms, the field-independent local symmetries do not even 
project from Y to f, so one does not obtain a similar subal
gebra. Furthermore, for the nonspatial diffeomorphisms, 
constraint functions on r are naturally defined only up to 
equivalence class as described above. 

(3) In Yang-Mills theory field-independent local sym
metries on phase space naturally endow rand f with the 
structure of principal fiber bundles, with the structure group 
being a factor group of the group ;j of field-independent 
local symmetries on Y. For general relativity, similar re
sults hold for the spatial diffeomorphisms. However, since 
there do not exist any local symmetries on r or f corre
sponding to the field-independent nonspatial diffeomor
phisms of Y, neither r nor f naturally acquire a similar 
principal fiber bundle structure with regard to an appropri
ately large factor group of the diffeomorphism group of M 
(i.e., a factor group that includes any nonspatial diffeomor
phisms). 

With regard to this last point, since in general relativity 
the local symmetries corresponding to the nonspatial diffeo
morphisms are not even defined off of f, there is, of course, 
no sense in which r can be given a principal bundle structure 
associated with them. However, as described above, the local 
symmetries corresponding to all diffeomorphisms are fully 
represented on f. Suppose that one could find a subalgebra 
d of these local symmetries on f such that each X AEd is 
nonvanishing at each point of f (unless X A vanishes identi
cally) and such that at each point of f, the local symmetry 
vectors in d span the tangent subspace oflocal symmetries. 
Then f would acquire principal bundle structure with re
spect to the subgroup 9) "" of diffeomorphisms of f genera
ted by d. If so, then 9) "" could be viewed as the local sym
metry group of the phase space formulation of geneal 
relativity. Note that, presumably, 9) "" would not be a factor 
group or subgroup of the diffeomorphism group of M. The 
issue of whether there exists such a subalgebra d of the local 
symmetries on f appears worthy of further investigation. 
Note that if such a subalgebra d exists, the constraint func-
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tions associated with elements of d would suffice to enforce 
all the constraints of general relativity. The Poisson bracket 
algebra of these constraint functions then would close on f 
with "structure constants" rather than "structure func
tions." [Indeed, one way of searching for such an d would 
be to try to choose the field dependence of a and P J.' on r 
such that the Poisson bracket algebra corresponding to the 
algebra (1.4), (1.6), and (1.7) obtained for "field-indepen
dent" a nd P J.' now closes with structure constants on f.] 
Thus the existence of such an d could provide a possible 
remedy to the difficulties, mentioned in the Introduction, 
that arise when one attempts to impose the constraints in 
quantum gravity. 

Finally, we note that the situation for local symmetries 
on phase space for the parametrized scalar field is complete
ly different from Yang-Mills theory and general relativity. 
For an arbitrary field configuration (t/J,y) on space-time the 
local symmetries (3.8) yield the following field variations on 
l:: 

~yQ = (y. )QJ.'AJ.', 

~t/J = N' aJ.' t/J = pJ.' aJ.' t/J + ah -1/21T, 

~1T = aJ.' (P J.'1T) + aJ.' (a,,[hh J.'V avt/J) 

- aJ.' (.J - gg'vavt/J)· 

(4.27) 

(4.28) 

(4.29) 

Comparing this with Eqs. (2.65) and (2.66), we see that on 
Y [where the last term in Eq. (4.29) vanishes], the local 
symmetry vector fields are degeneracy directions of Cd AD' 

Hence the map -iT: Y -+ f projects all local symmetries on Y 
to zero on f. Indeed, since in this case we have r = f, it 
follows that if (~<p)A is a local symmetry vector field on any 
degeneracy submanifold of Y that projects to a vector X at 
corresponding point of r, then we have X = 1T*(~)A = O. 
Thus, in parameterized scalar field theory, there are no local 
symmetries on phase space, as might be expected in view of 
the fact that-as noted in Sec. II-the construction of phase 
space, in effect, deparametrized the theory. The absence of 
nontrivial local symmetries on phase space also is implied by 
our general arguments above from the fact that no con
straints are present. 
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APPENDIX: HAMILTONIAN FORMULATIONS 

In this appendix, we analyze the circumstances under 
which the general type of Lagrangian field theory considered 
in Sec. II can be given a Hamiltonian formulation on phase 
space. For simplicity, we shall restrict attention to the "time
independent" case (see below) . 

Let t J.' be a complete vector field on space-time M having 
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the property that the diffeomorphisms A ( t) generated by til 
map the Cauchy surface l: used in the definition of tV AB [see 
Eq. (2.23)] into Cauchy surfaces. We will refer to til as a 
"time translation," although it is not necessary that til be 
timelike. The diffeomorphism A (t) can be made to act on 
any field configuration, 4>: M -+ M', to produce a one-param
eter family, 4>(t) = 4>oA(t) , of "time translated" field con
figurations. We denote the infinitesimal field variation asso
ciated with this one-parameter family by I)t4>a. 

For simplicity, we now restrict attention to the case 
where, if nondynamical background fields r are present in 
.!L' [see Eq. (2.2) above], then the time translations genera
ted by t Illeave r invariant. Thus the following discussion is 
applicable, for example, to general relativity (where no 
background fields are present) and to a field theory in a 
curved, stationary space-time (with til chosen as the station
ary Killing field) but is not applicable to, say, a field theory 
in a background space-time without symmetries. This re
striction corresponds to the consideration of "time-in de pen
dent" systems in ordinary particle mechanics and we will use 
that terminology here. (In order to treat the "time-depen
dent" case, we would need to enlarge Y to include the back
ground fields r in order to define time evolution properly.) 
Note that in the "time-independent" case considered here, if 
¢ is a solution to the equations of motion, then ¢(t) also will 
be a solution for all t. 

Let ~ be a vector field on the solution submanifold Y 
such that at each~, ~ is oftheform (I)t¢)A, for some til 
that leaves the background fields (if any) invariant. [In or
der to encompass theories like general relativity, we do not 
require that til be the same vector field on space-time for 
different points t/JEY, i.e., til may be "field dependent." In 
order to encompass Yang-Mills theory, we would have to 
permit ~ to differ from (I)t¢)A by a (field-dependent) local 
symmetry vector field (i.e., an infinitesimal gauge transfor
mation) (~4> )A.] We view ~ as representing time evolution 
on Y. Note that ~ is tangent to Y. The result of Sec. II that 
tV [ ¢a ,I) I ¢a,1)24>a] is independent of the choice of Cauchy sur
face l: used to define tV when 4> is a solution and I) l4>a and 1)2¢a 
are linearized solutions implies that 

(AI) 

where WAB denotes the pullback to Y of WAB . Note that, 
here, we have used the time translation invariance of r, since 
varying l: corresponds to time translating both 4> and r, 
whereas ~ represents the variation of only the dynamical 
fields ¢. 

Suppose, now, that we can find a nontrivial vector field 
~ on Y as in the previous paragraph such that ~ has a well 
defined projection to a vector field TA on f. Note that the 
existence of such a ~ is intimately related to the existence of 
a well posed initial value formulation for the equations of 
motion for ¢; if the projection map iT: Y -+ f is many-to
one (i.e., if many solutions exist having the same "initial 
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data"), there need not exist any such nonvanishing ~. If 
such a ~ does exist, we may view TA as representing the time 
evolution on f. For such a TA, Eq. (AI) then directly im
plies 

.!L'TOAB = 0, (A2) 

where nAB is the pullback of nAB to f. 
Equation (A2) is the necessary and sufficient condition 

that, locally, there exists a function H on phase space r such 
that on f we have 

(dH)A = nABTB. (A3) 

To see this, we note that Eq. (A2) is just the integrability 
condition for the pullback of Eq. (A3) to f since, setting 
rA = - nAB T B, we have, using the identity (2.27), 

( dA. )AC £TOAC - TB( dnhAc 

= £TOAC' (A4) 

Hence, ifEq. (A2) is satisfied, we can obtain a function H on 
f satisfying the pullback ofEq. (A3) to f. The remaining 
components of Eq. (A3) can be satisfied by appropriate 
choice of the normal derivatives of H on f. Of course, as in 
our discussion of constraints earlier in this section, the exten
sion of H to r is highly nonunique, since only the normal 
derivatives of Hand f are determined by Eq. (A3). 

Equation (A3) can be rewritten as 

TA = nAB(dH)B' (A5) 

where evaluation on f is understood. This is the standard 
form of Hamilton's equations of motion on a symplectic 
manifold. Thus we have shown that in the "time-indepen
dent" case, the Lagrangian field theories considered in this 
paper can be given a Hamiltonian formulation provided only 
that an appropriate time evolution vector field ~ on Y proj
ects to f. 

Finally, we remark that, in particular, all Lagrangian 
field theories that are "generally covariant" (i.e., where the 
field variations induced by diffeomorphisms are local sym
metries) can be given a Hamiltonian formulation whenever 
there exists a local symmetry vector field on Y representing 
nontrivial time translations that projects from Y to f. In 
such a case, the Hamiltonian H can be chosen to be a con
straint function for this local symmetry and hence can be 
chosen to vanish on f. 
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It is shown that superconformal Lie superalgebras contain a Clifford algebra structure. This is 
used to present a classification of these algebras under the following assumptions: only fields 
with (half- ) integer conformal dimension between 2 and!, and a nonzero central element. It 
turns out that the number of supersymmetry generators must be less than or equal to 4. More 
generally, the so(N) series, as well as some nonassociative algebras connected to S7, also have a 
natural place in this Clifford algebra framework. 

I. INTRODUCTION 

In conformal field theories, the Virasoro algebra plays a 
central role. It can be extended in a natural way to include a 
number (N) of supersymmetries, i.e., the superconformal 
algebras. It is well known that, for N = 2, it follows from 
Jacobi identities that the algebra necessarily also contains a 
field of dimension 1, a "U(1) Kac-Moody" algebra. For 
N = 3, the algebra necessarily contains three dimension-l 
fields forming an SU(2) Kac-Moody algebra, and besides a 
fermionic field of dimension ~, a free fermion. Also for 
N = 4, these ingredients lead to superconformal Lie alge
bras. 

In Ref. 1, a classification was initiated of conventional 
superconformal Lie superalgebras (CSCLS's) having pre
cisely these characteristics. It did not include the N = 1 alge
bras ofKac and Todorov.2 Also, the algebra resulting from 
the N = 4 case in Ref. 3, by replacing the derivative of the 
dimension-O field by an arbitrary field of dimension 1, was 
not included. 

In addition, another N = 4 algebra was recently written 
down,4.5 which reduces to the previous cases only for special 
values of a parameter. All these cases have a finite sub-Lie 
algebra of the Kac-Moody zero modes that is not simple, but 
only reductive (semisimple + Abelian). A list of finite sub
superalgebras (formed by the 0 and ±! modes and the ± 1 
Virasoro modes) was given in Ref. 6, and could be used as a 
basis for a complete classification. The possible nonsimpli
city of the Lie algebra, however, makes this a tedious and 
nonsimple proposition. 

In this paper we uncover, for each superconformal Lie 
algebra, an underlying Clifford algebra structure. This Clif
ford algebra is represented by transformations mixing the 
spaces corresponding to operators of different dimensions: 
odd elements map fermionic to bosonic spaces, and the even 
elements, though respecting statistics, still mix dimensions ~ 
and!. The Clifford algebra representation may be reducible. 

The information contained in the Clifford algebra repre
sentation is not enough to reconstruct the superconformal 
algebra completely, nor does it guarantee it to be a Lie alge
bra. The additional structure required is precisely Lie alge-

0) On leave of absence from the Institute of Theoretical Physics, University 
ofWroc1aw, PL-SO-20S Wroc:l.aw, Poland. 

b) Bevoegdverklaard navorser, N.F. W.O. Belgium, BITNET FGBDAl9 at 
BLEKUL11. 

bra covariance. Imposing this on an arbitrary representa
tion, singles out N = 4 as a special case, and allows one to 
prove that N> 4 is impossible for this conventional type of 
superconformal Lie algebra. Also it leads to a completion of 
the classification of the N<4 cases. Since we work through
out the paper with algebras defined over the field R, there are 
some distinctions here: for example, it is shown that, for 
N = 4, with signatures (3, l) or (1,3), the "small"algebra 
without dimension-! fields does not exist, and the "large" 
algebra with a SO (3, l) Ell U ( 1) Kac-Moody algebra exists 
but has no parameter. 

The same methods are used to derive possible extensions 
of these algebras, by including more fields of dimension 1 or 
!. It turns out that only N = 1,2 and the "small" N = 4 alge
bras allow this type of extension. The extensions are, in fact, 
representation spaces for the basic algebras. 

We then enlarge the scope of applications of the Clifford 
algebra representations. We show that actually all the super
conformal Lie algebras in the so(N) list of Ref. 3 have a 
natural Clifford algebra structure, although they contain 
fields with dimensions smaller than! for N>4, and are there
fore not included in our general investigation. Finally we 
show that also the non-Lie superalgebra for N = 8 given in 
Ref. 7 follows our general pattern: it is based on an irreduci
ble Clifford algebra CC (8) representation, without imposing 
the additional covariance structure. 

In Sec. II we introduce the structure that is our starting 
point, the conventional superconformal Lie superalgebra 
(CSCLS), devoting some space to making clear our assump
tions. We introduce a basis-free notation, and write out the 
Jacobi identities. In Sec. III we deduce the existence of some 
exact sequences, which lead to the exposure of a Clifford 
algebra representation. The next section introduces a dis
tinction between "basic" algebras (essentially the smallest 
that still contains all N supersymmetry generators) and en
larged ones. The consequences of the additional Lie algebra 
structure is explored, and lead to a no-go theorem for N> 4. 
In Sec. V we describe the rich N = 4 structure in detail, for 
the different signatures. In Sec. VI we treat the enlarged 
cases. The next two sections show that Clifford algebra 
methods are more widely applicable, by going beyond the 
CSCLS's, showing how the so(N) algebras of Ref. 3 and the 
nonassociative N = 8 algebra of Ref. 7 fit in. 

In Ref. 5, the classification of a class of superconformal 

744 J. Math. Phys. 31 (3). March 1990 0022-2488/90/030744-13$03.00 @ 1990 American Institute of Physics 744 



                                                                                                                                    

Lie superalgebras is also studied. That class is less restrictive 
than the One studied in Sec. II, in particular concerning the 
structure of the central term. Our result in Sec. IV is compa
tible with the classification conjecture in Ref. 5. 

One word about technique. For representations, we 
found it very convenient to use the method that takes (a 
subspace of) the Clifford algebra itself as the representation 
space. Readers who are unfamiliar with it can get some idea 
of the method from Appendix A, and more details, for exam
ple, from Ref. 8. 

II. CONVENTIONAL SUPERCONFORMAL LIE 
SUPERALGEBRAS 

The structure we call conventional superconformal Lie 
superalgebra corresponds roughly to that described in Ref. 
1. To make this notion precise we have to fix the notation and 
formulate a few definitions. Here and in further consider
ations the object of our interest, CSCLS, will be denoted by 
Y. By definition Y is a Lie superalgebra, and consequently 
it splits in a natural way into two subspaces: 

(1) 

the even one, Y (0) , being an ordinary Lie algebra, while the 
odd one, Y (l)J carries a representation of the former. We 
will assume Y (0) to be the sum of some Kac-Moody Lie 
algebra KM (..?), with ..? as underlying Lie algebra, and 
Virasoro algebra Vir: 

Y(o) = KM(..?) + Vir. (2) 

From the above it follows that we have two subalgebras con
tained in Y (0) • 

The first is the Kac-Moody subalgebra 

[TmCI),TnCI'» = Tm+n([l:,l:']) 

- mK(l:,l:')8(m + n)c, (3) 

where l:,l:'E"? are elements of ..?, the Lie algebra, which 
can be identified with the subalgebra of "zero modes" con
tained in Eq. (3). This K is an arbitrary, bilinear, symmetric 
form on ..? satisfying 

K(adl;',) + K( ',adl;') = 0, (4) 

i.e., it is adl; invariant. This relation is a consequence ofthe 
Jacobi identity involving Eq. (3). 

The second is the Virasoro subalgbra 

[Lm,Lnl = (m-n)Lm+n + (m3 -m)8(m+n)c/4. 
(5) 

Notice that the central element c is common to KM(..?) 
and Vir. Moreover KM (..?) forms a linear representation of 
Vir, 

(6) 

corresponding to a conformal dimension equal to 1. To con
clude our discussion of the structure of Y (0)' we want to 
stress that no assumption of semisimplicity or reductivity of 
..? has been made. Consequently, the form K is assumed 
neither to be positive (or negative) nor even to be nondegen
erate. The only requirement is Eq. (4). The odd subspace 
Y (1) of Y will be assumed to have a sum structure 

Y(l) = Q$ G, (7) 
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with the subspace Q containing elements of conformal di
mension !, while G contains elements of conformal dimen
sion~. This is the same as to say that there is a fixed Virasoro 
algebra action on Q and G. Let Vand W be the spaces of 
corresponding orbits of Vir. Then we can say that Vand W 
are the underlying vector spaces generating Q and G in the 
same sense as..? underlies KM(..?). Hence in addition to 
Eq. (7) we can perform the more detailed decomposition 

Q= $ mQm (V), 

G= $mGm(W), mEZ+a, 

and then we have 

(8) 

[Lm,Qn (v)] = - (m12 + n)Qm + n (v), VEV, (9) 

[Lm,Gn(w» = (mI2-n)Gm+n(w), WEW. (to) 

For the space Q( V) we postulate standard fermionic anti
commutation relations 

{Qm (v),Qn (v')} = - b(v,v')8(m + n)c, (11) 

where b is a symmetric bilinear form on V. Moreover, we 
assume that Q( V) is a representation for KM(2") in the 
following sense: 

[Tm (l:),Qn (v)] = Qm+n(R(l:)v), l:E..?, VEV, (12) 

where R (l:) is an endomorphism of V corresponding to 
l:E..? The Jacobi identity involving the triple (T,T,Q) im
plies immediately that 

..?3l: .... R(l:)EEnd V (13) 

is a representation of the Lie algebra..? Similarly, the Ja
cobi identity f~r (T,Q,Q) forces b to be R invariant: 

b(R(l:)',) + b( ',R(l:)') = O. (14) 

The above is the only requirement for the form b. Notice that 
the subspace 

Y(O) $Q (15) 

forms a Lie subsuperalgebra of Y. We admit the possibility 
of Vbeing one point (zero) only, i.e., zero dimensional. We 
will assume the following as the most general form of the 
anticommutator of two elements of G: 

{Gm (w),Gn (w')} 

= 2B(w,w')Lm + n + B(w,w')(m2 -1)8(m + n)c 

- (m - n)Tm+n(cp(w,w'», w,w'EW. (16) 

In the above formula B is a bilinear symmetric form on W. 
We will assume that all dimension-~ elements correspond to 
supersymmetry generators, i.e., that they "square" to the 
Virasoro algebra. Correspondingly, we assume that this time 
the form B is nondegenerate. The dimension of W is then 
called the number of supersymmetries. The mapping 

Wx W3 (w,w') .... cp(W,W')E..? (17) 

in the last term ofEq. (16) is forced to be antisymmetric. We 
will Cllll the image of this map I'P' In order to fix the struc
tural relations of Y completely we need two more bilinear 
and one linear mapping. The first one 

W X V3 (w,v) .... t/J(W,V)E..? (18) 

defines the anticommutator: 

Hasiewicz, Thielemans, and Troost 745 



                                                                                                                                    

{Gm(w),Qn(v)} = Tm+n(,p(w,v», WEW, liEV. (19) 

Notice that an additional central term could be added to the 
right-hand side, as in Refs. 5 and 9. This would imply a 
nonzero expectation value for the product of two fields of 
dimensions! and~, respectively. In this paper only the most 
conventional case is considered. 

The next two mappings, 

(20) 

and 

.!t' X W3 (l:,w) --+d(l:,w)eV, (21) 

determine the affine covariance relation of G with respect to 
KM(.!t'). Namely, 

[Tm (l:),Gn (w)] = Gm + n(A(l:)w) + mQm + n(d(l:,w». 
(22) 

Obviously, the mappings introduced above are not com
pletely arbitrary, and there is a set of (very strong) relations 
they must satisfy in order to define the structure of a Lie 
superalgebra; these follow from the Jacobi identities. 

First of all, from the (T,T,G) Jacobi identity it follows 
that Eq. (20) is a representation of.!t' on W. This is the third 
one (in addition to the adjoint and R) built into Y. The next 
observation we can make by inspection of Jacobi identities is 
that the formBin Eq. (16) is invariant with respect to A, i.e., 

B(A(l:)',) + B(' ,A(l:)') = 0, l:e.!t' (TGG). (23) 

Then there is a series of covariance relations for the bi
linear mappings we have defined. We will list them with the 
indication of the triple, for which the Jacobi identity enforces 
it: 

adl;tp(·,) = tp(A(l:)")+tp(',A(l:)') (TGG), (24) 

adl;,p(',) = ,p(A(l:)',) + ,p(. ,R(l:)') (TGQ), (25) 

R(l:)d(',) =d(adl;',) +d(',A(l:)') (TTG), (26) 

where l:e.!t' is arbitrary. 
Those are the relations one could expect from the very 

beginning. The identities of the above type are typical for Lie 
superalgebras, and in fact they are closely related to the Lie 
algebra structure of the even subalgebra. 

We assume in the following a nonzero central extension 
(c =1= 0). By comparing central elements, we get two relations 
containing the forms 

K(l:,,p(w,v» = b(d(l:,w),v) (TGQ), (27) 

K(l:,tp(w,w'» = B(A(l:)w,w') (TGG); (28) 

l:e.!t', ve V, w,w' e Ware arbitrary elements. Their origin in
dicates that they are specific for SCLS's. If one assumes l 

that, in addition to B, the forms K and b are also nondegener
ate, then using the above relations one can express two of the 
structural mappings of Y in terms of the others. However, 
this assumption is not needed in further considerations. 

There are other relations imposed by Jacobi identities 
on the structural mappings of Y. This series, together with 
Eqs. (27) and (28), is crucial for the Clifford algebra struc
ture we are introducing in the next sections: 

746 J. Math. Phys., Vol. 31, No.3, March 1990 

2B(w,w')l: 

= ,p(w,d(l:,w'» + ,p(w',d(l:,w» 

+ tp(w,A(l:)w') - tp(A(l:)w,w') (GGn, (29) 

2B(w,w')w" 

= B(w',w")w + B(w,w")w' 

+ A(tp(w',w"»w+ A(tp(w,w"»w' (GGG), (30) 

d(tp(w,w'),w") + d(tp(w,w" ),w') = 0 (GGG), (31) 

2B(w,w')v = d(,p(w,v),w') + d(,p(w',v),w) (GGQ), 
(32) 

where w,w' ,w" e W, l:e.!t', liE Vare arbitrary elements. Final
ly, 

R(,p(w,v»v' - R(,p(w,v'»v = 0 (GQQ), (33) 

2R(tp(w,w'»v 

= d(,p(w,v),w') - d(,p(w',v),w) (GGQ), (34) 

where v,v'eV, w,w'ew' 
As one sees, the structure of CSCLS depends on many 

data. In the next section, a Clifford algebra representation 
will bring more order into them. 

Finishing this section we will rewrite the basic defini
tions (for the readers who prefer notation with indices) in 
terms of bases of the underlying spaces .!t', V, and W. Let 
{l:A} be the basis in .!t'. Then {T m (uA ): = T mA} form a 
basis for KM (.!t'). Relations (3) can be rewritten as fol
lows: 

[TmA,TnB ] = C~BTm+nD - mKAB~(m + n)c, (35) 

where K AB : = K(l:A,l:B)' C~B- structure constants of.!t'. 
Choosing a basis {va} in V we can form the basis {Qna 
: = Qn (va)} of Q. Then Eqs. (11) and (12) can be rewritten 
as follows: 

{Qna,QmP} = - bap~(m + n)c, bap: = b(va,vp ), 

[TmA,QnP] = R ~pQm + na' (36) 

Finally, choosing a basis {wj } in Wwe can form the basis 
{G mj: = G m (Wj )} of G. Then for Eq. (16) we can write 

{Gmj,GnJ = 2BijLm + n + Bij (m 2 
- !)~(m + n)c 

(37) 

Bij = B(w;.wj ), 

while Eqs. (19) and (22) look as follows: 

[TmA,Gni ] = NjAGm+ nj + mD~iQm+na' (38) 

We are not going to rewrite the relations between the struc
tural mappings in this notation as, first of all, we will never 
use them in this form, and second, they may actually hinder 
easy understanding when we use the different vector spaces 
in Sec. III. 

III. EXACT SEQUENCES AND THE CLIFFORD ALGEBRA 

Let us fix an arbitrary nonisotropic element WEW 
[B(w,w) =1=0]. We can consider the bilinear map tp(w,w') 
from W X W to .!t' as a linear map from W to .!t'. 

tpw: W3w' --+tp(w,w')e.!t', 
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keeping W fixed. Similary, let us define 

dw : .2"3:I-d(:I,W)EV, 

iw: R3a-aWEW. 

Then we have the following exact sequence (i.e., the image of 
each of the maps in the sequence is the kernel of the next): 

iw tFw dw 

R-. W -..2" - V -.0. 

Proof: At W, (i) q;(w,aw) = aq;(w,w) = 0 by antisym
metry of q;; and (ii) q;(w,wl ) = 0 implies, by Eq. (30), that 
we can write 

B(w,w)wl =B(w,wl)w. 

At.2", (i) d(q;(w,wl),w) = 0 by Eq. (31); and (ii) 
d(:I,w) = 0 implies, by Eq. (29), that we can write 

B(w,w)l: = q;(W,WI)' with WI = A(l:)w. 

At V, d(.2",w) generates the whole space V by Eq. 
(32). • 

Similary, defining, always keeping w fixed, 

t/lw: V3v-t/l(W,V)E.2", 

Aw: .2"3l:-.A(l:)WEW, 

Bw: W3w'-.B(w,W')ER, 

we also have the following sequence: 

tPw Aw Bw 

0-. V -..2" -+ W -R. 

Proof: At V, t/l( w,v) = 0 implies v = 0 by Eq. (32). 
At .2", (i) A(t/l(w,v»w = 0 by Eqs. (27), (28), and 

(31); and (ii) A(l:)w = 0 implies, by Eq. (29), that we can 
write 

B(w,w)l: = t/l(w,v)v = d(:I,w). 

At W, (i) B(w,A(l:)w) = 0 by Eq. (23); and (ii) 
B(w,wl ) = 0 implies, by Eq. (30), that we can write 

B(w,w)wl = A(l:)w, with l: = q;(w,w.). • 

Note that each of these exact sequences separately implies 
the following relation between the dimensions of the vector 
spaces: 

I WI + IVI = 1.2"1 + 1. (39) 

This relation was also derived in Ref. 1, under the additional 
assumption that in each of the spaces W, V, .2" the metric 
should be nondegenerate. No such condition was imposed 
here. 

Taken together, the exact sequences suggest a combina
tion of the maps q;w' t/lw, and Bw from WEB V to.2" EB R, and 
combining dw, Aw' and iw to a map from.Y EB R to WEB V. 

Clifford ll.lgebras: As a result we are led to define, for all 
WIE W, a map in the space S = W + V + .2" + R as follows. 
Let w, W.EW, VEV, l:E.2", aER. Define the endomor
phisms 

r w: S3x-.r w(x)ES, 

rw(w l +v+l:+a) 

= (aw + A(l:)w) + d(l:,w) 

+ (q;(w,w.) + t/l(w,v» + B(w,wl )· 

747 J. Math. Phys., Vol. 31, No.3, March 1990 

(40) 

The set of maps r w' WE W, satisfies the following important 
property. 

Property: The r w represent the Clifford algebra 9!! (B), 
i.e., 

r wr w' + r w·r w = 2B(w,w'). 

Its verification follows by direct computation, using Eqs. 
(23) and (29)-(32). 

On the space S, we can define a metric by making a 
linear combination of the metrics on each of the terms, intro
duced previously, and taking a natural metric on R. Let us 
define the metric 

O(w + v + l: + a,w' + v' + l:' + a') 

= B(w,w') + b(v,v') - K(l:,l:') - aa'. 

This metric is symmetric, O(x,y) = O(y,x), and also has the 
following invariance property. Define the operator /3- in 9!! 
by 

/3-(rw)= -rw' 

/3_(AB) =/3_(B)/3_(A) (A,BE9!!). 

Then 0 is /3- invariant, i.e., V x,yES, 

O(Ax,y) = 8(x,/l_(A)y) (AE9!!). (41) 

To prove this property, it is, in fact, sufficient to consider the 
special case A = r w : 

O(r wx,y) + O(x,r wy) = O. 

This is easily verified using Eqs. (27) and (28). Note that 
the existence of this metric is not guaranteed if the central 
extension is zero. 

The representation of 9!! in S has some additional prop
erties, which follow direCtly from its definition. 

(i) The representation space S splits into two parts, 
which we call odd and even: 

S=S_EBS+, S+=.2"EBR, S_=WEBV. 

(ii) 9!! itself, as a vector space, splits into an even (9!! +) 
[resp. odd (9!! _)] subspace, being linear combinations of 
products of an even (resp. odd) numberofr w;' We have that 

9!! +S+ = S+, 9!! _S+ = S_, 

9!! +S_ = S_, 9!! _S_ = S+. 

Therefore, as a representation of 9!! +, S is necessarily re
ducible in two subspaces with the same dimension. If the 
irreducible 9!! representation splits in this way, then S may 
be an arbitrary sum of 9!! -irreducible parts. However, it can 
happen that an irreducible representation of 9!! remains irre
ducible as a representation space of 9!! +. In that case the 
smallest building block for S will consist of the sum of two 
irreducible 9!! + representations. This will be illustrated for 
N = 3 shortly. 

(iii) r w maps WEB V to.2" EB Rand.2" EB R to WEB V. By 
changing the sign of one of these maps, one can obtain the 
Clifford algebra 9!! ( - B). 

The presence of a Clifford algebra will be a powerful tool 
to analyze the superconformal algebra. It may be remem
bered that also in Ref. 1 a Clifford algebra was used to ana
lyze the case when the space Vis zero. That Clifford algebra 
has no direct relation with the one introduced here: it corre-
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sponds to the form K(l:,l:') on.!f, which they assumed to 
be nondegenerate. This assumption is not needed in the pres
ent framework. 

To conclude this section, let us illustrate the above con
struction for the case N = 3, with a compact form B. We 
choose a basis {Wj, i = 1,2,3} in W such that B(wj,wj ) 

= -8jj . The smallest representation of "G'(0,3} is four
dimensional. The even subalgebra "G' + (0,3) is isomorphic to 
Crfj (0,2), which also has a four-dimensional irreducible rep
resentation. Therefore S will consist of a direct sum of eight
dimensional representations. Let us examine a single copy. 
Because ofEq. (39) we have that Vis one-dimensional and 
.!f is three-dimensional. To reconstruct the superconformal 
algebra, let us choose a vector r in the four-dimensional sub
space S + to correspond to the unity in the R component of 
.!f + R. More explicitly, we can choose as a representation 

r l =iO'2®1®1, iO'2 =(_1 +1), 
r 2= -O'I ®O'3 ® iO'2' 0'1=(+1 +1). 

r 3 = - 0'1 ® iO'2 ® 1, 0'3 = ( + 1 _ J, 
r = (~) ® (~) ® (~). 

Then it follows from the definition [Eq. (40)] that 

WI = rlr= (~) ® (~) ® (~), 

W2 = r 2r = (~) ® (~) ® (~), 

W3 = r3r = (~) ® (~) ® (~). 
Further, by applying definition (40) again, with x = Wj' 

M3 = qJ(W2 ,W I ) = r 2r Ir = (~) ® (~) ® (~), 

MI = qJ(W3,W2) = r 3r 2r = (~) ® (~) ® (~), 

M2 = qJ(W I ,W3) = r lr 3r= - (~) ® (~) ® (~), 
exhausting the space .!f. It is straightforward to see that the 
f3 _ operation corresponds to taking the transpose of the rep
resentation matrix, and that the only allowed metric 8 is 
given by 

8(Ar,Br) = - itr(AT B). 

The one-dimensional vector space V is spanned by 

The maps A(l:), "', and d can also be read offfrom Eq. (40); 
for example, 

",(Mj>v) = Wj 

and 

d(Mj,wj ) = 8ijv, 

The Clifford algebra structure implies that the relations 
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(29)-(32) are satisfied, and the invariance of the metric 
guarantees relations (27) and (28). The relations (24)
(26) imposed by the requirements that .!f form a Lie alge
bra, that A and R be representations of·.!f in W and V, 
respectively, and that the maps qJ, d, and '" be .!f covariant, 
are at this point not guaranteed automatically. In the exam
ple at hand, it is easy to check them, resulting in 

R(l:) = ° 
and 

[Mj,Mj] = €jjkMk' i,j,kE{I,2,3}. 

IV. RECONSTRUCTION AND LIE ALGEBRA 
STRUCTURE 

As is clear from the example above, the embedding of 
the different spaces W, V, and .!f can be identified if we 
choose a specific vector r representing the unit element from 
R, by successive application of the basis elements r j of Crfj to 
r. The first application identifies the embedding of the space 
W, 

W= rwr, 
where we make a slight abuse of notation by identifying W 
with its embedding in S. A second application results in the 
identification 

qJ(w,w') = !(r wr w' - r w' r w )r. 

Another iteration, multiplying with r w' , results in another 
vector of the space WEll V. To separate out the different 
parts, one needs the metric 8 to make a projection on the 
orthogonal spaces Wand V. The different parts then fix 
A(qJ(w,w'»w" and d(qJ(w,w',w»: 

A(qJ)w" = 8(w
j,r w.qJ)wj> 

d(qJ,w") = r w.qJ - A(qJ)w", 
(42) 

where qJE.!f, and {w j }, {w'} are B-dual bases of W. A con
tinuation of this procedure mayor may not generate the 
whole space S. In the former case we will call the algebra 
"basic," in the latter case we will call it "enlarged." The 
reconstruction of the superconformal algebra can then be 
continued by choosing a new vector from the remaining or
thogonal complement in S+. It will then generate further 
vectors in the spaces V and .!f only. We will treat the en
larged case further in Sec. VI. 

Lie algebra structure: To continue the reconstruction of 
a superconformal Lie algebra from the corresponding Clif
ford algebra representation, more information is needed. In 
particular, up to now, the Lie algebra structure reflected in 
Eqs. (24) - ( 26) has not been used fully. 

Since the form B on W is invariant with respect to the 
action A of.!f on W, the matrices A form a subalgebra of the 
Lie algebra so(B). As a consequence, to each l:E.!f there 
exist one or mors:, elements in Crfj (B), and more specifically a 
unique element l: in the so(B) Lie algebra Crfj2(B) [Crfj n (B) 

denotes the space of antisymmetrized n-tuple products of 
generators of Crfj (B), i.e., r matrices], such that 

[i,r w] '6 = r A(l:)w' 

where [ , ] '6 denotes the commutator in Crfj. From Eq. (42) 
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we can explicitly calculate this element corresponding to 
q;(w,w'): 

$(w,w') = !O(rirjr, [r W,r uI ] '6 r)rirj , (43) 

where we have abbreviated r w, = r j and r Wi = rio 
The covariance equations (24)-(26) now also imply 

the following relations. 
(i) If l:l = [l:2,l:3] (l:i E.2"), 

A A A 

then also l: I = [l:2,l:3] '6 • ( 44 ) 

(Notethat [, ] denotes the Liebracketin.2" whereas [, ]'6 

denotes the commutator in 1ff.) Indeed, 
A, 

[l:I,r w] '6 = r A(l:,)w 

= r A(l:,)A(l:,)w - r A(l:,)A(l:,)w (45) 

'" '" = [l:2,r A(l:,)w ] '6 - [l:3,r A(l:,)w ] '6 

and Eq. (44) follows from the uniqueness of i. In view of 
this property, we will in the sequel denote the commutator in 
1ff by [ , ], also. 

(ii) One can identify the vector space Wwith the vector 
space r w' WEW. Now q;(w,w') is an antisymmetric bilinear 
function on W X W, so we can also view it as a linear function 
on the space of commutators r wAr w' = H r w ,r w' ] so that, 
taking w, w'EWwith B(w,w') = 0, we can write 

q;(w,w') = q;(r wAr w,). 

The covariance equation [Eq. (24)], 

[l:,q;(w,w')] = q;(A(l:)w,w') + q;(w,A(l:)w') 

can now be written with the help of the Lie algebra element l: 
as follows: 

[l:,q;(r wAr uI)] 

= q;(r A(l:)w A r w,) +rp(r wAr A(l:)uI) 
'" A = q;( [l:,r w] A r w,) + q;(r w A [l:,r w,]) 

'" = q;( [l:,r wr w,]). (48) 

This equation allows the computation of the Lie algebra 1 rp 
from the metric 0 and commutator algebra in 1ff. The re
quirement that the q; algebra calculated in this way is indeed 
a Lie algebra, amounts to two conditons: 

(a) antisymmetry of the bracket, and (b) Jacobi identi
ty. The second of these conditions follows from Eq. (44), 
and the fact that commutators in 1ff satisfy the Jacobi identi
ties automatically. Indeed, let [q;(b"q;(b2 )] = e; then we 
have 

[[q;(b,),q;(b2 ) ],q;(b3 )] 

= q;( [c,b3 ]) = q;([ [$(b 1),$(b2 ) ],b3 )) 

= q;([$(b1),[$(b2 ),b3 ])) + q;([ [$(b,),b3 ],$(b2 )]) 

= [q;(b1 ),[q;(b2),q;(b3 )]] 

- [q;(b2),[q;(b l ),q;(b3 )]], 

where the bi are antisymmetric bilinear products of two r's. 
Surprisingly, the antisymmetry of the bracket is nontri-
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vial and leads to a condition on the form O. Let us choose an 
orthonormal basis {wJ. The antisymmetry of [q;(wj,wj ), 
q;(wk,wr )] (where i#j, k #1) is equivalent to the following 
equation: 

q;([$(wj,wj),r krr]} = q;([rirj,$(Wk,Wr)]}' 

Using Eq. (43) and working out the commutators one ob
tains 

q; (ra,rr)O (rar kr,rirjr) - q; (ra,rk)O (rarrr,rirjr) 

= - q; (ra,rj)O (rarir,rkrrr) 

(49) 

where a sum over a is implied. Ifwe specify that the two pairs 
(i, j) and (k,/) have an index in common, Eq. (49) becomes 
trivial, by using 

O(rarbr,rarcr) = - O(rbr,(ra )2rc r) 

= + Baa 0 (r,r brcr) 

= BaaBbcO (r,r), 

which vanishes if b #e, so that for Nt(. 3 we have nothing to 
prove. Let us take i, j, k, I all different. The terms where a 
takes on a value from the set {;,j,k,l} cancel one another, so 
that, also for N = 4, Eq. (49) is always satisfied. For N> 4, 
one can take the scalar product of the vector above with the 
vector r i rj r k r rr, to obtain 

0= L (0(rarkr,rjrjr)2Bu 
a<!{i.j,k,r} 

+ 0(rarrr,rirjr)2Bkk 

+ 0(rarir,rkr[r)2B.u 

+ 0(rar j r,rkrrr)2Bii ). 

This forces 

(50) 

O(ra r kr,rirjr) = 0 (a,k,i,j all different). (51) 

If the form B has a definite signature, this is obvious. For 
nondefinite signature, the argument is more involved, and 
can be found in Appendix A. As a result, for N> 4, expres
sion (43) becomes 

(52) 

and the Lie algebra Irp is isomorphic to so(B). Let us contin
ue the discussion for N> 4, postponing N = 4 to the next 
section. Then Eq. (52) means that the map "hat" is the iden
tity, i.e., it maps each bivector (viewed as an element of the 
antisymmetric tensor product of W) to itself [viewed as an 
element of 1ff2(B)]. Consequently, the map A is the stan
dard vector representation ofso(B) in W. 

From the determination of 0 in Appendix A and Eq. 
(51) it follows that the space 1ff3(B)rCS_ is orthogonal to 
W, and that 1ff4(B)ris orthogonal tolrp -so(B). This leads 
to a contradiction, as we now show. 

As a first step, let us examine the R representation of 
so(B) on 1ff3(B)r. Let P3 denote the orthogonal projection 
of S_ onto this subspace. For any lfJEso(B) and WEW, we 
have 

(53) 

where H$, r w] + = ~($r w + r w~) is exactly the three-
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vector component of the product $r w' Obviously, any ele
ment of 9ff3(B)r can be written in the form (53). Now we 
rewrite the covariance relation, Eq. (26), for arbitrary 
cP 'Eso(B), 

R(cp ')d(cp,w) = d( [cp ',cp ],w) + d(cp,A(cp ')w), 

in terms of [Eq. (53)] 

R(cp')H~,r w] +r 
A A A A. 

= H [cp',cp ],r w] +r+ H cp,[ cp',r w]] +r. (54) 

This assures us that R is just the natural representation of 
so(B) on three-vectors induced by the one on W. A similar 
reasoning allows us to write any element of CtJ 4 (B) r in terms 
of the ,p mapping by using the spaces CtJ3(B) and W. Take an 
arbitrary element v = ar of CtJ3(B)r. Then we can write 

,p(w,v) = r war. (55) 

It is obvious that any element ofCtJ4(B) can be written in this 
way. The covariance formula (25) applied to Eq. (55) im
plies, using Eq. (54), that 

A A 

[cp,,p(w,v)] = ad",,p(w,v) = [cp,r wa]r, (56) 

which in tum means that the representation of so(B) on 
four-vectors is again a natural one (i.e., induced on four
vectors by A). 

This representation is never trivial, unless dim W<4. In 
the case of strict inequality the representation space is zero, 
while for dim W = 4 it is spanned by a single element-the 
unit pseudoscalar. 

Let us now show, as a second step, that the action of the 
elements of CtJ4(B)r must be trivial on W, i.e., A(CtJ4(B)r) 
=0. For any element iECtJ 4(B)r, we have 

A(l)w = pw(r wi), WEW, (57) 

where P w denotes the projection onto the W subspace of S _. 
However, since CtJ 4rU"" we see thatPw(r wi) = 0 and con
sequently A(l) =0. This in tum implies 

[cp,i] = 0, (58) 

for any qJEso(B). 
When the right-hand side ofEq. (56) is not identically 

zero, which is always the case for dim W> 4, we are led to a 
contradiction with Eq. (58). Hence we have the following 
proposition. 

Proposition 4. J: For dim W> 4, CSCLS cannot exist. 
The theorem we formulated above means that the structure, 
which contains more than four two-dimensional conformal 
conventional supersymmetries, does not exist in the category 
of Lie superalgebras. However, this statement does not mean 
that such description is completely impossible. In Sec. VIII, 
we indicate the direction of possible generalization to a cate
gory that could make such a description possible. 

V.N=4 

In this section, an explicit description is given of the 
basic algebras for N = 4. Since we are discussing algebras 
over R, we have to distinguish the different signatures of the 
formB. 

Let us first take a negative definite form B. The CtJ (0,4) 
contains one element J = r I r 2r 3r 4 with square equal to 1. 
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There are then two inequivalent constructions, depending 
on the choice of the 8- or 16-dimensional representation. 
Taking as our representation space the Clifford algebra itself 
(see Appendix A), these correspond to the choices 
r = (1 + J) or r = 1. We continue for the moment with the 
larger one. The element determining the metric has the gen
eral form e = - 1 - aJ, where a is an arbitrary real pa
rameter. With a choice of basis in CtJ, r;rj + rjr; 

- 28;j, we can make the following identification: 

r= 1, 

w; = r; (choice of orthogonal basis in W), 

Cpij = cp(WOwj ) = r;rj U=/=j). 
The V-space is identified as the odd subspace orthogonal to 
W We can take as a basis 

v; = r;(J - a), 

since tr(erjr i (J - a» = O. The basis is completed by the 
element 

.Cf3u=J-a. 

To exhibit the maps d, ,p, A, and R explicitly, we have only to 
make an orthogonal decomposition 

rkCPij = r krirj = 8jk r; - 8 ik r j + Eijk/r/J 

= 8jk r i - 8;krj + aEijk/r/ + E;jk/r/(J - a), 

to read off that 

A(CPij)Wk = 8jk Wi - 8 ik Wj + aEijk/w/, (59) 

d(CPij,Wk) = Eijk/V/. (60) 

Similarly, 

,p(w;,vj ) = r;rj (J - a) = - acp;j - ~E;jk/CPk/ - 8iju, 

and 

d(u,wk ) = Vk' 

Furthermore, Eq. (34) gives 

(61) 

R(CPij)Vk =8jk v; -8;kVj +aE;jk/ v/, 

Since A(u)wk = 0, and also R(u)wk = 0 from Eqs. (61) 
and (26), we can conclude that the representation R is iso
morphic to A. 

Finally, one should determine the Lie algebra structure 
of.Cf. First of all, A(u) = o implies [u,.Cf] = O. Second, the 
structure of I"" which, according to Eq. (24), is an ideal in L, 
can be most easily recognized if one considers the six linear 
combinations 

({J;j ± !Eijk/CPk/' 

Namely, we have 

A(CPij ± !Eijk/CPk/ )wn 

= (1 += a)(8jn w; - 8;n wj += E;jnmWm), (62) 

and for a 2 =/= 1, .Cf is the algebra so ( 4 ) "'" so ( 3) E9 so ( 3 ). The 
metric K is proportional to the Cartan-Killing metric, mul
tiplied by 1 += a. On the space V, on the other hand, we have 

b(v;,vj ) = + tr«1 + aJ)(J - a)r;rj(J - a» 

= -8ij(1-a2
). 

Summarizing, the structure of this "large" N = 4 algebra is 
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the same as that of Ref. 4, with a = 1 - 2y. 
Now we examine different signatures of B. For the sig

natures ( 4,0) and (2,2), the above construction can be taken 
over ~ithout changes other than some signs, so we will not 
repeat the formulas. The resulting Lie algebra in the case 
(2,2) contains so (2,2)=so(2,1) $so(2,1). For the signa
tures (1,3) and (3,1), however, the element J has square 
minus one. As discussed in Appendix A, this implies that the 
parameter a disappears from the metric, the only possible 
choice being 0 = - 1. Note that the Lie algebra in these 
cases contains so (3,1 ), which is simple over R. 

Returning to the compact case, we can examine what 
happens in the special case a = 1. In that case, half of I'P' 
viz., rpij (J - 1), is represented trivially on W [see Eq. 
(62) l. In fact, the algebra reduces to the N = 4 superconfor
mal subalgebra without dimension-! fields, and a representa
tion of this subalgebra by four fields of dimension ~ and four 
fields of dimension 1 forming an Abelian algebra. The metric 
on this part of S vanishes. A slightly more general represen
tation of this N = 4 subalgebra can also be obtained by tak
ing a contraction of the ai= 1 algebra in the following way. 
Consider the three self-dual combinations 

Lij = (1- a)-1/2(rpij + !E;jklrpk/) (a< 1), 

and write down the commutation relations with this basis. 
Then take the limit a-+ 1, keeping Lij fixed. The element 0' 

and the basis of V also have to be rescaled in this limit. The 
result is again that one obtains the N = 4 subalgebra, plus a 
representation with four fields each of dimensions 1 and !, 
with the difference that now the metric does not vanish. 

This contraction is of interest for two purposes. First, it 
relieves us of the task of constructing the "small" N = 4 
algebra, given by the eight-dimensional representation ob
tained by taking r = 1 + J, 0 = - 1 - J, since this con
struction obviously leads to the N = 4 subalgebra for a = 1 
in the case above. Second, it, in fact, corresponds to an exten
sion of the basic small N = 4 algebra, in the sense of Sec. VI. 

To conclude this section, let us mention what happens 
for the other signatures. Again for signatures (0,4), (2,2), 
and (4,0) the situation is completely analogous. For (3,1) 
and (1,3), however, the parameter a could only take the 
value zero. Therefore, as real algebras, there is no "small" 
N = 4 algebra for these signatures. 

VI. EXTENSIONS 

We now return to the case of enlarged algebras. We re
call that the basic algebras are generated by ~ r, acting with 
the Clifford algebra on a single vector of the representation 
space S. The enlarged algebras are obtained when S is larger 
than ~ r. One can then take another vector ,).1), orthogonal to 
~ r, and consider the space ~ ,).1). It is important to realize 
that then 

()( lfJ 1-1), ~ r) = 0 

and consequently ~,w contains elements in ..? and V orily, 
not in W. Note that this conclusion cannot be drawn (and is, 
in fact, not true) if the central extension is zero, since then 
the metric () is not defined. In the general case, this step may 
have to be reiterated with vectors 1-2),1-3), ... , leading to com-
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ponents ~ 1-1), ~ 1-2
), ... , which are all mutually orthogonal. 

We now examine the structure of one of these components. 
Let I, I' , ... E"? n ~ 1-1) = L (l) be new Lie algebra elements, 
and u,U', ... EVn ~ 1-1) = U(I) be new elements corresponding 
to the operators of dimension ~. The following properties are 
then easily verified. 

(i) A(/) = 0 since r wi is orthogonal to W for all w. 
(ii) [I,rp(w,w') 1 = 0 from covariance, Eq. (24). More 

generally, covariance implies that I commutes with the 
whole basic algebra: R(/)d(rp(w,w'),w") = 0, etc. 

(iii) If U = d (w,l), R (rp) U = d(A (rp) w,l) from covari
ance, Eq. (26), for all ¢", = {rp(w,w') I W,W'EW}. This im
plies that, as an I", module, U splits into a sum of represent a
tions that are isomorphic to the representation A on W. 

This third property excludes the possibility of enlarging 
the N = 3 basic algebra, since the dimension of U is not a 
multiple of 3. It also excludes enlarging the big N = 4 alge
bras, but for a more subtle reason. To see this, choose some 
fixed I, and take 

U; = d(l,w;) = r;l, 
t/!(wj,u;) = rju; = rjrJ. 

We can now compute the R representation in two ways: 

R(rp;j )uk = d(/,A(rpij )wd 

= DjkU; - D;kUj + aE;jk/u/, 

by Eq. (42); and, on the other hand, by Eq. (34), 

R(rpij)uk =d(t/!(w;ouk),wj ) 

= rjr;rkl 

= DjkU; - D;kUj - E;jkaraJI. 

This shows that there is an inconsistency unless 

JI= -al. 

As a result, the (3,1) and (1,3) signatures cannot be en
larged, since in these cases a = 0 and J 2 = - 1. The other 
signatures have J2 = + 1, so they can only be enlarged if 
a 2 = 1. But this corresponds precisely to the cases where the 
"large" N = 4 algebra reduces to the "small" one. 

The remaining possibilities (N = 1,2 and N = 4, small 
algebras) all allow for extensions, for N = 4 this follows 
from Sec. V. Let..? and U be the subspaces of ..? and V 
corresponding to the extension, i.e., orthogonal to the basic 
algebra, and let I, I'EL. Then 

R(l)d(l',w) = d( [I,I'l,w), 

so that U carries the adjoint representation of ..? The only 
thing that remains to be specified is the Lie algebra structure 
of"? and the allowed metric on ..? The metric on U follows 
from that on ..? 

For N = 1, we can be short. To enlarge the algebra, one 
takes a number of copies of the two-dimensional representa
tion, which splits in even and odd subspaces of dimension 1. 
There are no restrictions on the Lie algebra of..? The metric 
should be ..? invariant and symmetric, but otherwise arbi
trary. These algebras can be found in Ref. 2. 

For N = 2, we distinguish the compact and the noncom
pact cases. For the noncompact case, the smallest represen
tation is two dimensional and can be constructed in ~ with 
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the help of r Ir 2' since (r Ir 2)2 = + 1 in this case (see Ap
pendix A). We obtain that the extension can be made with 
1- = 1 - r I r 2' leading to a pair 1-d, U - E U and the rela
tions 

d(l-,wl ) = -d(l-,w2)=u-, 

f/!(WI>U-) = f/!(W2'U-) = 1-, 

R(tpI2)U- = - U-. 

The other two-dimensional representation, constructed on 
I + = 1 + r I r 2' gives similar results: 

d(l+,wl ) =d(l+,w2) =u+, 

f/!(w2,u+) = - f/!(w2,u+) = 1+, 

R(tp12)U+ = u+, 

and it is now clear that the space U splits according to the 
eigenvalue of R(tpI2)' Each of these subspaces (U+ and 
U -) can be multidimensional. The space !f follows this 
splitting, L ± = f/!( U± ,WI)' Choosing bases, one can write 
for the representation of !f on Q that 

R(I'+ )u'+ =f·+kU+ I J IJ k, 

where on the right-hand side there are no terms with uk- due 
to the fact that tpl2 and !f commute. Since R should be the 
adjoint of !f, we conclude that !f is the direct sum oftwo 
idealsL + $L -, i.e., [L +,L -] = o. 

To complete the description, we have to specify the 
possible forms of the metric. Invariance for m gl'ves 
fJ(U

+ + - - TI2 
, U ) = fJ( U , U ) = 0 and consequently also 

fJ(L +,L +) = fJ(L -,L -) = O. In contrast, fJ(L + ,L -) 
may be different from zero. It is further restricted by notic
ingthatfJ( [11+ ,/ 2+ ],l-) = - fJ(I t, [/1+ ,1-]) = O,i.e., the 
~e~ri~ vanishes on the derived algebra [L,L]. This property 
IS SImIlar to a result obtained in Ref. 10 for N = 2 Kac
Moody superalgebras. This completes the description of the 
N = 2 case with signature ( 1,1). The structure of the result
ing enlarged superconformal Lie algebra is exhibited in Ap
pendix B, in an isotropic basis. 

For the compact N = 2 cases, there is no essential dis
tinction between (0,2) and (2,0). The smallest representa
tion we can use is four dimensional, and is constructed in Ctf 
on a vector II = 1. The structure that results is then [for 
signature (0,2)] 

d(ll'wI ) = U I , f/!(WI,U I ) = -II' 
d(lI'W2) = U2, f/!(W2,U I ) = -/2' 

d(l2'WI ) = - U2, f/!(W I,U2) = 12, 

d(l2'W2) = UI, f/!(W2,U2) = II' 

R(tp12)U I = - U2, 

R(tpI2)U2 = UI • 

The last two equations show that the action of R(tpI2) on U 

defines a complex structure. The map from U to !f provided 
by the operation f/!( w, .) (we W is fixed) then transfers this 
complex structure to the Lie algebra !f: 

1121 = t/J(w,R(tpI2)d(w,/»IB(w,w), (112)2 = - 1. 
(63) 

From [tp12,/] = 0 and A(I) W = 0 it follows that this com-
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plex structure is a Lie complex structure, i.e., it commutes 
with the Lie bracket: 

Idl,l'] = [1,112/']. 

The invariance of the form fJ implies the statement that on 
!f the metric is Hermitian with respect to the complex 
structure: 

fJ(l121,I12/') = fJ(I,I'). 

As a result, the algebra !f becomes a complex Lie algebra. If 
we extend the field R over which it is defined to C, we can 
diagonalize the complex structure, and the resulting descrip
tion follows the same pattern as the noncom pact case: the 
eigenspaces L + i and L - i of 112 each form a separate Lie 
algebra, the two parts are complex conjugates to each other, 
and commute. The metric satisfies fJ(L + i,L + i) = 0 
= fJ(L - i,L - i) and, in addition, also vanishes on the de
rived algebra. 

Note the difference between the indefinite and definite 
signatures: in the former case, the extension proceeds in 
units of one boson and one fermion field, the representations 
of tpl2 being one dimensional. In the latter case, it proceeds in 
units of two boson and two fermion fields, with two-dimen
sional representations being used. 

The construction of enlarged N = 4 algebras proceeds 
in the same way as for N = 2. Recall that the basic N = 4 
algebras that can be extended are the small ones. The Lie 
subalgebra contained in this small subalgebra is three dimen
sional. 

We illustrate the construction by treating in detail the 
extension of the (2,2) superalgebra. The other cases are sim
ilar. 

Let us take 1 = n = n = - n = - n, and let the 
relations in the basic algebra be tpl2 + tp34 = tpl3 + tp24 

= tpl4 - tp23 = O. The minimal extensions can be construct
ed as representations of Ctf (2,2) by constructing left ideals 
on 1- = (1- r l r 3)(1- r 2r 4) or 1+ = (1 + r l r 3) 
X (1 + r 2r 4 ). (The mixed cases are not compatible with 
the relations in the basic algebra.) We illustrate the case I - . 
Th~ representation is four dimensional. The even subspace 
!f ~s spanned by II = I - and 12 = r I r 2/- . The odd subspace 
U IS spanned by UI = rl/- = - r 3/- and u2 = r 2/
= - r 41 -. The following tables summarize the structural 

maps: 

d WI W2 W3 . W4 

II U I U2 -UI - U2 . R Ut U2 

12 U2 -UI U2 -UI tpl2 U2 -U) 

f/! tpl3 -UI U2 

UI II -/2 II 12 tpl4 - U2 -UI 
U2 12 II - /2 II 

Clearly, U carries the real spino! representation of the 
o (2,1) algebra. In fact, R (tp) acts as a representation of the 
Clifford algebra Ctf + (2,2) "'" Ctf (2,1 ): this is the generaliza
tion of the complex structure [Ctf + (2,0) 
"'" Ctf + (0,2) "'" Ctf (0,1)] or Ctf + (1,1) "'" Ctf (1,0) algebras 
represented in U for N = 2. Again, this can be extended to 
anticommuting operators 112> 113, /14 on!f, as in Eq. (63), 
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which commute with the adjoint action in .!l'. As a conse
quence, .!l' must be Abelian: 

112113 [/,1'] = 112 [1131,/'] = [113,112/'], 

113112 [/,1'] = 113[1,]12/'] = [113 /,112/']. 

Anticommutation of 112 and 113 proves that [/,1'] = 0. This 
remains valid for representations that are sums of spaces 
isomorphic to C(J I - (given above) or to C(J I + (which simply 
amounts to a change of basis 11-/2 ), 

The construction of a possible metric proceeds as in the 
case of the basic algebra, but now there is no privileged ele
ment r. Its form is given by 

8(AI- ,BJ -) = tr(MI +P_ (A)BI-), (64) 

since P _ (/-) = I + and the metric is P _ invariant. The ar
guments in Appendix A lead to the result that M is of the 
form 0 + br1r 2r 3r 4, and then 8 vanishes on this minimal 
extension. The general extension of the basic N = 4 algebra 
is a direct sum of copies of the minimal extension described 
above. The metric vanishes on the subspaces 

U1 = {u 1IR (tp13)U 1 = - u1} 

and 

U2 = {u2IR(tp13)U2 = + U2}' 

but can couple vectors between these spaces. The corre
sponding metric on the .!l' space then follows by P _ invar
iance of 8 [see Eq. (41)]. 

The structure of the resulting enlarged superconformal 
Lie algebra is exhibited in components in Appendix B. 

The extension of the compact N = 4 algebras follows the 
same pattern, but the extension proceeds with eight-dimen
sional units, containing four fermionic and four bosonic 
fields, each being a representation space of 
C(J + (0,4) "'" C(J + (4,0) "'" C(J (0,3) with three complex struc
tures. 

VII. so(N) ALGEBRAS 

In this section, we consider a type of superconformal Lie 
algebras more general than in Sec. II. We shall still limit 
ourselves to conformal fields with integer or half-integer di
mensions, but also allow dimension h<.O. The aim is to show 
that the well known so (N) series3 also has a natural formula
tion in terms of the Clifford algebra C(J (N). 

In the algebra with N supersymmetry generators,3 one 
has fields with conformal dimension 2 down to 2 - N /2. The 
dimension-l fields form a so(N) Kac-Moody algebra. We 
consider the real form of these algebras [which can be easily 
derived from the original one by multiplying the operators 
JR (which have conformal dimension 2 - R /2) with 
j( - 112)R(R - 1)]. The number of operators in these algebras is 
2N

, and this corresponds to the dimension of a Clifford alge
bra with N generators. This suggests replacing the sets of 
antisymmetric indices in the notation of Ref. 3 with products 
of r matrices. This has the advantage that it is now easy to 
introduce a different metric on the Clifford algebra (which 
corresponds to B above). 

If we denote by yR an antisymmetric product of R r 
matrices, the algebra becomes, in this new form, 
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[J! (yR),J~ (r) ]RS+ 1 

{

OR,s(m(2 - S) - n(2 - R»J!t~ (yRr), 

= bR,SJ!t~-2(yRr), 

0, 

with k the number of r 's common in yR and r. 

k=O, 

k= 1, 

k>2, 
(65) 

Note that if one writes this in operator produce expan
sion form, one sees that terms with k>2 are nonsingular, so 
they do not appear in the commutation rules. 

Jacobi identities now put restrictions on OR,S and bR,s' 
One can prove that by rescaling the operators, one can put 
them in the simple form 0 R,S = 1 and b R,S = ± 1. However, 
changing the sign of b is equivalent to changing the metric in 
the Clifford algebra, so this does not give a new freedom. 

It is also possible to write these algebras in the same 
framework as before. This gives rise to a general formulation 
ofSCA's:which includes the case of Sec. II. To this end, we 
introduce for each R a vector space VR with elements VR , 

and the corresponding conformal fields J R (v R ). We put 
Vo = R to have only one dimension-2 field. Defining the two 
sets of maps 

tpR,S: VR ® VS .... VR+S' 

~,s: VR ® Vs"" VR+S- 2, 

we can now write down the general form: 

[J! (vR ),J~ (vs ) hs+ 1 

= (m(2 - S) - n(2 - R»J!!.~(tp(VR'VS» 

+ J!!. ~- 2(t/!(VR ,vs». 

Putting tp R,O(VR ,1) = VR and ~,O(VR,l) = 0, it follows that 
JO = 2L, and JR are primary fields with conformal dimen
sion 2 - R /2. Jacobi identities imply the following relations 
for tp and t/!: 

tp(vR,tp(VS'vT» = ( - l)RStp(VS'tp(VR,VT», 
(R + S - 4)tp(t/!(vR,vS )'VT) 

= {(S - 2)tP(vR,tp(vS'vT» 

+ (R - 2)tp(vR,t/!(vS,VT»} 

+ ( _ l)RS + I{R++S}, 

tP(t/!(vR,VS)'VT» = tP(vR,t/!(VS'vT» 

+ ( - I)RS + ItP(VS,t/!(VR,VT». 
We can now, as before, define the maps r w on the sum.Y of 
all the vector spaces: 

rw: S3x .... rw (x)eS, we VI' 

rw(vR) =tpl,R(W,VR) +t/!I,R(W,VR)· 

Again, the set of maps r w weV1, satisfies the following im
portant property. 

Property: The r w represent the Clifford algebra 
C(J(t/!I,I). 

This follows from all Jacobi identities with R = S = 1. 
To conclude this section, we 'note that one could identify 

the construction in Eq. (65) with the singular part of an 
operator product expansion. It may be interesting to extend 
our method to the full OPE, where nonsingular terms could 
correspond to multiple contractions, k>2 in Eq. (65). 
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VIII. N> 4 SUPERCONFORMAL (NOT LIE) 
SUPERALGEBRAS 

The formalism we developed indicates a possible gener
alization of the notion of two-dimensional superconformal 
algebra. To go beyond the limit N = 4, we have to violate the 
covariance relations, especially that ofEq. (24), which led 
us directly to the no-go theorem. 

The above means, in turn, that we are forced to leave the 
category of Lie superalgebras as too constraining. It is not 
completely clear to us how to identify the category in which 
we should work, but some concrete examples point to a gen
eralization related to symmetric spaces. 

Let us notice that, if we take reS + as a generating ele
ment of the superalgebra, then the fundamental mapping we 
used, 

~2(B):3 (r w 1\ r w') -+ip(w,w'): = Hr w,r w' ]reS+, (66) 

can have (this is the general case) a nontrivial kernel de
pending on the rank of this element in ~ (B). It is not diffi
cult to see that this kernel is a Lie subalgebra ofso(B) (iden
tified as a commutator algebra of bivectors). The image of 
Eq. (66) can thus be identified with the coset space 

so(B)/Ker ip. (67) 

We cannot expect that Eq. (67) admits a natural Lie algebra 
structure unless B = (4,0), (0,4), (2,2) [those are the only 
signatures for which so(B) is not simple, and as we noticed, 
the existence of the "small" N = 4 superalgebra is directly 
related to the nonsimplicity ofso(4) and so(2,2)]. 

Surprisingly the kernels ofEq. (66) (we assume B to be 
Euclidean here), do form a uniform series, parametrized by 
four non-negative integers: 

Ker ip-su(2) m E& su( 3) k E& g(2) / E& so(7)" (68) 

where gS stands for the direct sum of s copies of the Lie 
algebra g. The corresponding coset spaces of the Lie algebras 
are the following: 

K(N Im,k,l,r): = so(N)/su(2)m ® SU(3)k ®g(2)/ E& so(7)', 
(69) 

where N-,4m + 6k + 71 + 8r. 
Because S is a spin representation space, the corre

sponding group cosets are not coset spaces of SO(N), but 
rather of its twofold (hence universal in the Euclidean case) 
covering Spin(N). 

In order to illustrate what we have in mind, let us work 
out two examples corresponding to N = 7 and N = 8. 

(i) N = 8: Spin (8)/Spin (7). The element re~ + (8,0) 
generating the irreducible representation of CC (8,0) can be 
chosen as follows: 

r = ~Cl - r 1234)( 1 - r 1256)( 1 - r 1357)( 1 - r 3478)' 

(70) 

The kernel of the mapping [Eq. (66)] isanso(7) subalgebra 
of so (8) [in fact, for any element 1JES + its stabilizer subalge
bra of so ( 8) is isomorphic to so ( 7); this is a manifestation of 
the fact that this algebra does not depend on the particular 
choice of r, but rather on its rank]. 

A convenient (and orthonormal) basis in S+ can be 
constructed as follows. Let us take an arbitrary vector WoE W 
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(eight-dimensional Euclidean space); such that w~ = 1. Let 
{wJI be an orthonormal basis in the orthogonal comple
ment % of Wo in W, and let, finally, {ran be the corre
sponding set of generators of ~ (8,0). Then the elements 

M i : = rOrir, i= 1, ... ,7, (71) 

form an orthonormal basis in ip(~2( 8,0» and together with 
r a basis in S+. 

The corresponding (also orthonormal) basis in S_ 
looks as follows: 

(72) 

Notice that the image of W fills all of S_. 
This construction allows for a very easy identification of 

the mapping A (which is not a representation of any Lie 
algebra): 

A(Mi )uo = rOrOrir = rir = Ui> 

A(Mi )uj = rjrOrir = €ijkUk' 
(73) 

It can be shown 11 that the above formulas define the octon
ionic multiplication in S_ (and in S+ and Was well), i.e., 
€ijk are the octonionic algebra structure constants. This in 
turn implies that A is just the right multiplcation by imagi
nary octonions. A more detailed study of this approach can 
be found in Ref. 11. The "current" superalgebra, for which 
the above is the underlying structure, is identical to one of 
those described in Ref. 7 (viz., the one in Sec. V [(38»)). It 
should be pointed out that this algebra stands out as the 
simplest ofthe "S7 constructions," in that there is no viola
tion of (G,G,G) Jacobi identity. In our approach, this is es
sential for the Clifford algebra construction. 

(ii) N = 7: Spin(7)/G2• Following exactly the same 
way one can construct the superalgebra corresponding to 
N = 7. This time the elements of W-space (dimension~ gen
erators) form a seven-dimensional "adjoint representation" 
for octonionic imaginary units, and there is one dimension-! 
element, corresponding to the octonionic unity. 

The above means that both cases correspond to the same 
(set theoretical) coset space but with different geometric 
structures living on it. In the case of N = 8, the dimension-~ 
generators form some kind of spin space over S 7, whereas for 
N = 7, they are just tangent vectors. Surprisingly the quo
tient spaces corresponding to N = 5,6 are also (set theoreti
cally) seven-spheres with again two different geometric 
structures put on them. 

Work in this direction could provide us a reasonable 
generalization of the supersymmetry algebra. Further devel
opment will be presented elsewhere. 

IX. CONCLUSIONS 

We have shown that the presence of a Clifford algebra 
representation in CSCLS provides one with a powerful tool 
for their analysis. It leads to a complete classification of this 
type of algebra. 

Moreover, it appears that their presence is more univer
sal than the class of algebras analyzed in detail in the first 
part of this paper. It suggest also a possible direction in 
which to look for higher N, possible nonassociative algebras, 
similar to the N = 8 case. Another possibility would be to 
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include composite operators in the treatment. We leave this 
for further investigations. 
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APPENDIX A: CONSTRUCTION OF 
REPRESENTATIONS 

In this appendix we remind the reader of some facts 
about Clitford algebras, and then apply them to deduce some 
properties of the metric B, including the solution to the in
variance equations of Sec. IV. 

Starting from a fixed vector r of a representation space S 
of the Clifford algebra 9ff, the vector space 9ff r will be a 
subspace of S that also carries a (generally reducible) repre
sentation of 9ff , with as maximal dimension the dimension of 
9ff. A convenient wayS to construct these representations is 
to choose, as the representation space, the Clifford algebra 
itself. This is done by taking an arbitrary element re9ff, and 
considering the left ideal 9ff r. Depending on r, this represen
tation may be reducible or irreducible. We now explain how 
irreducible representations arise. 

To this end, recall that it is possible to find a maximum 
of k commuting elements EAE9ff, E~ = 1, that generate a 
group of order 2k , where k depends on the dimension and the 
signature of 9ff. Then! (1 + E A ) are commuting projection 
operators, and an irreducible representation of 9ff is obtained 
by the left ideal 9ff r with 

k 1 
r=r({EA}) = II -(1 +EAEA) 

A=12 

and EAe{ 1,I}. A general representation is obtained by 
taking an arbitrary linear combination r of such irreducible 
r( {EA}). Some ofthese combinations may be equivalent. 

The metric B introduced in the main text can be rewrit
ten in this representation as 

B(Ar,Br) = tr(M/3_ (Ar)Br) tr(rM/3_ (r)/3_ (A)B), 

where Me9ff is an arbitrary /3--invariant element, /3- (M) 
= M, and tr(F) means the component of Fe9ff proportional 

to unity. In addition, by making linear combinations of the 
irreducible representations that are present, one can arrange 
that the metric does not mix irreducible components. This 
implies that there exists a choice of elements Ell such that M 
is a function into 9ff of this set of elements, and we can write 
that 

0= rM/3_ (r) = 2:aD II EA, (AI) 
D lieD 

where the sum is over subsets D of the index set of Ell' The 
following requirements follow from the properties of B. 

(i) B(r,r) = - 1, and therefore the coefficient in Eq. 
(A 1) corresponding to the term with D = 0 has the value 

a0 = 1. 

(ii) Orthogonality of the even and odd subspaces 
S+ =.!/ + lRandS+ = W + VimpliesthatEq. (Al) con-
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tains no terms that are odd elements of 9ff . 
(iii) /3- (0) = 0 implies that Eq. (AI) contains only 

terms that are products of a number of r matrices that is 
equal to zero modulo 4. So, for N < 4, 0 = - 1. 

(iv) If Eq. (AI) contains a term with the product of 
four r matrices, the product of their squares must necessar
ily be + 1, since all EA commute, and E~ = 1. 

The last property proves that, if B(r,r;rjrkr1r)::fO, 
then (r; rj r k r I) 2 + 1 for any signature of the Clifford 
algebra 9ff. 

Now we can prove Eq. (51) for all signatures. If we put 
(r/rjr kr/)2 = E = ± 1, thefirstterminEq. (50) does not 
vanish iff (r ark r j rj )2 = (r a r I )2E = 1, which implies 
that we can replace the BIl coefficient by E. This also holds 
for the other terms, so that we again obtain Eq. (51). 

For constructing the representations of the basic alge
bras, only the projections formed with four r matrices (or 
more) are useful. 

(i) A projector P = !( 1 + r I)' n = 1, interferes with 
the splitting in even/odd subspaces S ± ' since riP = 1 . P. 

(ii) A projector P=!(1 + r l r 2), ri = 1 = - rL 
cannot be used for the basic algebra, since it would make WI 

and W2 proportional. 
(iii) A projection P = ! (I + r I r 2r 3) would also inter

fere with the splitting S ± . This argument holds for the en
larged algebras also. Thus, for N < 4, r = 1. 

APPENDIX B: EXPLICIT FORMULATION OF SOME 
ENLARGED SCA's NONCOM PACT CASE 

We list only the nonvanishing (anti)commutators that 
are not related to the Virasoro algebra. 

1.N=2 

We have 

{G: ,G,;-} 

=2Lm+n + (m-n)Tm+n + (m2 -1)8m+nc, 

[Tm,G,f] = ±Gm n' 

[T~±,Gn±] = (m/Ji)Q~\n' 

{Q~'f ,G n±} = (l/Ji) T~'f+ n' 

[Ta± Qb±] =fab±Qc± 
m 'n c m+n' 

[T~+,T~-] = -mKab8m +nc, 

[Tm,Tnl =m8m +"c, 

{Q~,Q~-} = -K ab8m + n c. 

We remind the reader of the fact (Sec. VI) that the metric 
K ab vanishes on the derived algebra, i.e., if T a can be written 
as a commutator, then K ab = 0, for all b. 

2.N=4 

The nonvanishing commutators for the N = 2 + 2 case 
are 
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{G i+ Gi-} 
m' n 

=2Lm+n + (m-n)Tm+n +(m2 -l)8m+nc 

(i = 1,2), 

[ T G i ±] - ± G i ± m' 11 - m+n' 

[Tm,TnJ = m8m+nc, 

[T+ G I-] - G 2+ m' 11 - m+n' 

[T +G 2-]- GI+ m'lI -- m+n' 

[T -G I+]-G 2-m' 11 - m+n' 

[T -G2+]- GI-m' 11 - - m+n' 

{G~+,G!+}= -2(m-n)T:+ n, 

{G~-,G!-}= -2(m-n)T;;;+n' 

[T: ,Tn-] = - Tm+n - (m/2)8m+nc, 

[Tm,Q:±] = ± Q~~n' 
[T+Qa-]_Qa+ m' n - m+n' 

[T;;;,Q:+] = -Q~+n' 
{G~+ ,Q:-} = U::!+n, 

{G 2- Qa+} ual 
m , n = m+n' 

{G 2+ Qa-} _ Ua2 
m '11 - m+n' 

{G I- Qa+} - Ua2 
m 'n - - m+n' 

[G I + U a2 ] - 2 Qa+ m , n - n m+n' 
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[G 2+ ual] = 2 Qa+ m' n - n m+n' 

[G I- ual] = 2 Qa-
m , n - n m+n' 

[G!,-,U:2] = -2nQ~+n' 
[U::!,U~2] = -mK ab8m+nc, 

{Q~+ ,Q~-} = b ab8m+ nc, 

with the condition on the metric 

K ab = _Kba = 2b ba. 
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Conformally invariant nonlinear wave equations in four dimensions, corresponding to 
multicomponent massless scalar fields with a quartic interaction, are studied. It is proved that 
the scattering operator S on the space H offinite-Einstein-energy Cauchy data has infinitely 
many fixed points, as well as periodic points of all orders. There are also et>EH such that S net> is 
almost periodic, but not periodic and et>EH such that S net> is not almost periodic. It is also 
proved that H admits no conformally invariant Kahler metrics, but infinitely many distinct 
Kahler metrics invariant under the Poincare group and scale transformations. Moreover, it is 
proved that time evolution for these nonlinear wave equations is completely integrable on the 
space H. 

I. INTRODUCTION 

For most relativistic nonlinear wave equations the con
struction of a scattering operator defined on a physically 
natural space of solutions presently requires quite careful 
arguments. For conformally invariant nonlinear wave equa
tions, however, the scattering operator arises rather simply 
in terms of the conformal embedding of Minkowski space in 
the Einstein universe. This facilitates the study of certain 
questions that are still intractable for nonlinear wave equa
tions that are Poincare invariant, but not conformally invar
iant. In this paper we consider massless scalar fields with a 
quartic interaction, i.e., equations ofthe form 

01 + q' (I) = 0, (1) 

where q is a non-negative homogeneous polynomial of de
gree four in the multicomponent scalar field f We work 
with the space H of "finite-Einstein-energy solutions." A 
solution 1 has finite Einstein energy ifthe sum of its energy 
and that of its transform under conformal inversion is finite, 
or equivalently, if 1 extends to a finite-energy solution of the 
corresponding equation on the Einstein universe, as de
scribed below. More concretely, a solution 1 has finite Ein
stein energy if 

r _ {(1+..c){(V/)2+i2)_~/2}d3x 
Jx,,-o 4 2 

is finite. The advantage of the space H is that it is preserved 
by the action of the conformal group, which is not the case 
for the traditional space of finite-energy solutions. 

Some time ago Segal pointed out the significance of the 
physical vacuum in classical field theories as an elliptic fixed 
point for Minkowski time evolution and hence for the scat
tering operator. l For 0/+ q'(/) = 0 with q=l-O we show 
that there are infinitely many other fixed points for the scat
tering operator, as well as periodic points of all orders. The 
question of the stability of these fixed and periodic points is 
closely related to Floquet theory; using classical results on 
intervals of instability the presence of "pseudohyperbolic" 
fixed points can be established, which in tum implies the 
existence of solutions et> such that S net> fails to be almost 
periodic. This contrasts interestingly with investigations of 

conformally invariant quantum field theories,2 which sug
gest (in part on a nonrigorous basis) that the generator of 
Einstein time evolution should have a pure point spectrum, 
implying almost periodicity of S net> for all states et> of the 
quantized system. The situation is reminiscent of the preva
lence of bounded, but not almost periodic trajectories in fi
nite-dimensional classical systems whose corresponding 
quantized Hamiltonians have a pure point spectrum (the 
"absence of quantum chaos"). 

A related question concerns the existence of invariant 
Kahler metrics on the solution manifold of a classical field 
theory. The solution manifold typically has a natural sym
plectic structure; a choice of "Kahlerization" of the solution 
manifold is closely related to a choice of vacuum state for the 
quantized theory.3 The solution manifold of the linear equa
tion 01= 0, for example, has a flat Kahler metric that is 
invariant under the conformal group and states of the corre
sponding quantized theory may be represented as antiholo
morphic functions on the solution manifold via the "com
plex wave" or "Fock-Bargmann-Segal" representation.4 

We show that for q=l-O the symplectic structure ofthe solu
tion manifold H of 01 + q' (I) = 0 has no conformally in
variant Kahlerizations, but has infinitely many that are 
Poincare invariant and flat. The proof does not rule out the 
existence of a conformally invariant Kahler metric on a 
dense open subset of H, nor does it rule out the existence of 
conformally invariant polarizations which are not Kahler. 
Thus a manifestly conformally invariant "geometric quanti
zation" may still be possible.5 

We also show that Minkowski time evolution for 
01 + q' ( I) = 0 is completely integrable on the space H. 
This contrasts with the results of Nikolaevskii and Shchur6 

(see, also, Savvidy7 and Steeb et al.8
), who embed the mani

fold of space-independent solutions of 01+ q' (I) = 0, 
wherel = (J;, h) and q( I) = IU~, in the space of smooth 
solutions of the Yang-Mills equations. By proving that time 
evolution on this manifold is nonintegrable, Nikolaevskii 
and Shchur conclude that the Yang-Mills equations are not 
integrable. However, these space-independent solutions are 
not of finite Einstein energy, nor of finite energy in the usual 
sense, and their relevance to the physics oflocalized systems 

757 J. Math. Phys. 31 (3), March 1990 0022-2488/90/030757-06$03.00 @ 1990 American Institute of Physics 757 



                                                                                                                                    

is presumably only indirect. There is thus no contradiction: 
While the complete integrability of some well-known equa
tions in two-dimensional space-time is rather robust with 
respect to the space of solutions considered,9 there is no a 
priori reason to expect this in general. Indeed, it is possible 
that the Yang-Mills equations are completely integrable on 
a suitable space of solutions modulo gauge transformations. 
In a separate paper 10 we show by using scattering theory that 
there are infinitely many gauge-invariant conserved quanti
ties for sufficiently regular solutions of these equations. 

II. REVIEW 

We begin with a review of the Goursat problem ap
proach to scattering theory for conformally invariant non
linear wave equations. 11-15 Let Mo denote Minkowski space 
and let M denote the universal cover of the conformal com
pactification of M o, which we identify with the "Einstein 
universe" R X S 3 and to which we give the coordinates ( T,U). 
Let V denote a finite-dimensional real Hilbert space and let q 
be a homogeneous polynomial of degree four on V, bounded 
from below. LetH = L 2.I(S3,V) $L 2(S3,V) as a real Hil
bert space with the inner product given as in Ref. 15, where 
L 2.I(S3, V) consists off unctions which, together with their 
first derivatives, lie in L 2 (S 3, V ). Elements ofH, the space of 
jinite-Einstein-energy Cauchy data, will be denoted by capi
tal Greek letters, e.g., <I> = (<1>1,<1>2)' Given <l>eH there is a 
function tp:M-+ V, unique modulo functions vanishing a.e., 
such that 

(0 + 1)'11 + q'(tp) = 0 (2) 

and (tp,,p) 17"=0 = <1>, where these equations are taken in the 
sense of distributions. We call such '11 ajinite-Einstein-energy 
solution of (2) and denote the space of such by Eq, which 
may be given a Hilbert manifold structure such that the map 
<1>.-'11 is a diffeomorphism. 

- '"'-I 
The group G = SO(2,4) acts as conformal diffeomor-

phisms ofM and the subgroup preserving Mo is the universal 
cover of P, the extension of the Poincare group Po by scale 
transformations. The group G acts on Eq via 

(gtp)(x) = Ildg,,-llltp(g-I(X», geG, xeM; (3) 

this action gives rise to an action Uq ofG as diffeomorphisms 
ofH. 

Let t: Mo -+ M denote the conformal embedding. Given 
a finite-Einstein-energy solution '11 of (2) and defining 
fMo-+ Vby f(x) = p(x)tp(t(x», where p is the conformal 
factor associated with t, then (1) holds in the distributional 
sense and fis said to be a finite-Einstein-energy solution of 
( 1 ). This correspondence allows one to study scattering of 
finite-Einstein-energy solutions of (1) in terms of Eq. (2). 
The Minkowski time evolution subgroup of G, with the gen
erator To, acts on M in such a way that 

exp(tTo)L(xo,x) = t(xo + t,x) 

for all (xo,x)eMo' Given <l>eH there exist "in and out fields" 
<I> ± eH such that 

lim IlUq(exp( - tTo»<I> - U(exp( - tTo»<I> ± II = 0, 
t_ ± 00 

where U = Uo. [Note here that Uq(exp( - tTo» evolves a 
Cauchy datum forward by time t due to the presence of g-I 
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in Eq. (3). Also, while the convergence above was shown in 
Ref. 14 only for a weaker topology, a similar argument 
proves convergence in the norm topology of H.] The maps 
<1>.-<1> ± are diffeomorphisms. Thus for any given q there is a 
unique diffeomorphism S:H -+ H, the scattering operator, 
such that S<I> _ = <I> + . 

The boundary of Mo as embedded in M is the union of 
the "cones at future and past infinity": 

C± = {(T,u)eRXS 3:p = ± (1T-T)}, 

where p is the angle from U to the north pole of S 3. We identi
fy C _ withS 3 by means of the map ( T,U )I--+U, but identify C + 

with S3 by (T,U)I--+ - u. Let H( C), the space ofjinite-Ein
stein-energy Goursat data, denote L 2,1 (S 3, V) as a real Hil
bert space with the inner product as given in Ref. 15. There 
are diffeomorphisms Wq, ± :H -+ H ( C), the wave transforms, 
determined by the property that 

W ± ,q <I> = '11 1 C ± 

for all <l>eH such that the corresponding tpeEq is continuous. 
For all <l>eH, 

<I>± = W;;;IW±,q<l>, 

where W ± = W ± .0' 

(4) 

The center of G is isomorphic to Z X Z2 and the gener
ator t of the Z factor acts on M by 

t(T,U) = (T+ 1T, - u). 

In particular, t maps C _ onto C + and 

Uq(t) = W ~,lqW _.q' (5) 

This gives rise to a close relationship between t and scatter
ing. Equation (4) implies that S = W ~ I W + ,q W = ,Iq W _. 
Using (5) and the fact that U(t) = - I, it follows that 

S= (W=IW_,q){- Uq(t-I»(W=IW_,q)-I. (6) 

Thus S is c~njugate by a diffeomorphism to - Uq (t -I). 
For geP, 

(Uq (g) <1» ± = U(g) <I> ± . (7) 

It follows that U(g)S = SU(g) for allgeP, which expresses 
the P invariance of the scattering operator. 

III. STATEMENT OF RESULTS 

Recall that given a Banach space X, a sequence {x n } neZ 

in X is said to be almost periodic if the closure in L 00 (Z,X) of 
the set of translates of the sequence {xn } is compact. (For 
equivalent definitions, see Ref. 16.) Given a homeomor
phism F:X -+ X, the point xeX is said to be almost periodic for 
Fifthe sequence {F nx} is almost periodic and weakly almost 
periodic for F if {A (F nx ) } is almost periodic for every AeX· . 
A point xeX is said to be periodic of order n for F if n is the 
least positive integer such that Fn(x) = x. Also, we say that 
two elements ofH are equivalentiffor somegeP, U(g) maps 
one into the other. We shall prove the following theorem. 

Theorem 1: Assume q,#O. Then there exists a family IIJ a 

eH, a;;;'O, such thatthe following holds. (i) If a,#b, then IIJ a 

and IIJ b are inequivalent. (ii) For each n;;;. 1 there are infinite
ly many values of a such that IIJ a is a periodic point of order n 
for S. (iii) For uncountably many values of a, IIJ a is almost 
periodic, but not periodic for S. (iv) For infinitely many 
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values of a, every neighborhood of'll 0 in H contains a point 
that is not weakly almost periodic for S. 

Next we recall some facts from Ref. 15 about the geome
try of H. Given a non-negative integer n, let Hn denote the 
space of en vectors for the action U of G on H. Recall that 
Hn has a natural Banach space structure and is densely em
bedded in H. In fact, the elements ofHn are precisely the en 
vectors for Uq regardless of the val~e of q and for any q the 
action Uq restricts to an action of G as diffeomorphisms of 
Hn. The space Hn has a symplectic form 

m(<I>,'II) = r <1>1''112 - <1>2''111, JS3 

where <1>, 'II are tangent vectors identified with vectors in Hn. 
[We shall use the definitions of symplectic forms, Riemann 
metrics, and Kahler metrics that require only weak nonde
generacy, where a bilinear form A is weakly nondegenerate if 
for every u:;;60 there exists V such thatA(u,v) :;;60.] The sym
plectic form m is invariant under the action Uq ofG for any q. 
By the following theorem m has infinitely many distinct ex
tensions to a P-invariant Kahler metric, but no extensions to 
a G-invariant Kahler metric. 

Theorem 2: Assume q:;;60 and let n be a non-negative 
integer. Let Nbe any Uq (t)- invariant open neighborhood 
of OEHn. Then there does not exist a Riemann metric on N 
invariant under the action of Uq (t). There exist infinitely 
many distinct Kahler metrics on Hn which are fiat, have an 
imaginary part equal to m, and are invariant under the action 
Uq ofP. 

Last, the Minkowski time evolution for Eq. (1) is com
pletely integrable in the following sense. Recall that if (X,m) 
is a symplectic manifold, the subspace L C Tx X is isotropic if 
the restriction of m to L vanishes. 

Theorem 3: There exists a sequence of real-analytic 
functions Pj:H ..... R such that for all i and all t, 
Uq(exp(tTo»*Pj = Pj. There exist real-analytic vector 
fields Vi on H such that for all i, 

dPj = m(v j ,). 

Moreover, (i) for all i and j, [v;.vj ] = 0 and (ii) generical
ly, i.e., except for <I> in a set of first category in H, the sub
space L = {'IIeT<I>H:Vi dPj('II) = O} is isotropic in T<I>H. 

In short, the functions P j are a complete set of conserved 
quantities for Eq. (1), with pairwise vanishing Poisson 
brackets. 

IV. SPACE-INDEPENDENT SOLUTIONS ON M 
Topological arguments have been used to prove the exis

tence of periodic solutions of a general class of wave equa
tionsoftheform (0 + 1}ip + /'(ip) = OonM;unfortunate
ly, the case of f quartic represents a "critical exponent" to 
which these methods dQ not thus far apply. 17 Instead oftak
ing an abstract approach, we will exploit the properties of 
explicit "space-independent" periodic solutions of 
(0 + l)ip + q'(ip) = 0 on M to prove Theorems 1 and 2. 

We recall that the one-parameter Einstein time evolu
tion subgroup of G, with the generator Xo, acts on M by 

exp(tXo)(r,u) = (r+ t,u), 
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where (r,u)eRXS 3
• ThustequalsSexp(11'Xo), whereseG 

acts on M by S( r,u) = (r, - u). 
Proof of Theorem 1: We first prove Theorem 1 in the 

special case V = R, q(ip) = !Aip 4, where A > O. If the func
tion go is defined as the solution of g + g + Ag3 = 0 with 
go (0) = a> 0 and go (0) = 0, then the function ipo :M ..... R 
given by ipo (r,u) = go (r) satisfies (0 + l)ipo + Aip! = O. 
The function go is easily seen to have the period 

p(a)=4i
1 

dx 
o ~(1_X2) +Aa2(1-x4)/2 

The period P(a) is continuous and strictly decreasing in a, 
with P(O) =211' and P(a) ..... O as a- + 00. Let <1>0 
= (a,O)eH and let 

'110 = (<1>0 )_. 

To prove statement (i) of Theorem 1, note that if 
U(g)'IIo = 'lib for geP, then Uq(g)<I>o = <l>b by Eq. (7). 
This is impossible if a:;;6 b, as can be seen by inspection of the 
action of the group G on functions of the form ipo as given in 
Eq. (3). 

From (6) and the fact that Uq (S) <1>0 = <1>0 it follows 
that 

sn'llo = « - Uq(t-1W<I>o)_ 

= « - Uq(exp( - 11'Xo»)n<l>oL. (8) 

ThusSn'llo ='110 ifandonlyif( - Uq(exp( -11'Xo»)n<l>a 
= <I> a and 'II a is almost periodic for S if and only if <1>0 is 

almost periodic for - Uq(exp( -11'Xo». Since for all a>O 
the function Uq(exp( - tXo»<I>o is periodic in t, it follows 
that <1>0 is almost periodic for - Uq(exp( - 11'Xo». For n 
even, (- Uq(exp( -11'Xo»)n<l>o = <1>0 if and only if 
kP(a) = n11' for some integer k. For n odd, 
(- Uq(exp( -11'Xo»)n<l>o =<I>oifandonlyif(k+!)P(a) 
= n11' for some integer k. Using the fact that P( a) is contin
uous and strictly decreasing, it follows that for any n there 
are infinitely many values of a for which 'II a is a periodic 
point of order n for S and that there are uncountably many 
values of a for which'll 0 is almost periodic, but not periodic 
for S. Thus statements (ii) and (iii) of Theorem 1 have been 
shown. 

To prove statement (iv) of Theorem 1, we consider 
small perturbations of the space-independent solutions. 

Lemma 1: Suppose that a> 0 and P(a)/11' is rational. 
Then Uq(exp( - 2n11'Xo»<I>o = <1>0 for some n and the dif
ferential of Uq(exp( - 2n11'Xo» isa bounded operator on the 
tangent space ofH at <1>0' This operator is of the form I + K, 
with K compact, and decomposes as the direct sum of linear 
operators T j on two-dimensional subspaces of the tangent 
space of H at <1>0' For infinitely many such a one of the 
summands Tj has a real eigenvalue of modulus less than 1. 

Proof: The differential of the Einstein time evolution op
erator Uq(exp( - tXo» can be computed by solving the 
variational differential equation as in Ref. 15. Thus if'll is a 
tangent vector at the point <I> oeH and 
'II(t) = dUq(exp( - t Xo) )'11, then'll (t), under its canonical 
identification with a vector in H, satisfies the integral equa
tion 

'II(t) = etA'll + f e(t-S)AB(s)'II(s)ds, (9) 
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where the skew-adjoint operator A on 
A (I.,/') = U;, - (~+ 1)1.) and the 
B(t):H ..... H are given by 
= (0, - 3Aga (t)2J.). 

H is given by 
smooth maps 

B(t)(fl,J;) 

One can solve (9) using a time-ordered exponential. 
Letting 'I1iot (t) = e- tA'I1(t), it follows that 

'I1iot (t) 

=(I+L r C(tn)"'C(tI)dtl "'dtn )'I1, 
n>1 )0<1,< ... <1.<1 

where C(t) = e- tAB(t)etA and the sum is norm convergent. 
In fact, since C(t) is compact for all t and norm continuous 
as a function of t, the operator 'I1f--+'I1iot (t) is of the form 
1+ K, with Kcompact. Thespectrumof(~ + 1) onL2 (S3) 
consists of the eigenvalues N 2

, N, 1, with finite multiplicity. 
Thus e21rnA = I, so that 'I1(21Tn) = 'I1iot (21Tn ).It follows that 
the operator 'I1f--+'I1 (21Tn) is ofthe form I + K, with K com
pact. 

Let /; be an orthonormal basis of eigenfunctions of 
(~+ 1) on L 2(S3). If '11 = (adi,a2/;) where aI' a 2ER 
and (~+ I)/; =N:z.,t;,then(9)impliesthat'l1(t) = (y(t)/;, 
y(t)/;), where y:R ..... R satisfies 

a ;y(t) + (N2 + 3Aga (t)2)y(t) = 0, (10) 

with yeO) = a l and yeO) = a 2. Let Tj :(a l ,a2) 
f--+{y(O),Y(O». Then the operator 'I1f--+'I1(21Tn) is a direct 
sum of the 2 X 2 matrices T j • 

Next we use some results from Floquet theory. 18 First, 
in order to show that one of the matrices T j has a real eigen
value of modulus less than 1, it suffices to show that for some 
integer N> 1 Eq. (10) has unbounded solutions, or that N 2 

lies in one of the "intervals of instability" (A2j _ I ,A2j ). We 
use an explicit formula for the function ga above to show that 
these intervals of instability are nonempty. By the definition 
of the Jacobi elliptic function cn(t 1m) as the solution of the 
differential equation 

a; cn(t 1m) + (1 - 2m)cn(t 1m) + 2m cn3 (t 1m) = 0, 

with the initial conditions cn (t 1m) = landa, cn(t 1m) = 0, 
it follows that ga (t) = a cn(bt 1m), where 

b = ~c + 1, m = c/2(c + 1), c = Aa2. 

By the identity sn2 (t 1m) + cn2(t 1m) = I,Eq. (10) can 
be seen to be equivalent to the Lame equation 

a: yes) + (k 2 - pcp + 1)m2 sn2(slm»y(s) = 0, 

where k 2 = (N2 + 3c)/(c + 1),p(p + 1) = 12(1 + c- I
), 

and s = bt. The Lame equation is of intrinsic interest in Flo
quet theory and appears in the inverse spectral approach to 
space-periodic solutions of the Kortweg-deVries equation.9 

It is known that none of the intervals of instability of the 
Lame equation is empty unless p is an integer. By the defini
tion of p above, this does not occur if c> 1. 

We will treat the endpoints of the intervals of instability 
for (10) as functions of a. The above remarks imply that the 
endpoints of the 2jth interval of instability of (10), 
(A2j _ I (a).A2j (a», satisfy A2j _ I (a) <A2j (a) if c> 1. It fol
lows from Floquet theory that the Aj(a) are continuous 
functions of a. Moreover, the following bounds hold: 
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where Ej (a) ..... O as j ..... 00, uniformly in a for a> 0 in any 
compact interval. 

For any sufficiently small P> 0, there exist aI' a2 with 
2P(a l ) =P(a2) =P; a2 >al; and AaL Aa~>1. Choose j 
large enough such that Ej (a)<:lfor all aE[al ,a2]. Thus we 
have 

21Tj 41rj 
.JA2j(al)<:-+ 1, .JA2j_l(a2»--1. 

P P 
By the intermediate value theorem this implies that for P 

sufficiently small, some integer N lies in (~A2j_1 (a), 

~A2j (a» for all a in some nonempty open subinterval of 
[a l ,a2]' Thus infinitely many aE[al ,a2] haveP(a)/1Tration
al and N 2E(A2j _ I (a).A2j (a». 0 

Lemma 2: For infinitely many values of a the following 
holds. S 2n'l1 a = '11 a for some n; the differential of S 2n at '11 a is 
of the form I + K, with K compact, and has a real eigenvalue 
of modulus less than 1. 

Proof If P( a) /1T is rational, then S 2n'l1 a = '11 a for some 
n. By (8) the differential of S 2n at '11 a is conjugate to the 
differential of Uq(exp( - 2n1TXo» at cI>a. By Lemma 1 this 
implies that the differential of S 2n at '11 a is of the form I + K, 
with K compact, and is conjugate to the direct sum of the 
matrices T j • Choosing a as in Lemma 1, it follows that the 
differential of S 2n at cI> a has a real eigenvalue of modulus less 
than 1. 0 

To prove statement (iv) of Theorem 1 in the special case 
we are considering, choose a as in Lemma 2. By Lemma 2, 
for some constant 0 < r < 1 the spectrum of (dS 2n) \jI a lies off 
the circle Izl = r and has nonempty intersection with 
{Izl < r}, i.e., '11 a is an r-pseudohyperbolic fixed point for 
S2n. By the invariant manifold theorem for pseudohyperbo
lic fixed points,19 in any neighborhood of '11 a there exists 
'11' :I: '11 a such that 

lim IIS 2n'l1'-'I1all=0. 
n_ + 00 

This implies that {S n'l1'} cannot be weakly almost periodic 
since the only convergent weakly almost periodic sequences 
are constant. 16 

Last, we make the following observation. Given q on V, 
let V' be a one-dimensional subspace of V such that the maxi
mum of q on the unit ball of Voccurs at the intersection of V' 
with the unit sphere. Let e be a unit vector in V' and let 
A = 4q(e). If tp:M ..... R is a finite-Einstein-energy solution of 
(0 + l)tp + Atp 3 = 0, thenetp:M ..... Visafinite-Einstein-en
ergy solution of (2). This embedding is easily seen to reduce 
the proof of Theorem 1 to the special case we have consid
~d 0 

Corollary: Assume that q:l:O and n is a non-negative 
integer. Then there exists a family cI> aEHn ,a>O, such thatthe 
following holds. (i) For each m> 1 there are infinitely many 
values of a such that cI> a is a periodic point of order m for 
Uq (t). (ii) For uncountably many values of a, cI>a is almost 
periodic, but not periodic for Uq (t). (iii) For infinitely 
many values of a, every neighborhood of cI> a in Hn contains a 
point that is not weakly almost periodic for Uq (t). 
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Proof: This follows from the proof of Theorem 1. 0 
Proof of Theorem 2: For the first statement of theorem 2 

it suffices to show that there is no Riemann metric g on N 
invariant under Uq (t211) = Uq (exp(2mrXo». If there were, 
the metric on N given by 

d(x,y) = inf{ f g(f'(t),J'(tW /2 dt: 

f [0,1] ..... N is smooth,J( 0) = x,J(1) = Y } 

would be continuous in the HII topology and invariant under 
Uq (exp(2mrXo». However, by the following lemma this 
would contradict the properties of the family {~a} estab
lished in the proof of Theorem 1. 

Lemma 3: Let X be a topological space with a contin
uous metric d (not necessarily inducing the topology of X) 
and let U, be a continuous action orR on X. Suppose that for 
integer values of t the map U, preserves d. Then there cannot 
exist a family ~aeX, a>Osuch that (i) ~a depends continu
ously on a, (ii) ~a is periodic for U, with period Pea), and 
(iii) Pea) is continuous and strictly monotone. 

Proof: Choose a>O such that Pea) is rational and non
zero. For some n, U" (~a) = ~a' Let D = SUP/eR d(~a' 
U, ~ a); clearly, 0 < D < 00. Choose b such that PCb) is irra
tional and close enough to a such that d (~a' ~ b ) <.D 14 and 
d(~b,U'~b) > 3D 14 for some te[O,P(b)]. By the Kron
ecker theorem, for any 8> 0 there exists an integer m such 
that Inm mod PCb) - t 1<.8. Choosing 8 sufficientftsmall, 
one obtains m such that d(~b,U"m~b»3DI4. Thus we 
have 

d( U"m~a,U"m~b) = d(~a,U"m~b) 

>d(~b,U"m~b) -d(~a'~b) 

>DI2, 

contradicting the assumption that Ullm preserves d, which 
implies 

d(UlIm~a,U"m~b) =d(~a'~b)<D/4. 0 

The existence of a flat Kahler structure g- on H" with 
an imaginary part equal to w and invariant under the action 
Uq of Ii is shown in Ref. 15 in the special case of a one
component field rp and the proof generalizes straightfor
wardly. Since teG is central it follows that all the flat Kahler 
structures Uq (t k) *g- are similarly Ii invariant and since 
Uq (t) is symplectic they all have an imaginary part equal to 
w; since Uq (t 2,,) preserves no Riemann metric they are all 
distinct. 0 

v. COMPLETE INTEGRABILITY 

We begin by introducing a representation of the space H 
in terms of Fourier transforms of finite-Einstein-energy so
lutions of Of = O. Let V C denote the complexification of V 
and let Y (W, V) denote the Schwartz space of V-valued 
functions on R3. 

Lemma 4: Given ~eH, let rp be the solution of 
(0 + l)rp = 0 on M with (rp,q,) 1 .. =0 = ~ and let fbe the 
solutionofOf= OonMogivenbyj(x) = p(x)rp(£(x». Giv
~ keR3 let ko = Ilk II. Then there is a unique function 
~eL2(R3,ko-1 d 3k,VC

) such that 
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(11 ) 

A 

The map cI>t-~ is one-to-one and continuous from H to 
A A 

L 2(R3,k o-
1 d 3k,VC); denote its range as H and give H the 

A 

norm such that II~IIH = II~IIH;'" There is a continuous em-
bedding of CO' (R3 - 0, VC) in H. 

Proof: Suppose that ~eH, fis defined as above, and cP is 
defined by 

cP(k) = f (kof(O,x) - if'(O,x»lk'X d 3x (12) 

(in the distributional sense). By results of Ref. 20, 

f IcPl 2k o-
1 d 3k = 1.=0 «all"f)2 + (a -1/'l)2)d 3x 

~J { ( 1 + ~ ) «Vf)2 + i2) 

- ~ p} d 3x 

=11~1I2, 

so that cl>t-cP is continuous from H toL 2(R3,k 0- 1 d 3k, VC). 
Taking Fourier transforms, (11) follows, which implies that 
the map cl>t-cP is one-to-one. 

If fis a solution ofOf= o with (/.i) 1x,,=oeY(R3,V) 
Ell Y (R3, V), then fis a finite-Einstein-energy solution and 
the map Y(R3,V) Ell Y(R3, V) ..... H is continuous. By (11) 

this implies that there is a continuous embedding of Co 
A 

(R3 
- O,V C

) in H. 0 
Lemma 5: If'll I' \fI2 are tangent vectors at a point of H, 

identified with vectors in H, we have 

Proof: This is well known; see, for example, Ref. 20. 0 
Proof of Theorem 3: By Lemma 4, for any heC 0' 

(R3, VC) the function Fh:H ..... R given by 

Fh(~) = f Ih'cPI 2k o-
1 d 3k 

is real analytic and for all t, 

U(exp(tTo»*Fh = Fh, 

i.e., Fh is a conserved quantity for the free Minkowski time 
evolution on H. We obtain analogous conserved quantities 
for the interacting Minkowski time evolution as follows. De
fine Fh,q:H ..... R by 

Fh,q (~) = Fh (~_ ), 

where ~ _ = W = 1 W _ ,q ~ is the "in field." Since Fh is real 
analytic and the map cI>t-~ _ is real analytic,21 it follows 
that Fh,q is real analytic. Rezalling that U(g)~_ 
= (Uq (g)~) _ for all ~eH and geP, it follows that for all t, 

Fh,q (Uq(exp(tTo»<I» = Fh{( Uq(exp(tTo»<I>L) 

= Fh ( U(exp(t To»~ _) 

=Fh(~_) 

=Fh,q(~)' 

so that Uq(exp(tTo»*Fh,q = Fh•q. 
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Let {eA} be an orthomormal basis of V and let h; be a 
sequence in Co' (R3 

- 0, V) forming an orthonormal basis 
of L 2(R3

, VC} such that each hi is of the form keA for some A 
and some real-valued keC a (R3 

- O). DefiningF; = Fh•q , it 
follows from the above remarks that the F; are real analytic 
and invariant under Uq(exp(tTo}), as desired. 

Next we construct the corresponding vector fields Vi' 
Let Rep = ~_. Since the map ~ep _ is ~ real-analytic dif
feomorphism, the same is true of R:H--H. A computation 
~sing the" :,:,ourier transform shows that the" map 
~2i(h; . ep} hi is a bounded linear transformation ofH. Let 
vieT",H be the tangent vector such that dR(v;) 
= 2i(h; ·Rep}h;. As a function ofep, Vi defines a real-analyt
ic vector field on H. 

Let 'IIeT", H. It follows from Lemma 5 and the fact that 
~ep _ is symplectic IS that 

liJ(v;,'II) = 1m f dR(v;}' dR('II) k 0- I d 3k 

=Im f 2i(hi ·Rep)(h;·dR('II»k o-
l d 3k. 

By definition, 

F;(<I>} = f Ih;'R<I>12k o- 1 d 3k, 

so that 

dFi('II} = 2 Re f (hj'R<I» (h;'dR('II})k o I d 3k 

as claimed. 
To prove statement (i) of Theorem 3 it suffices to show 

that liJ ( v;ovj ) = 0, as follows: 

liJ(v;ovj ) =Im f dR(v;)' dR(vj }k o-
l d 3k 

=41m f (h;'R<I>)(h;'hj )( hj 'R<I»k o-
l d 3k 

=0, 
using the fact that h; and hj are ofthe form keA with k real 
valued. 

to prove statement (ii) of Theorem 3 we show that the 
space LeT", H is isotropic for epED, where DeH is the set of 
ep such that eA' Rep is a.e. nonzero for all A. (Here and below 
"almost everywhere" and all integrals are relative to the 
measure k O-

1 d 3k.) Suppose that epED and 'IIeT",H. Then 
'IIeL, that is, dF;('II} = 0 for all i if and only if (eA 'R<I» 
( eA' dR ('II) ) is a.e. imaginary for all A. By the definition of 
D given 'Ill> '112eL, we may conclude that (eA 'dR('III}) 
( eA 'dR('II2 }) is a.e. real; hence 

liJ('III' '112 ) = 1m f dR ('III)' dR ('112 ) k 0- I d 3k = O. 

Thus L is isotropic. 
It remains to show that the complement of D is of first 

category. Since ~ep _ is a diffeomorphism, it suffices to 
show that for each A, the complement of the set ofepeH such 
that eA' $ is a.e. nonzero is of first category. Thus it is 
enough to show that in the case V = R, the complement of 
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" the set D ' of IPEH such that ep is a,e. nonzero is of first cate-
gory, Note that"D' = nm,nDm,n' where Dn,m is the set of 
epeH such that ep vanishes on a set of measure less than lin 
in the ball of radius m. Thus it suffices to show that for all n, 
m the complement D ~,m is nowhere dense in H. 

First we show that the interior of D ~,m is empty. Given 
any epeH, by LeJ!lma} there exists 'IIeH of arbitrarily small 
norm such that ep + 'II vanishes on a set of measure less than 
lin in the ball of radius m, so that ep + 'IIEDn,m' 

Next we show that D ~,m is closed. Suppose that <1>; 
ED ~.m and <1>; -- ep, but epED n,m' Then for each i the set 

A; = {keR3:llk II <m,I$; I = O} 

has measure greater than or equal to lin, but for some con
stant c> 0 the set 

A = {keR3:lIk lI<m,I$I<c} 
has measure less than lin since the ball of radius m has finite 
measure. We obtain a contradiction as follows. On one hand 
" " ep; __ ep in L 2 by Lemma 5, so that 

I. 1$1 2 = I. 1$ - $;1 2 
__ 0. 

On the other hand, 

I. 1$1
2
> I.-A 1$12>c

2 I.-A 1 

and the measure of A; - A is bounded below by a positive 
constant. 0 
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A model for composite systems consisting offermions with internal degrees of freedom 
interacting via intermediate vector bosons (IVB) is constructed. Highly localized, low-mass 
bound states are found in the Hartree-Fock approximation. The dependence of these states as 
function of the coupling constant and vector boson mass is investigated. In the limit of infinite 
vector boson mass the interaction is described by Fermi-type contact forces. 

I. INTRODUCTION 

In this paper, we perform an analysis of the properties of 
strongly bound states of interacting fermions. The Hartree
Fock approximation is employed. Nonlinear interactions of 
fermions were extensively studied on the classical level dur
ing the last years because the corresponding nonlinear field 
equations possess solitary wave solutions of finite energy and 
momentum. This property has been utilized to generate 
models for particles with internal structure. I In a recent pa
per,2 we investigated bound states of particle-antiparticle 
clusters due to Fermi-type contact interactions. The main 
result found in Ref. 2 was that the values of the coupling 
constants required to support bound states are quite large. 

Let us briefly review the approach followed in Ref. 2, 
since we shall have occasion to make repeated use of it in the 
present paper. We investigated the question whether clusters 
of two fermion-antifermion pairs can be bound by a nonlin
ear force, for which we considered scalar- and vector-type 
contact interactions of the form As (\Ii'll)n and Av (\lir"'II) n, 
respectively. Of course, these interactions must be consid
ered as effective interactions since they are not renormaliz
able. The ground state of the system was assumed to contain 
two fermions (spin up, spin down) and two antifermions 
(spin up, spin down) in the same s state. After expanding the 
fermion field operators in a single-particle basis we derived a 
nonlinear single-particle equation from a variational princi
ple. In addition, we found that at least for the two fermion
pairs system vector and scalar coupling are equivalent. This 
surprising result could be explained making use of a Fierz 
transformation. 

In this paper we investigate properties of fermion fields 
interacting strongly through the exchange of vector mesons. 
It is well known that in field theories of Yang-Mills type the 
interaction offermion fields with vector gauge fields plays a 
fundamental role. In Ref. 3 the interaction of a fermion field 
with one vector-meson field was investigated in an attempt 
to understand some aspects of the problem of quark confine
ment. Of course, field theories involving coupled fermion 
and vector-meson fields are interesting in themselves, apart 
from the points of view presented above. 

II. PROBLEM DEFINITION 

Our starting point is the following relativistically invar
iant classical Lagrange density: 

::t' = ::t' F + ::t' B + ::t' FB 

= \liUr"ap - m)'II-! Gpy·&'Y + ~MtVp.VP 
(1) 

where ::t' F' ::t' B' and ::t' FI' describe the free fermion field 
'II, the free non-Abelian vector-boson field V p with mass 
M v' and the coupling between them, respectively. The vec
tor T denotes the N X N generators ofSU (N) and the vector 
arrow on the gauge field V p indicates that it is in the adjoint 
representation ofSU(N). In addition, the SU(N) gauge in
variant field strength tensor Gpy reads 

Gpy =apVy -ayvp +gvVpXVy' (2) 

The fermion field is assumed to be in the fundamental repre
sentation of SU (N). The mass of the vector field V p is to be 
regarded as having a dynamical origin through the coupling 
of the massless vector field to a Higgs field <I>(x). At this 
point we make the assumption that the influence of the non
linear gauge field terms can be absorbed into effective values 
for the (running) gauge coupling constant gv' the vector 
boson mass M v' and the fermion mass m. Since we are main
ly interested in the case of large vector boson masses this 
should be a reasonable approximation due to the short range 
e-Mr/r behavior of the vector field propagator. As a conse
quence, for large M v the boson-boson interactions are of 
minor importance, in contrast to the case of massless gauge 
bosons where these terms are presumably responsible for 
confinement. In this Abelian dominance approximation the 
boson-boson interactions are absent and we have to deal 
with (N 2 

- 1) uncoupled Proca fields. Furthermore we as
sume that the gauge fields are time-independent and we con
sider only their longitudinal components. We would like to 
remark that the quadratic terms in the definition (2) of the 
strength tensor Gpy vanishes in this case due to the antisym
metry of the SU (N) structure constants. With these assump-
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tions one obtains from the Lagrangian (1) the following 
equations of motion: 

[u·p + pm + gv (T/2)'Vo(x)] tI(x) = (J)tI(x) , (3) 

(- a + Mt)Vo(X) = gvtl+ (x)(T/2)tI(x), (4) 

where we assumed a stationary time dependence of the fer
mion field: 

'I'(t,x) = tI(x)e- iOJt
• (5) 

To facilitate the quantization of the Dirac field we eliminate 
from Eq. (4) the vector fields by employing the massive 
spin-l propagator in Coulomb gauge 

Vo(x) =gv f d 3yG(x,y»tI+(y) ~ tI(y), (6) 

where G(x,y) is given by 

G(x,y) = G( Ix - yl ) = (1I41T)(e-Mvlx-yl/lx - yl)· 

(7) 

The Hamiltonian of the system, defined as the timelike com
ponent of the energy-momentum tensor TJJ.V derived from 
the Lagrangian (1) is now expressed in the form 

H [tI,Vo(tI)] = f d 3x Too 

= f d 3x tI+(u'p + pm)tI 

+ gv f d 3x tI+ ~ ¢"Vo 

- ~~II f d3x[(VV~)2+M~Vn· 
(8) 

By employing the field equation (4) and relation (6) the 
corresponding second quantized Hamilton operator reads 

H = f d 3x :~+ (x)(u'p + pm)~(x): 

+ ~ f d 3xd 3y :~+(x) 
T A A T A 

XTtI(X)G(x,y)tI+(y) TtI(y):, (9) 

where we have introduced normal ordering of the fermion 
fields in order to substract the vacuum energy. In the next 
step we expand the field operators ~ and ~+ in a complete 
orthonormal basis, following. the notation used in Ref. 2: 

~(x) = L bp(j)p(x) + L da+cI>a(x), 
p>F a<F 

~+(x) = L b/(j)/(x) + L dacl>a+(x), 

(10) 

p>F a<F 

where the sums in these expansions run over a complete set 
of states. Thebp, b p+ (da, d a+) are one-particle (antiparti
cle) annihilation and creation operators, respectively. The 
summation indices p and a represent the quantum numbers 
of the different states. In a spherically symmetric basis, these 
are a radial quantum number v, angular momentum quan
tum number I, spin projection quantum number u, and inter
nal SU (N) quantum number 7' running from 1 to N while F 
denotes the Fermi level. In the next step we specify the vari
ational ground state I GS) of the system by the action of a 
product of one-particle operators acting on the vacuum 
state: 

IGS) = ± b/ 10). (11 ) 
p=1 

The physical picture we adopt is that there are only particles 
in the system and no antiparticles. To be specific, we consid
ered a composite object consisting of 2N fermions in the 
ground state, i.e., the index pin Eq. (11) takes on the values 
n=2N 

p = {v = 1, I = 0; U,7'}, 

U= ±!, 1,7',N, 
(12) 

and thus Eq. (11) contains 2N creation operators for parti
cles. These operators generate the effective orbitals repre
senting the Hartree-Fock ground state. In order to find the 
yet unknown orbitals (j)jJ we start with the following vari
ational equation: 

[) {(GSIH IGS) 
[)(j) jJ+ (y) 

- ptl (J)p f d 3
X(j)/(X)(j)p(X)} =0, (13) 

where the (J)p's are Lagrange multipliers which enforce the 
orthonormality of the single-particle orbit~ls (j) p' Evidently 
one has to evaluate the matrix element of H with respect to 
the ground state. Following Ref. 2 we insert the expansions 
(10) into the normal ordered Hamiltonian (9) and employ 
the action of the particle-hole operators on the ground state 
IGS). Thus we obtain 

(GSIH IGS) = L f d 3X (j) / (x)( U'p + pm)(j)p (x) + tv f d 3X d 3y{ L [(j) p+ (x)!. (j)p (X)] 
p 2 p,p' 2 

'G(X,Y)'[ (j) p; (y) ~ (j)p, (y) ] - ~ [(j) p+ (x) ~ (j)p, (x) ]'G(X,y).[ (j) p; (y) ~ (j)p (y) ] + ... }, (14) 

where the dots at the end in this expression represent terms 
containing at least one hole operator (da, d a+ ) which van
ish since the ground state ( 11 ) contains no antiparticles. We 
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and exchange term, respectively. Since the interaction is 
spin-independent the summations over spin projections 0' 

and SU (N) quantum number rcan be performed separately. 
For the direct (D) and exchange (E) term we obtain, re
spectively: 

1 
D = "41,;. [qJ: (x)qJq (x)] G(x,y) [qJ ,; (Y)qJ a' (y) lSD' 

(15) 

with 
N N'-I 

SD= L (u:TuT)e(uT;Tur') = L (TrT;)2 
T,T'= 1 ;=1 

(16) 

and 

1 
E="41,;. [qJ: (X)qJq.UL)]G(X,y) [qJ'; (Y)qJq(y)]SE, 

(17) 

'" (GSIHIGS) 

with 

N N'-I 

SE = L (u:TuT· )e(uT;TuT) = L Tr n· (18) 
T,T' = 1 ;= 1 

In the above expressions the qJu's denote the fermion wave 
functions in coordinate representation, while the uT's are N
component fundamental basis vectors ofSU(N). After per
forming the summations in (16) and ( 18) we obtain for S D 

andSE 

(19) 

Thus we see that the direct term (D) vanishes, while the 
exchange term (E) is different from zero only for parallel 
spin orientations, i.e., the summations over spin projections 
0',0" in Eq. (17) provide a factor 2. With these ingredients 
the energy matrix element (14) reads 

=2N I d 3xqJp+ (x)(uep +pm)qJp(x) - [(N2_l)/21i I d 3xd 3Y[qJ/(X)qJp(x>]G(X,Y)[qJp+(Y)qJp(Y)]. 

This is just the total energy of the 2N-fermion system, i.e., 
the Hartree-Fock energy EHF . After inserting the above ma
trix element in the variational equation (13) we obtain the 
following single-particle equation for one of the 2N fer
mions: 

{ 
N2 1 

uep + pm - 2-;' i 

X I d 3y qJ,,+ (Y)qJp (y)G(x,y) }qJp (x) = WpqJp (x), 

(21) 

where p represents the quantum numbers of the specific fer
mion state. Next we discuss and interpret the last results 
diagrammatically. To do this, we first rewrite the total ener
gy EHF from (20) by employing the single-particle equation 
(21) and get 

I 3 N 2 -1 .,,2 
EHF = 2Nwp d x qJ,,+ (X)qJp (x) + 2 ISv 

xI d 3x d 3y qJ,,+ (Y)qJp (y) 

X G(X,Y)qJ,,+ (X)qJp (x) 

N
2 

1 I =2Nwp + 2- i d 3xd 3YqJ,,+(Y)qJp(Y) 

X G(x,Y)qJ,,+ (x)qJp (x). (22) 

In the last step of the above derivation we made use of the 
normalization condition of the fermion wave function. Con
sequently, the total energy consists of two terms: the first 
representing the sum of all single-particle energies wp , while 
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(20) 

the second denotes the exchange energy. Since the Hartree
Fock approximation is just the first order correction to the 
exact ground-state energy, the effective interaction is de
scribed by the two many-body diagrams with one wiggly line 
of Fig. 1. The bubble diagram [Fig. 1 (a) 1 is proportional to 
the trace of the SU (N) generators and thus vanishes. In oth
er words since this diagram includes one closed fermion line 
which represents a SU (N) singlet there is no interaction pos
sible. In the case of the open-oyster diagram [Fig. l(b) 1 
there are exactly (N 2 - 1) independent interactions possible 
because the gauge field has (N 2 

- 1) components in the ad
joint representation of the SU(N) group. Thus it becomes 

(a) (b) 

FIG. I. Many-body diagrams describing the effective interaction in the 
Hartree-Fockapproximation: (a) direct interaction (bubble-diagram) and 
(b) exchange interaction (open-oyster diagram). 
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clear without any calculation that the direct interaction pro
vides no correction to the ground state energy while the ex
change interaction contributes with a factor (N 2 

- 1). 

III. RADIAL EQUATIONS AND NUMERICAL ANALYSIS 

In the following we first shall rewrite the single-particle 
equation (21) in a more convenient form by transforming 
the corresponding integrodifferential equation in terms of 
two coupled differential equations. We define a new function 
u(x) according to 

u(x) = -gv f d 3Y({J/(Y)({Jp(y)G(x,y). (23) 

With this definition we obtain the following coupled equa
tions for the two functions ({Jp (x) and u (x) : 

[u·p + pm + [(N 2 - 1 )/(2N) Jgvu(x) ]({Jp (x) 

= CtJp({Jp (x), 

(a - Mt)u(x) = gv({J / (x)({Jp (x). 

(24) 

(25) 

The last equation results by multiplication of Eq. (23) with 
the operator (a - M t) from the left. It is interesting to 
compare the field equations (24) and (25) with the corre
sponding stationary field equations which follow from the 
classical field theory defined by 

.!£' = X{iylla ll - m)x 

-~ [(a A -a A )allA v_M2A All] 2 IlV Vil Il 

-AXY'XAIl , (26) 

describing the coupling of the Dirac field X with an Abelian 
Proca field All' In the case of a vector field containing the 
longitudinal component only, i.e., All = (Ao,O) and assum
ing a,Ao = 0 there follow from (26) the field equations 

[u·p + pm + AAo(x) JX(x) = EX(X), (27) 

(a - M2)Ao(x) = - AX+ (x)X(x). (28) 

By comparing the last two equations with Eqs. (24) and 
(25) and identifying ({Jp and u with X and Ao, respectively, it 
is evident that they are identical except for the negative sign 
on the right-hand side of Eq. (28). Note that the factor 
(N2 - 1)/(2N) in Eq. (24) can be formally eliminated by 
making the redefinitions 

gv .... ~ (N 2 - 1 )/2N gv and u(x) .... ~ (N 2 
- 1 )/2N u(x). 

The reason for the opposite signs in Eqs. (25) and (28) is to 
be understood as a direct consequence of the internal fer
mionic SU(N) degrees offreedom which are responsible for 
the fact that the resulting effective interaction becomes at
tractive. This is analogous to the different possible signs of 
the nucleon-nucleon interaction depending on the total iso
spin of the nucleon-nucleon system. The attraction becomes 
maximal for the closed-shell configuration [SU (N) -singlet] 
which we are considering. As a consequence of the fact that 
the coupling constant A from (27), (28) appears with a dif
ferent relative sign in these equations in contrast to the corre
spondinggv from (24), (25), Eqs. (27), (28) do not admit 
bound-state solutions with - m,E,m for real values of A 
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and M. We shall prove this statement later explicitly in the 
limitMv .... 00. 

Returning to Eqs. (24) and (25) we derive the corre
sponding radial equations by employing the general form of 
s-wave functions (I = 0) with spin up (0' = 1/2) and spin 
down (0' = - 1/2), respectively: 

and 
l ig(r) ] 

({J1/2(X) = ~ !(r)~ ~ , 

(r)sm {Je"" 

[ 0] 1 ig(r) 
({J-1/2(X) = .j4ii !(r)sin {Je-iq> • 

- !(r)cos {J' 

(29) 

(30) 

Next we perform the transformations G = r og, F = r l' and 
u= rouandafterinserting (29), (30) intoEqs. (24), (25) 
we obtain the following coupled equations for the radial 
functions G, F and U: 

!!.. G = ~ G + (CtJ + m _ N
2 

- 1 gv U) F, 
dr r 2N r 

(31) 

d 1 ( N
2 
-1 U) 

dr F = - -; F - CtJ - m - 2N gv -; G, (32) 

~ U=MtU +_I_gv G
2 
+F2 

d~ 4ff r 
(33) 

In addition, we have the normalization condition for the 
fermion wave function, i.e., 

f d 3x({Jt12({J1/2= f" dr(G 2+F2) = 1. (34) 

For the numerical analysis we have used the general purpose 
computer code COLSYS.4 The above eigenvalue problem has 
been converted into a system of ordinary differential equa
tions with boundary conditions expressed at the two end 
points by defining a new function N(r) 

N(r) = f dr'(G 2 + F2), (35) 

which, employing the normalization condition (36), leads 
to the additional differential equation 

:rN=G2+F2, (36) 

with the boundary conditions 

N(O) = 0 and N( 00 ) = 1. (37) 

Furthermore we regarded the coupling constant gv as an 
additional independent function, satisfying 

(38) 

which is to be determined for a given eigenvalue CtJ. In this 
way we have converted the eigenvalue problem (31)-(33) 
into a boundary value problem which is defined by the five 
differential equations (31)-(33), (36), and (38) with the 
corresponding boundary conditions (34) together with the 
integrability conditions G(O) = F( 00) = U( 00) = o. 
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IV. THE LIMIT Mv- 00 

In passing to the limit of a heavy boson it is useful to consider the integro-differential Eq. (21) and to express the 
propagator in momentum space. We consider the interaction term from (21), hereafter denoted to as MJ 

where we inserted the momentum-space propagator 
G(k)-(lkI 2 +Mt)-1 ..... 1IMt, for Mv>lkl. The last 
expression in the above equation is valid only in the case that 
the momentum transfer is negligibly small compared with 
the mass of the gauge boson M v' The index 112 of the fer
mion wave function indicates the considered fermion with 
spin up. Thus in this limiting case Eq. (21) becomes 

{u.p + pm - N~; 1 (.!'v Yq:J jJ2 (X)q:JI/2(X) }q:JI/2(X) 

= OJ I /2q:JI/2(X), (40) 

This is just the nonlinear Dirac-equation with vector cou
pling belonging to the Fermi-type effective Lagrangian 

.!f=7puY,..a"'-m)q:J +gl(7pr"q:J)2, (41) 

considering only the J.l = 0 component of the current and 
identifying (gvlM v)2 = 4N I(N 2 

- 1 )gl' 
The nonlinear Dirac equation resulting from (41) has 

been extensively studied by several authors (see, for exam
ple, Refs. 5 and 6) and it is well known that it admits bound
state solutions for gl > O. To be more precise we remark that 
the interaction Lagrangian - g I (7pr"q:J) 2 which is positive 

where w(r) and vCr) are radial sl/2-wave functions. Table I 
indicates the values of the coupling constant gl from Eq. 
( 42) required to support bound states in this system. 

First, we note that we could not determine stable bound 
states outside the energy range 0.944mO;;;OJo;;;m for this sys
tem. For OJ values lower than Werit = 0.944m we found that 
this system is not stable and thus there are no nodeless, nor
malizable solutions for OJ < Werit. An analysis of stability 
problems of nonlinear Dirac equations is presented in Refs. 
1, 7, and 8. In addition it is very interesting to remark that 
the largest g I values from Table I correspond to the weakest 
bound states. The minimal g r value required to support 
bound states is related to the minimal energy OJerit = 0.944m. 
We have found indications that at the critical point 
(gerit' OJerit) the solutions merges with a second branch of 
nodeless localized solutions which for other values of the 
coupling constant is less deeply bound. Figure 2 indicates 
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(39) 

definite for gl > 0 can be interpreted as an attractive poten
tial V = - g I (7pr"q:J) 2 which is responsible for the existence 
of bound states in this theory. It also becomes now clear why 
the classical field theory defined by the Lagrangian (26) 
does not have bound state solutions, due to the relative sign 
of the coupling constant in Eqs. (27), (28). The correspond
ing interaction term in Eq. (39) would have an opposite sign 
and thus one would have to identify - (gvIMv)2_g1 >0, 
which is not possible for real values of gv and M v' 

V. NUMERICAL SOLUTIONS AND DISCUSSION OF THE 
RESULTS 

We now turn the discussion to the solutions of the cou
pled equations (24), (25) for the wave functions and the 
single-particle energies OJ associated with fermion bound 
states. We have analyzed numerically the radial equations 
(31)-(33), (36), and (38), searching for those combina
tions of parameters (gv,M v) that provide a particular fer
mion energy OJ e[ - m,m]. In addition, we also solved the 
coupled equations corresponding to the Lagrangian (41 ), in 
order to analyze the limiting case M v ..... 00 , i.e., 

(42) 

typical solutions of the fermion system interacting via IVB 
formassesMvO;;;lOm. For the depicted state with OJ = 0.95m 
belonging to a four-fermion system (N = 2) the radial ex
tension of the radial wave functions does not exceed 

TABLE I. Values for the coupling constant g. required to form a bound 
state in the system with ag.(fjI +fjI)2interaction. Here,g. has the dimension 
(mass)-2. 

{() [m] g. [m]-2 

0.99 31.5 
0.98 20.8 
0.97 15.7 
0.96 12.3 
0.95 9.6 
0.944 7.3 
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FIG. 2. Radial functions for the sI/2 state ofthe four-fermion system in the 
case M v = 7m, aJ = 0.95m, g. = 39.19. 

10m- I 
- 15m- I

• The function U(r) = r-u(r), where u(r) 
is defined by Eq. (23) acts as an attractive potential allowing 
for bound states. However, we expect from the discussion in 
Sec. IV that this system is effectively described by the nonlin
ear Dirac equation which follows from the Lagrangian (41) 
for increasing values of M v and low momentum transfer. In 
this case the functions G(r) and F(r) have to increase in 
magnitude such that the bound states are supported by the 
nonlinearity (G 2 + F2)/r. 

Figure 3 shows this effect for the two states with 
Mv = 7m (dashed line) and Mv = 52m belonging to the 
fermion energy (t) = 0.95m. It is clear from this figure that 
the vector density fP +fP- (G 2 + F2)/r increases with in
creasing M v' In addition, we note that the radial extension of 
these densities does not exceed about 3m -I. 

In Fig. 4 we depict the dependence of the fermion 
eigenenergy (t) on the coupling constant 
g~=~(N2-1)/(2N)·gu for different IVB masses 
(Mv1m) = 0.2, 0.4, 0.6, 0.8, 1, 5, 7. Evidently, there 
exist bound states in the whole interval - m<{t)<m. Con
cerning the curves with M v = const. we remark that there is 
a degeneracy of the coupling constant gu with (t) for 
M v>O.4m. We also note that the curves with 
O.4m<M v < 5m possess two turning points corresponding 

0.08 

;; 0.06 .§ 
a-

0.04 + a-

0.02 
My·7m 

0.00 L...--'---A-...l...-.L.-.I-..L.--L::;::::t::=:ll::::l:..d 
QO Q5 1.0 1.5 ~O ~5 aD 

r (m-1) 

FIG. 3. Vectordensities~ + ~ = (G 2 + F2)/( 4m.2) ofthefour-fermionsys
temforthetwo IVBmassesMv = 7m (dashed line) andMv = 52m (solid 
line) corresponding to the fermion energy aJ = 0.95m. 
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g'y 

FlG. 4. The dependence of the fermion energy aJ on the coupling constant 
g~ = ~ (N Z 

- 1 )/2N 'g. for different masses (M vim) = 0.2, 0.4, 0.6, 0.8, 
I, 5, 7 in the case of a four-fermion system. 

to Dirac eigenenergies 0.9m<{t)<m(gTP) and 
- m <(t) < - 0.9m(gtp) while the curves belonging to 

M v = 5m and 7m display only one turning point corre
sponding to fermion energies near the lower energy contin
uum and the curve M v = 0.2m with no turning point. Note 
that with increasing values of M v the upper turning points 
gTP move to lower energies. 

Next we analyze the dependence of the fermion energy 
(t) on the coupling constant gv for increasing values of M v' 
i.e., M v> 10m. We expect that energy levels with {t»0.944m 
asymptotically approach the energy values provided in Ta
ble I for the case of large M v values, since for the system 
bound by contact forces only for {t»0.944m we found bound 
states. Figure 5 illustrates this limiting process for the con
stant energy values ((t)lm) = 0.95,0.97, and 0.99. In this 
figure we show the dependence of the effective coupling con
stantgefl' = (gvIMv)2·(N2-1)/(4N) onthemassMp'for 
fixed value of the energy. In the previous section we demon
strated that the coupling constant gefl' tends to the coupling 
constant g I of the contact interaction in the case M v» Ik I. In 

j 
100 

31.5 

15.7 

10 

0.1 1 10 100 

Mv (m) 

FIG. 5. The limiting process of increasing Mv values for aJ>0.944m. The 
effective coupling constant gelf = (3/8)·(g.IMv )2 tends to the coupling 
constant g I of the contact interaction from Table I with increasing values of 
M v' Three typical situations in a four-fermion system are illustrated: 
aJ = 0.99m, aJ = 0.97m, aJ = 0.95m. 
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Fig. 5 the horizonal dashed lines represent the values of gl 
which provide the same energy eigenvalue tiJ. Obviously, the 
energy levels of the system interaction via IVB approach 
these energies for Mv.values greater than 20m. 

It is very interesting to analyze the nature ofthis limit
ing process for tiJ values lower than tiJerit = 0.944m, since in 
this case we did not find any localized solutions for the sys
tem interacting via contact forces. Figure 6 illustrates typical 
features of such solutions with tiJ < tiJerit and large M v' The 
shape of the radial functions is similar to that of the solutions 
belonging to tiJ>0.944m, in particular the curves are also 
nodeless. However, the radial extension of these solutions 
shrinks drastically, i.e., it becomes smaller by more than one 
order of magnitude, while the functions G and F take on very 
large values due to the normalization condition. In fact, Fig. 
7 indicates that the corresponding radial extension of the 
vector density lP + lP - (G 2 + F2)!r does not exceed 
0.07 m - I. A further peculiar feature of this new class of solu
tions, obtained for tiJ < tiJerit = 0.944m and large M v' is the 
fact that for masses M v larger than some critical value 
12m <Merit < 13m the required coupling constant gv is no 
more proportional to M v' We found that for this class of 
solutions thegv values become almost constant with increas
ing values of the corresponding M v' Consequently, the effec
tive coupling constant geif - (gv/ M v) 2 tends to zero in this 
casel The illustration of this effect is found in Fig. 8 for the 
N = 2 states of constant energy tiJ/m = 0.5, 0, - 0.5. First, 
with increasing values of M v, gv also increases up to 
M V = Merit and then decreases. Asymptotically it tends to 
the constant value of about 12.35 while M v increases 
further. We found that in this limiting process the coupling 
constant gv tends to the same limiting value goo = 12.35 for 
each solution in the range - m<tiJ < 0.944m. These solu
tions become tiJ-independent. Thus for tiJ <tiJerit = 0.944m 
and M v > Merit there acts some mechanism which ultimate
ly effects a collapse of the system. 

It is of particular interest to analyze this type of extreme
ly localized states belonging to fermion eigenenergies 
- m<tiJ <0.944m. In Sec. IV we demonstrated that only in 

the case that the momentum transfer is significantly lower 
that the boson mass, the considered field theory is effectively 

2 

-2 

0.05 0.10 0.15 0.20 0.25 
r (m-1) 

FIG. 6. Radial functions for the S 1/2 state ofthe four-fermion system belong
ing to the second class of solutions we have found for W < Werit = 0.944m. 
We have depicted a typical case with Mv = S2m, W = O.Sm, g, = 12.74. 
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FIG. 7. The corresponding vector density II' +11' = (G 2 + F2)/(4171.2) of the 
solutions from Fig. 6. The parameters M v' w, and g, are the same of Fig. 
6. 

described by the Fermi contact theory. The solutions with 
tiJ < tiJerit describe the situation when the momentum transfer 
is of the same order of magnitude as the boson mass. As 
mentioned before, the transition to the limiting case oflarge 
IVB masses as discussed in Sec. IV is no longer valid. To 
achieve a better understanding of the mechanism which 
causes the shrinking of these solutions we perform the fol
lowing scale transformations in Eqs. (31)-( 34): 

x=Mr, 6= (1/~Mv)G, 1'= (l/~Mv)F, 
(43) 

U= (41Tigv)U, gv = [(N2-1)/81TNli· 

With the above definitions Eqs. (31)-( 34) become 

d - 1 - 1 -- tiJ + m --G=-G-gv - UF +-_oF, (44) 
dx x x Mv 

d - 1 - _ 1 -- tiJ - m -
-F= --F +gv - UG--_oG, (45) 
dx x x Mv 

d: U= fJ +..!.. (6 2+1'2), (46) 
dx x 

with the normalization condition 

i oo 
dx(6 2 + 1'2) = 1. (47) 

14 

13 

> 12 
en 
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10 

t:m 
,...--::----:~=:-:::_-::.=:-:::-_""-:==:-:-:_-~.=,.,,~_,.,,~~.~~.~ .... -,.....-J 
:.,.-. Col = -O.5m , 
; 
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Mv (m) 

FIG. 8. The dependence of the coupling constantg, on the IVB mass M v for 
w/m = 0.5,0, - 0.5 in a four-fermion system which is characteristic for the 
second type of solutions we found, i.e., W < 0.944m. 

lonescu et al. 769 



                                                                                                                                    

We remark that the IVB mass M v appears only on the right
hand side of Eqs. (44), (45) in the demonimator. The cru
cial point is to observe that the limiting process M v - 00 is 
equivalent to the situation with Mv fixed while m-O and 
w-O. Of course, since for bound states it is - m<w<m, 
there follows from m - 0 that also w - 0, i.e., the single-parti
cle energy gap [ - m,m] shrinks to zero. By solving Eqs. 
(44)-(47) for (m,w) = (0,0) we obtained a nodeless, stable 
solution corresponding to the coupling constant gv = 9.1. 
Employing the relation betweengv and gv from Eq. (43) it 
is evident that this value ofgv (w-O,m-O) perfectly agrees 
with the value of gv (M v - 00 ), i.e., g"" = 12.35. Conse
quently, all solutions belonging to - m<w < Wcrit can be 
constructed from the solution ofEqs. (44 )-( 47) with m and 
w equal zero by employing the scale transformations (43). 
Thus we found that for this class of states the IVB mass sets 
the scale in the system, i.e., different solutions of the un
scaled Eqs. (31 )-( 34) belonging to different eigenenergies 
w contain no additional information about the system since 
they represent a unique solution which is simply scaled ac
cording to Eq. (43). 

Finally we consider the total energy of the system. In 
Sec. II we demonstrated that the total energy EHF is given by 
the sum of the Dirac eigenenergies wand a first order correc
tion associated with the exchange interaction. Considering 
Eq. (22) the total energy reads 

N 2 -1 
EHF = 2Nwp + ~ 

2 

X f d 3xd 3yq;/ (x)q;p(x) 

X G(x,y)q; / (y)q;p (y) 

N
2
-1 fd 3 +() = 2Nwp - 2 gv x q; p x 

Xq;p (x)u(x), (48) 

where we introduced the function u(x) according to Eq. 
(23). Performing the above integration in spherical coordi
nates the integration over the angular variables can be car
ried out yielding the following final expression for the total 
energy: 

where G, F, and u are the radial functions representing the 
solution of the coupled equations (31 )-( 33 ). Considering 
Eq. (23) which defines the function u, we see that the radial 
integral in the above expression is negative definite for posi
tive values of the coupling constant gv. Consequently, the 
total energy EHF is shifted above the sum of single-particle 
energies wp. The first term in Eq. (49) represents a lower 
bound of EHF • Furthermore, we found in all examples we 
have studied that the total energy becomes never negative, 
due to the absolute values of the second term in Eq. (49) 
which always exceeds possible negative contributions from 
the first term, i.e., for fermion eigenenergies in the range 
- m <wp < o. Consequently, the total energy is positive defi-
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nite and thus the neutral vacuum represents a stable ground
state of this field theory. Finally we note that with increasing 
IVB masses the contributions to the total energy coming 
from the radial integral in Eq. (49) become quite large such 
that the total energy lies above the threshold energy 2N'm in 
the upper energy continuum. In this case the fermion system 
does not form a pure bound state. The solutions discussed 
above, however, possibly correspond to a resonance state of 
the system. 

VI. CONCLUSIONS 

Let us summarize the main results of our studies. We 
have investigated a quantum field theOretical model for a 
system consisting of 2N fermions with internal SU (N) de
grees offreedom interacting via massive vector bosons which 
possesses stable bound states. Weare not able to decide 
whether the energy of a pair of N-fermion clusters would 
have a lower energy than the considered 2N-fermion system, 
since our energy relation (49) is valid only for closed shell 
systems. Consequently, we cannot decide whether these 2N
fermion clusters are really stable against the decay into N
fermion clusters, nor can we make any assertions about the 
mass of such N-fermion clusters. However, in view of the 
high localization of our solutions we expect them to be at 
least quasistable against a decay into lighter clusters. For 
this second quantized system we derived a single-particle 
equation for fermions by employing the Hartree--Fock ap
proximation. Furthermore we have examined the limiting 
process for increasing IVB masses, for which we demon
strated analytically as well as by numerical integration that 
the effective interaction is described by Fermi-type contact 
forces in the case that the IVB mass dominates the momen
tum transfer. By solving the corresponding radial equations 
we found two classes of solutions, namely one class which 
relate!> to bound states of the nonlinear Dirac equation in the 
limit M v - 00 (w;;;>0.944m) while the second class of solu
tions (w < 0.944m) indicates a collapse of the system for 
large IVB masses. The second class of solutions represents 
just the situation in which the IVB mass and the momentum 
transfer are of the same order of magnitude. The total energy 
of the system was found to be positive in all examples we 
studied. 
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ERRATUM 

Erratum: Expressions for the zeta-function regularized Casimir energy 
[J. Math. Phys. 30, 1133 (1989)] 
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Formula (1.1) must be 

H = ~ L (J)k (a!ak + aka!) 
2 k 

= + (J)k(nk + ~). 

and 

E(d,a,m) = - 2 __ 1T-(d+ 1)/2 am L d-I ()d+ 1 

ad 2 

Expressions (2.8) and (2.9) ought to be written as 

E(d,a,m) 

771 

= - ~ L:: I
1T -(d+I)/2{ -[1Tr( - ~)(a;r 

respectively. 00 K(d+I)/2(amn)]} 
+ 4 n~1 (amn/2)(d+ 1)/2 The equalities (B2) should read 

I s(s + 1 - aa)j(a) - j(~)~cot 1TS - a~a)[J,s], 
a=O a a a 

s 
-El:N, 
a 

I ;(s + 1 - aa)j(a) + rj(~) - ~f'(~) - a~a)[J,s], ~EN. 
a=O a a a a 

a#sla 
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